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In this paper, we develop some of the theory of spreads of projective spaces with an
eye towards generalizing the results of R. H. Bruck (1969, in ‘‘Combinatorial Mathe-
matics and Its Applications,’’ Chap. 27, pp. 426—514, Univ. of North Carolina Press,
Chapel Hill). In particular, we wish to generalize the notion of a subregular spread to
the higher dimensional case. Most of the theory here was anticipated by Bruck in later
papers; however, he never provided a detailed formulation. We fill this gap here by
developing the connections between a regular spread of (2n#1)-dimensional projec-
tive space and an n-dimensional circle geometry, which is the appropriate generaliz-
ation of the Miquelian inversive plane. After developing this theory, we provide
a fairly general method for constructing subregular spreads of PG(5, q). Finally, we
explore a special case of this construction, which yields several examples of three-
dimensional subregular translation planes which are not André planes. ( 1998

Academic Press
1. INTRODUCTION

Let q be a prime power, and n a positive integer. A spread of PG(2n#1, q)
is a partition of this space into qn`1#1 pairwise disjoint projective subspa-
ces of dimension n. The study of spreads of projective spaces is motivated by
the following construction of Bose and Bruck [6]. We note that essentially
the same construction was given by André [1], but we follow the presentation
of Bose and Bruck here.

Let &"PG(2n#2, q), and let &* be a hyperplane of &, i.e., a projective
subspace of dimension 2n#1. Let S be a spread of &*. Define an incidence
*This research formed part of the author’s doctoral dissertation under the advisement of
Dr. Gary Ebert.
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structure % as follows. The points of % are the points of &C&*, together with
the n-spaces in S. The lines of % are the (n#1)-dimensional subspaces of
& which meet &* in an element of S, together with the spread S itself.
Incidence is given by inclusion. Bruck and Bose proved that % is a translation
plane, and further that every finite translation plane can be obtained in this
manner for some prime power q and some positive integer n.

By this result, the problem of finding new translation planes is equivalent
to that of finding new spreads; further, André’s theory readily implies that
inequivalent spreads give rise to nonisomorphic planes. Much work has been
done on this problem in the case where n"1, i.e., the construction of spreads
of PG(3, q). One of the earliest efforts in this area was Bruck’s work [2] on
subregular spreads, which we now describe.

Let q be a prime power, and n a positive integer. A regulus inPG(2n#1,q) is
a set of q#1 pairwise disjoint n-spaces with the property that any line of
PG(2n#1, q) which meets three spaces of the regulus must meet all of the spaces
of the regulus. One can easily prove the following well-known proposition:

PROPOSITION 1.1. ¸et q be a prime power and n a positive integer. ¹hen any
set of three pairwise disjoint n-spaces in PG(2n#1, q) determines a unique
regulus.

A spread ofPG(2n#1, q) is said to be regular if the regulus determined by
any three spaces of the spread is fully contained in the spread. Regular
spreads are significant because if one performs the construction of Bose and
Bruck using a regular spread, a Desarguesian plane is obtained (at least in the
finite case). Further, regular spreads are frequently used as starting points for
the construction of other spreads. In fact, this is the idea behind subregular
spreads.

Consider a regulusR inPG(3, q). It is a set of q#1 lines with the property
that any line which meets three lines of R must meet every line in R. It turns
out that those lines which meet every line ofR themselves form a new regulus,
which is called the opposite regulus of R, denoted R @.

Now, supposeR is contained in a spreadS. Since the lines ofR @ cover the
exact same points as the lines of R, we can construct a new spread S@ by
removing the lines ofR fromS, and replacing them with the lines ofR @. This
procedure is called reversing the regulus R.

This procedure can ostensibly be repeated. If we start with a spread
Swhich contains a regulusR, we can reverseR to get a new spreadS@. If we
are so fortunate that S@ contains a new regulus, then we may reverse this
regulus to obtain a new spread, and so on. A spread S@ which can be
obtained from a regular spread S by such a sequence of regulus reversals is
called subregular. It was shown by Orr [10] that any subregular spread of
PG(3, q) can be obtained from a regular spread S by starting with a set of
pairwise disjoint reguli in S and simultaneously reversing them.
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Our goal in this paper is to generalize this notion of a subregular spread to
spreads of PG(2n#1, q). Unfortunately, the idea of reversing reguli does not
generalize directly to higher dimensions. However, Ostrom [11] has defined
a more general concept of net replacement, of which regulus reversal is the
simplest example. Indeed, the procedure we discuss, due in its geometric form
to Bruck [3], is another special case of Ostrom’s work.

2. A MODEL FOR A REGULAR SPREAD AND
BRUCK’S NORM-SURFACES

Let q be a prime power, and let n be a positive integer. We wish to describe
a model, introduced by Bruck [3], for a regular spread of !"PG(2n#1, q).
Let F"GF(q) be the finite field of order q, and let K"GF(qn`1) be an
(n#1)-dimensional extension of F. Let » be the vector space over F whose
vectors are M (x, y) : x, y3KN. It is easy to see, by considering K as an
(n#1)-dimensional vector space over F and expanding, that » is a (2n#2)-
dimensional vector space over F. Thus, by taking our points to be the
one-dimensional subspaces of », our lines to be the two-dimensional subspa-
ces of », etc., we obtain a model of !.

We define a spread of ! using the sets

J(R)"M (0, y) : y3KN
and

J (k)"M (x, kx) : x3KN , (1)

as k varies over all the elements in K. The spread S is then given by

S"MJ (R)NXMJ (k) : k3KN . (2)

It is straightforward to show the following proposition:

PROPOSITION 2.1. ¸et q be a prime power and n a positive integer. ¸etS be
defined as in Eq. (2). ¹hen S is a regular spread of !"PG(2n#1, q).

Now that we have a model for a regular spread, we would like to describe
our higher-dimensional analog of the regulus. This construction was given by
Bruck [3], and he called the resulting structures norm-surfaces.

LetS be a regular spread as defined in Eq. (2). Let N be the norm function
of K"GF(qn`1) over F, i.e., N(x) is the product of all the algebraic
conjugates of x over F for all x3K. A norm-surface is any set projectively
equivalent to the set

N" Z
N(x)/1

J (x) .
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It is obvious that N contains one set of qn`1~1
q~1

pairwise disjoint n-dimen-
sional spaces which cover its points, namely MJ(k) Dk3K and N (k)"1N.
Bruck was further able to show that if p is any field automorphism which
generates the automorphism group of K over F, then the set MJp (k) Dk3K and
N(k)"1N, where Jp (k) is defined via

Jp (k)"M(x, kxp) : x3KN , (3)

is a set of qn`1~1
q~1

pairwise disjoint n-dimensional spaces which cover the points
ofN as well. We call any of these sets of n-spaces contained in a norm-surface
a hyperregulus. (We note that Ostrom [11] proved essentially the same result
from an algebraic point of view.)

The term hyperregulus was first used by Ostrom [12] in a slightly more
general context. The importance of these hyperreguli is that they serve the
same ‘‘reversal’’ role as reguli do in PG(3, q). In particular, if a spread
S contains a hyperregulus Q, then we can obtain a new spread from S by
removing Q and replacing it with any of the hyperreguli which cover the
points of the norm-surface generated by Q. The hyperreguli we consider here
are referred to by Ostrom as André hyperreguli, as they were first explored by
André [1]. However, as we will show, these André hyperreguli can be used to
construct planes which are not André planes.

We can now define a subregular spread of PG(2n#1, q) to be any spread
which can be obtained from a regular spread of PG(2n#1, q) by a sequence
of hyperregulus reversals. Trivially, the regular spread of PG(2n#1, q) is
a subregular spread. The André spreads are also subregular. Indeed, André’s
construction essentially consists of partitioning the spaces of the regular
spread S of Eq. (2) into the two spaces J (R) and J(0) and the q!1
hyperreguli MJ(k) Dk3K and N(k)"f N for each f3F*, where F* is the set of
nonzero elements of F, each of which covers a norm-surfaceN

f
. To construct

an André spread, one merely picks one hyperregulus from each N
f
.

Our goal now is to construct subregular spreads of these higher-dimen-
sional spaces, which give rise to planes which are not André planes. Follow-
ing Bruck’s theory for PG(3, q), we proceed by considering circle geometries,
a generalization of inversive planes.

3. A CONNECTION WITH CIRCLE GEOMETRIES

The abstract definition of a circle geometry is given by Bruck in the papers
[4, 5]. For our purposes, however, we can merely deal with the classical
examples. Let q be a prime power and d a positive integer. The d-dimensional
circle geometry over GF(q), denoted CG(d, q), is the incidence system whose
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points are the points of the projective linePG(1, qd), and whose blocks (called
circles) are the order q sublines of this projective line. We note that the
CG(d, q)’s are 3!(qd#1, q#1, 1) designs, which were studied by Witt under
the name spherical designs.

We model the projective line PG(1, qd ) using a two-dimensional vector
space over GF (qd) with homogeneous coordinates. So, the points of
PG(1, qd ) are the one-dimensional subspaces MS(1, x)T Dx3GF(qd)N together
with S(0, 1)T. For short, we identify the subspace S(1,x)T with the field
element x, and the subspace S(0, 1)T with the symbol R. We also use this
convention in labeling the points of CG(d, q).

The following theorem motivates the study of circle geometries. The proof
of this theorem is quite tedious, but simply involves a comparison of how one
constructs reguli in PG(2n#1, q) and how one constructs sublines in
PG(1, qn`1).

THEOREM 3.1. ¸et q be a prime power and n a positive integer. ¸etS be the
regular spread of PG(2n#1, q) defined in Eq. (2). ¹hen if we take the spaces in
S as points, and the reguli contained in S as circles, the resulting structure is
isomorphic to the circle geometry CG(n#1, q). Further, there exists an isomor-
phism a which maps the space J (k) onto the field element k for all k3GF(qn`1),
and maps J (R) onto R.

Since a is an isomorphism from S onto CG(n#1, q), we can consider the
natural mapping

h : Aut(S)PAut(CG (n#1, q)) (4)

which is a surjective group homomorphism (see Bruck [5]). In particular, any
collineation of PG(2n#1, q) which leaves S invariant can be considered as
a permutation of the spaces of S. Since collineations of PG(2n#1, q) map
reguli onto reguli, this action induces an automorphism of the circle geometry
under a. One can compute the kernel of this homomorphism, which is the
group of mappings in Aut(PG(2n#1, q)) which fix each space of S setwise.
This is the content of the following proposition, which can easily be proved
(see Dover [8] for details in the case n"2.)

PROPOSITION 3.2. ¸et q be a prime power and n a positive integer. ¸etS be
the regular spread of PG(2n#1, q) given by Eq. (2) and let K be the field
GF(qn`1). If h is the homomorphism given in Eq. (4), then Ker(h) is a cyclic
group of order qn`1~1

q~1
which consists of the collineations induced by the matrices

M(k
0

0
k
) : k3K*N. Further, this group cyclically permutes the points of each space

in S.

For the construction of subregular spreads of PG(2n#1, q), we need to
focus on the image of a hyperregulus under the mapping a. This was done by
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Bruck in [5], and the resulting object in CG(n#1, q) is called a cover. While
Bruck gave an abstract development of covers using the groups associated
with CG(n#1, q), we wish to give a slightly different development, still based
on Bruck’s work, with which it will be easier to work.

Let F"GF(q) and K"GF (qn`1). LetS be the regular spread in Eq. (2)
and let a be the isomorphism given in Theorem 3.1. Since the set of spaces
Q"MJ (k) Dk3K and N (k)"1N forms a hyperregulus in S, the set
N

1
"Mk3K DN (k)"1N, which is the image of Q under a, is a cover

CG(n#1, q).
In [5], Bruck computes the automorphism group of CG(n#1, q). It turns

out that it is 3-transitive and consists of all mappings of the form

x/"

axp#b

cxp#d
, a, b, c, d3K , (5)

with the restrictions that ad!bcO0 and the map p3Aut(K) is a field
automorphism of K. We take the usual conventions on R, namely R/"a/c
if cO0 and R/"R if c"0.

It is easy to see that the image of N
1

under any automorphism of
CG(n#1, q) is again a cover, and so the preimage of this new cover under a is
a new hyperregulus inS. With this in mind, our construction method will be
the following. We would like to find a set of pairwise disjoint covers in
CG(n#1, q). From this set of covers, we can use a~1 to map back to a set of
pairwise disjoint hyperreguli in S. Then, by doing a replacement of each of
these hyperreguli, we will obtain a subregular spread.

Note that there are some unanswered questions here. First, we have no
result analogous to Orr’s result [10] that any subregular spread can be
obtained by reversing a pairwise disjoint set of hyperreguli. Further, once a set
of pairwise disjoint hyperreguli is chosen, it is unknown how choosing from
among the various replacements for a given hyperregulus will affect the type of
spread obtained. These are interesting questions which we do not tackle here.

4. EXAMPLES OF SUBREGULAR SPREADS OF PG(5, q)

We would now like to focus on the following setting. Let q be an odd prime
power, and define F"GF(q) and K"GF(q3).

The basic tool we need for this entire section is a straightforward lemma
about finite fields. Let K be a field and F a subfield of K. The trace function
of K over F is the function which maps an element of K to the sum of all of
its algebraic conjugates. If K"GF(q3) and F"GF(q), then Tr(x)"
x#xq#xq2 for all x3K.
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LEMMA 4.1. ¸et F"GF(q) and K"GF(q3). ¹hen, for all a, b3K*

N(a#b)"N (a)#N(b)#TrAN(b)
a

b
#N(a)

b

aB .

where N is the norm function of K over F, and Tr is the trace function of K
over F.

Proof.

N (a#b)"(a#b)(a#b)q(a#b)q2

"aq2`q`1#abq2`q#aqbq2`1#aq2bq`1

#baq2`q#bqaq2`1#bq2aq`1#bq2`q`1

"N (a)#N(b)#Tr(abq2`q#baq2`q)

"N (a)#N(b)#TrAN (b)
a

b
#N(a)

b

aB . j

As mentioned before, our method for constructing subregular spreads of
PG(5, q) is to find a set of pairwise disjoint covers in CG(3, q). We can then
map these covers to a set of pairwise disjoint hyperreguli in S, the regular
spread given in Eq. (2) of PG(5, q).

We begin by giving a method for constructing a pair of disjoint covers. The
construction given here was originally obtained by extensive computer ex-
perimentation using the package MAGMA [7]. The proof is quite technical,
as it consists of some involved arithmetic in finite fields.

THEOREM 4.2. ¸et d3K"GF (q3), q odd, and q55, be such that
N(d)O0, 1. ¸et m3GF (q)CM0, 1N be such that N(d )m#1

4
(N(d )!1)2 is

a square (possibly zero) in F"GF(q). ¸et b3K be an element of norm
1
2
(N(d )!1)m#m[N(d)m#1

4
(N(d )!1)2]1@2. If N

1
"Mx3K DN (x)"1N,

and /3Aut(CG(3, q)) defined via

x/"

x#b

(md/b)x#d
,

we have N
1
WN

1
/"0.

Proof. We first note that / is indeed an automorphism of CG(3, q), since
1(d )!bmd

b
"d!mdO0, as mO1. Further, we note N(b)O0, since this

would force either m"0 or 1
2
(N (d)!1)"![N(d )m#1

4
(N(d)!1)2]1@2.

Squaring both sides and cancelling yields N (d)m"0, which is not possible as
neither N(d ) nor m is 0.
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Now, by way of contradiction, suppose there exists u3N
1
WN

1
/.Then, for

some x3N
1
, u"x/, which implies that there exists x3K such that

N(x)"1 and N (x/)"1.
If N(x/)"1, we have the string of implications

N (x/)"1NNA
x#b

(md/b)x#dB"1NN (x#b)"N (d)NA
m

b
x#1B .

As noted above, neither m nor b is 0, and xO0 since N(x)"1. So, we can use
Lemma 4.1 to expand the above norms as

N(x)#TrC
N (x)b

x
#

N(b)x

b D#N(b)

"N (d)CNA
mx

b B#TrC
N (mx/b)

mx/b
#

mx

b D#N (1)D .

Noting that N(x)"1 and N (m)"m3, since m3F, we can simplify and collect
like terms to obtain

TrC
b (1!N(d)m2/N(b))

x
#

(N(b)!N (d)m)x

b D"!1!N (b)

#N(d)#
N(d )m3

N(b)
. (6)

By our hypothesis, N (b)"1
2
(N(d)!1)m#m[N(d)m#1

4
(N(d)!1)2]1@2, so

we can use this to compute the quantity

N (d)m2

N (b)
"

N(d )m2

(1/2)(N(d )!1)m#m[N(d)m#(1/4)(N(d )!1)2]1@2
.

Rationalizing the denominator and simplifying in this expression yields

N (d)m2

N(b)
"!1

2
(N(d )!1)#[N(d)m#1

4
(N(d)!1)2]1@2 . (7)

We can now plug these two facts into Eq. (6) to find that

TrC
b

x
(1#1

2
(N(d )!1)![N(d )m#1

4
(N(d)!1)2]1@2)

#

mx

b
(1
2

(N (d)!1)#[N(d )m#1
4

(N(d )!1)2]1@2!N(d ))D
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"!1!1
2

(N(d)!1)m!m[N(d)m#1
4

(N(d)!1)2]1@2

#N (d)!1
2

(N(d )!1)m#m[N (d)m#1
4

(N(d )!1)2]1@2 ,

which with some simplification gives

TrCA
b

x
!

mx

b BA
N(d )#1

2
!CN (d)m#

(N(d)!1)2

4 D
1@2

BD
"(N(d )!1)(1!m) . (8)

We note that 1
2
(N(d)#1)![N(d)m#1

4
(N(d)!1)2]1@23F*. It is clearly

in F, and it is not 0, since if it were we would have the implications

1
2

(N(d )#1)"[N(d)m#1
4

(N(d)!1)2]1@2

N1
4

(N(d )#1)2"N(d) (m)#1
4

(N(d )!1)2

N1
2

N (d)"N (d)m!1
2

N(d)

which forces m to be 1, which is a contradiction. The above expression is thus
not zero, so we can divide by it in Eq. (8) to get

TrC
b

x
!

mx

b D"
(N(d)!1)(1!m)

(1/2)(N(d )#1)![N(d )m#(1/4)(N(d )!1)2]1@2
.

Again rationalizing and simplifying yields

TrC
b

x
!

mx

b D"A
N(d)!1

N (d) BA
N(d )#1

2
#CN(d)m#

(N(d )!1)2

4 D
1@2

B . (9)

Now, let z3K be any element such that N(z)"N(b)
m

. Note that such
a z exists and is not 0 since N(b)O0 and mO0. Define a"!zx and b" zb

N(z)
.

Again, we note that since zO0, neither a nor b is 0. We can then compute the
quantities

N(a)"!N (z)"!(1
2

(N(d)!1)#[N (d)m#1
4

(N (d)!1)2]1@2)

and

N (b)"
N (z)N(b)

N(z)3
"

m2

N(b)
.
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Using Eq. (7), we know this latter quantity is

N (b)"
1

N (d)
(~1

2
(N(d)!1)#[N (d)m#1

4
(N (d)!1)2]1@2) .

Two final computations yield

N (a)b
a

"

!N (z)bz

!zN (z)x
"

b

x

and

N(b)a
b

"

!N (b)x

N (z)b
"

!mx

b
.

With some simplification, one can use these expressions to compute
that

N (a)#N (b)"A
1!N (d)

N (d) BA
N (d)#1

2
#CN (d)m#

(N(d)!1)2

4 D
1@2

B .

We can now simplify Eq. (9) as

TrC
N(a)b

a
#

N (b)a
b D"!N(a)!N (b) ,

which by Lemma 4.1 gives the implication

N (a#b)"0Na#b"0.

Substituting the definitions of a and b gives

!zx#
z

N(z)
b"0Nx"

b

N (z)
,

in which we can take norms on both sides to obtain

1"
N (b)

N (z)3
"

m3N(b)

N(b)3
"

m3

N(b)2
,
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which forces N(b)2"m3. Finally, we calculate

N(b)2"1
4

(N(d)!1)2m2#(N(d)!1)m2 [N (d)m#1
4

(N(d)!1)2]1@2

#N (d)m3#1
4

(N(d )!1)2m2

"m2A
(N(d)!1)2

2
#(N (d)!1)CN(d )m#

(N (d)!1)2

4 D
1@2

#N(d )mB .

Setting this equal to m3 and dividing both sides by m2 yields the equation

1
2

(N(d)!1)2#(N (d)!1) [N (d)m#1
4

(N(d)!1)2]1@2#(N(d)!1)m"0.

Since N(d )O1, N(d )!1O0, so we can divide both sides by N(d )!1 to get

1
2

(N(d )!1)#[N(d)m#1
4

(N(d)!1)2]1@2#m"0.

Moving the square root to the right hand side and squaring both sides, we
find that

m2#m(N (d)!1)#1
4

(N(d)!1)2"N (d)m#1
4

(N(d )!1)2 ,

which after simplification yields

m2!m"0.

This implies that m is 0 or 1. However, these were the two specifically
excluded values for m; this is a final contradiction. j

For the construction of disjoint pairs of covers, we now need only pick
appropriate values for m, b, and d in this theorem. There are many ways in
which this can be done, and an exploration of the distinct possibilities would
be of interest. However, we would like to focus on a specific example here.

Let q"1 (mod4) be a prime power. Then, !1 is a square inGF(q); let i be
one fixed square root of !1 in this field. Let m"2, d"!1, and b"i!1.
We then check that N (d)"!1; N(d )m#1

4
(N(d)!1)2"!1, which is a

square; and N(b)"2i!2"1
2
(N(d )!1)m#m[N (d)m#1

4
(N(d )!1)2]1@2,

where we take i to be the square root of !1 in this expression. So these values
satisfy the hypotheses of Theorem 4.2, and we have a pair of disjoint covers in
CG(3, q). By applying the map a~1 to each of these covers, we obtain a pair of
pairwise disjoint hyperreguli in the spread S. Finally, we can replace these
hyperreguli with the appropriate images of the hyperreguli in Eq. (3) in
various ways to obtain several (possibly equivalent) subregular spreads. We
note that there may in principle be other hyperreguli which cover the same set
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of points as the given replacements, but Pomareda [13] has shown that this is
not possible in PG(5, q).

A natural question is whether one can extend this set of disjoint covers to
a larger set. We wish to give two answers to this question; in both cases we
provide a third cover disjoint from both of our previous two. The first
method works only when q is an even power of 3, while the second works for
all prime powers q'5 which are not divisible by 5. Note that these two cases
do overlap; it is not clear whether or not the first method is simply a special
case of the second.

We first assume that q is an even power of 3. If so, then q,1 (mod4)
and we already have a pair of disjoint covers in CG(3, q), namely N

1
"

Mx3GF(q) DN (x)"1N and N
1
f, where xf" x`(i`1)

(i~1)x~1
.

THEOREM 4.3. ¸et q be a power of 3 such that q,1 (mod4), i.e., q"32h,
for some h51. ¸et i be a square root of !1 in F"GF (q), and let
K"GF(q3). ¸et f be defined via xf" x`(i`1)

(i~1)x~1
and let g be defined via

xg" x`(1~i)
(~1~i)x~1

. If N
1
"Mx3K DN(x)"1N, then N

1
WN

1
f"N

1
WN

1
g"

N
1
fWN

1
g"0.

Proof. f was shown to satisfy the conditions of Theorem 4.2 above, so
N

1
WN

1
f"0. To look at g in terms of this theorem, let m"2, d"!1, and

b"1!i. As above, N(d )"!1, N(d )m#1
4
(N(d )!1)2"!1 is a square,

and N(b)"!2i!2"1
2
(N(d)!1)m#m[N(d)m#1

4
(N(d)!1)2]1@2, where

the square root is now taken to be!i. Noting that xg" x`b
(md@b)`d

with these
choices, we have that N

1
and N

1
g are also disjoint covers from Theorem 4.2.

Finally, we need to show that N
1
f and N

1
g are pairwise disjoint. The key to

this computation is to note that f is an involution, so that N
1
f and N

1
g are

pairwise disjoint if and only if N
1

and N
1
(g f ) are pairwise disjoint. We

compute an expression for x ( gf ) as

x (g f )"A
x#(1!i)

(!1!i)x!1B f

"

(x#(1!i))/((!1!i)x!1)#(i#1)

(i!1) ((x#(1!i))/((!1!i)x!1))!1

"

x#(1!i)#(i#1)((!1!i)x!1)

(i!1)(x#(1!i))!( (!1!i)x!1)

"

(1!2i)x!2i

2ix#(1#2i)

"

x#(!1!i)

(1#i)x!i
.
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Let us again apply Theorem 4.2. Let m"2, d"!i, and b"!1!i.
Then, N (d)"!i3"i ; N(d )m#1

4
(N(d )!1)2"0, which is a square;

and N(b)"i!1"1
2
(N(d)!1)m#m[N(d)m#1

4
(N(d)!1)2]1@2. Since

x(g f )" x`b
(md@b)x`d

for these choices, we find that N
1

and N
1
(g f ) are two

disjoint covers in CG(3, q), which implies N
1
f and N

1
g are also disjoint. j

By this theorem, we are able to construct new subregular spreads by
mapping the three covers N

1
, N

1
f, and N

1
g back to S and reversing the

resulting hyperreguli. However, this only works in a very special case, when
q is a even power of 3. We would now like to give another result of this type,
which works for most other cases.

THEOREM 4.4. ¸et q,1 (mod4) and qI0 (mod5). ¸et F"GF(q) and
K"GF(q3). ¸et N

1
"Mx3K DN(x)"1N and define the mapping f as above

via x f" x~(i`1)
(i~1)x~1

, where i2"!1. Define h3Aut(CG (3, q)) via xh" x`d
~ix`d ,where d3K and N(d)"1#i. ¹hen, N

1
WN

1
f"N

1
WN

1
h"N

1
fWN

1
h"0.

Proof. We first note that N
1
WN

1
f"0 by Theorem 4.2. To show

N
1
WN

1
h"0, we show that h satisfies the conditions of Theorem 4.2. For

this, we write h as

xh"
x#d

(!id/d)x#d
.

In terms of the statement of Theorem 4.2, we have b"d, m"!i, and d"d.
Checking the conditions of this theorem, we have

N(d )m#1
4

(N(d)!1)2"(1#i)(!i)#1
4

( (i#1)!1)2

"3
4
!i"(!1#1

2
i)2

and

m(N(d)!1)

2
#mCN (d)m#

(N(d)!1)2

4 D
1@2

"

!i2

2
!iA!1#

i

2B
"1#i"N (b) .

Thus h satisfies the conditions of Theorem 4.2, and therefore we can conclude
that N

1
WN

1
h"0.

To show N
1
fWN

1
h"0, since f is an involution, we can show the equiva-

lent statement that N
1
WN

1
(h f )"0. We can now apply the same ideas as
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used above. We first compute x (h f ) as

x (h f )"A
x#d

!ix#dB f"
(x#d)/(!ix#d)#(i#1)

(x#d)/(!ix#d)!1

"

(x#d)#(1#i) (!ix#d)

(i!1)(x#d)!(!ix#d)
,

in which we can collect like terms to yield

x (h f )"
(2!i)x#(2#i)d
(2i!1)x#(i!2)d

.

Since qI0 (mod 5), 2 is not a square root of !1, and thus 2!i is not 0. So
we can normalize the above to get

x(h f )""

x#( (3#4i )/5)d
((3i!4)/5)x!d

.

To cast this into the form from Theorem 4.2, we let d@"!d,and b@"3`4i
5

d.
To find m@, we note that m{d{

b{
"3i~4

5
. Solving this for m@ yields m@"7i`24

25
. With

these definitions, we can write

x (h f )"
x#b@

(m@d@/b@ )x#d@
,

and show that our conditions hold.
First, we have

N (d@)m@#1
4

(N(d@)!1)2"!(1#i)
7i#24

25
#1

4
(i!2)2"A

!4#3i

10 B
2

.

To show N(b@)"1
2
(N(d@)!1)m@#m@[N (d@)m@#1

4
(N(d@)!1)2]1@2, we com-

pute both sides of the expression. For the left-hand side, we find

N(b@)"A
3#4i

5 B
3
N (d)"

!161!73i

125
,

while for the right-hand side we obtain

1
2

(N(d@)!1)m@#m@[N (d@)m@#1
4

(N (d@)!1)2]1@2

"

7i#24

25 A
!1!i!1

2
#

!4#3i

10 B
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"

7i#24

25 A
!7!i

5 B
"

!161!73i

125
.

Thus, hf satisfies the conditions of Theorem 4.2, which implies N
1
fWN

1
h"0

as claimed. j

As before, we can again use this set of pairwise disjoint covers to construct
new subregular spreads of PG(5, q).

5. THE ANDRË SPREADS

In the previous section, we have given three constructions of subregular
spreads of PG(5, q) for various values of q, with q,1 (mod4) (though our
principal result (Theorem 4.2) works for all odd prime powers greater than 3).
We have not yet shown however that these spreads are not already known. In
particular, we must show that the spreads we have obtained are not André
spreads. In order to do this, we must study the André spreads in more depth.

As in the two-dimensional case, the key to defining an André spread is
the concept of linearity. Let S be a regular spread of PG(2n#1, q) with
q a prime power and n a positive integer as given in Eq. (2). In the standard
construction of an André spread, one partitions the spaces of S into the
q!1 hyperreguli MJ (k) Dk3GF(q3) and N(k)"f N, for each nonzero
f3GF(q), and the spaces J (0) and J(R), and then (possibly) reverses each of
the hyperreguli. We would like to investigate this phenomenon with respect
to the circle geometries involved.

If we map these hyperreguli to CG(n#1, q) using the isomorphism a from
Theorem 3.1, we obtain a set of q!1 pairwise disjoint covers N

f
for each

nonzero f3GF(q), where N
f
"Mk3GF (q3) DN (k)"f N, which cover the

points of CG(3, q)CM0,RN. It turns out (see Bruck [5]) that the points 0 and
R are the carriers of each of these q!1 covers, in a well-defined sense (how
one defines the carriers of a cover requires one to delve into the group theory
of the circle geometries in much more detail than is necessary for our
purposes, so we refer the interested reader to Bruck). In general, we call a set
of covers which share a pair of carriers a linear set of covers, and we call the
corresponding set of hyperreguli a linear set as well. We further exploit this
correspondence by referring to the spaces in the spread S which map to the
carriers of this linear set carriers too.

The critical point here is that one obtains an André spread by reversing
a linear set of hyperreguli. So it will be important for us to show that a given
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pair of hyperreguli form a nonlinear set. This is impossible if n"1, for
every pair of disjoint reguli in a regular spread of PG(3, q) forms a linear
set. However, Bruck [5] shows that a cover of CG(n#1, q) has a unique
pair of carriers, at least if n#1 is prime. So to show that a set of covers
is nonlinear, it suffices to show that the covers therein do not share
carriers.

However, showing that we reversed a nonlinear set of hyperreguli is not
sufficient to show that the spread we obtain is not André. It is conceivable
that the spread we obtain could also be obtained by starting with a different
regular spread and reversing a linear set of hyperreguli. We wish to show that
this usually does not happen, at least inPG(5, q). We proceed with a series of
lemmas.

LEMMA 5.1. ¸et q be a prime power, and let A be an Andre& spread in
PG(5, q). ¹hen there exist three regular spreadsT,T@, andTA such thatA is
a subset of the union of these three spreads. Further, A can be obtained from
any one of these spreads by reversing a linear set of pairwise disjoint hyper-
reguli.

Proof. Since A is an André spread, there exists a regular spread T such
that A is obtained from T by reversing a linear set Q of hyperreguli in T.
Without loss of generality, we can coordinatize the spread T as in Eq. (2) so
that the carriers of the hyperreguli in Q are J (R) and J (0). (See Bose and
Bruck [6] for details on such coordinatization.) Thus, the hyperreguli that are
being reversed all have the form N[ f ]"MJ (k) Dk3GF(q3) and N (k)"f N
for some nonzero f3GF(q).

By considering N[ f ] as the image of N[1] under the collineation induced
by the matrix (1

0
0
f
), Pomareda [13] has shown that there are exactly two

hyperreguli which can replace N[ f ], namely N@[ f ]"MJq(k) DN (k)"f N and
NA[ f ]"MJq2 (k) DN (k)"f N. These planes come from Eq. (3), using the field
automorphisms xPxq and xPxq2, respectively.

Define T@"Z
f|GF(q)*

N@[ f ]XMJ(0), J(R)N and TA"Z
f|GF(q)*

NA[ f ]X
MJ(0), J (R)N, where GF(q)* denotes the set of nonzero field elements.

Consider the following mapping / :»P», where »"M(x, y)
Dx, y3GF(q3)N, defined via (x, y)/"(xq, y). It is straightforward to check
that / is a linear mapping over », and thus induces a collineation ofPG(5, q),
which we will also call /. Clearly J (R)/"J (R) and one can compute that
J(k)/"Jq2 (k). Thus, T/"TA which implies TA is a regular spread. Ap-
plying / toTA shows thatT@ is also a regular spread. Since J(0) and J (R) are
in all three ofT,T@, andTA, and every other plane ofA lies in either N[ f ],
N@[ f ], or NA[ f ] for some nonzero f3GF(q), it follows immediately that
A is contained in the union of these three regular spreads. The final assertion
is now straightforward. j
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The following lemma can be proved by extending the methods of Bruck [2]
in proving a similar result about regular spreads of PG(3, q). The details are
tedious and thus we omit them.

LEMMA 5.2. ¸etT andT@ be two distinct regular spreads ofPG(5, q), with
q a prime power. ¹hen T and T@ meet in at most q#1 planes.

We can now prove:

THEOREM 5.3. ¸et q be a prime power greater than 2, and letS be a regular
spread ofPG(5, q). IfP is any spread obtained fromS by reversing a nonlinear,
nonempty set of at most q!2 pairwise disjoint hyperreguli, then P is not an
Andre& spread.

Proof. By way of contradiction, suppose P is an André spread. Then by
Lemma 5.1, there exist three regular spreads T, T@, and TA whose union
contains all planes of P and such that P can be obtained from any of these
three regular spreads by reversing a linear set of pairwise disjoint hyperreguli.
SinceP was obtained fromS by reversing a nonlinear set, none ofT,T@, or
TA can be S.

Since we reversed at most q!2 hyperreguli inS to obtainP,Pmust have
at least q2#q#3 planes in common with S. These planes must lie in the
union of the three regular spreads T, T@, and TA. So, by the pigeonhole
principle, at least one of these three spreads must have at least 1

3
(q2#q#3)

planes in common with S. However, this contradicts Lemma 5.2 since
distinct regular spreads of PG(5, q) share at most q#1 planes, and
1
3
(q2#q#3)'q#1 for all q'2. Thus P cannot be an André spread. j

We note briefly that this theorem is trivially true if q"2, as q!2"0 and
the hypotheses cannot be satisfied. Of course, there is only one spread of
PG(5, 2) up to projective equivalence.

At this point, it is simple to verify that the three types of spreads generated
in the previous section are not André spreads. For example, we have noted
that the carriers of N

1
are 0 and R. If f is the mapping x f" x`(i`1)

(i~1)x~1
, then the

carriers of N
1
f are 0f"!(i#1) and Rf" 1

i~1
. Since these covers do not

share carriers, they form a nonlinear set. So if we pull back to the regular
spread S of PG(5, q), we obtain a pair of disjoint, nonlinear hyperreguli.
Assuming we actually do a reversal, we obtain a subregular spread which
does not give rise to an André plane by the above theorem.

6. CONCLUSION

There are many avenues yet to be explored in this area. The most impor-
tant next step is to give examples of subregular spreads of PG(2n#1, q),
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where n'2, which are not André. In addition, we have also not given any
examples of non-André subregular spreads of PG(5, q) with q even; tech-
nically, we have also not done so if q,3 (mod4), but such examples are easy
to generate using Theorem 4.2.

Many of the classical questions regarding subregular spreads also remain.
For example, how large can a nonlinear set of pairwise disjoint hyperreguli
be? Is there an analog of the flock conjecture for this higher-dimensional
setting? One can also ask how many projectively distinct subregular spreads
there are. Even a count of the number of projectively distinct André spreads
in higher dimensions seems unknown.

We have also left unanswered many of the normal questions regarding the
collineation groups of the planes we have constructed. For each set of
pairwise disjoint hyperreguli we have obtained, there are several different, but
possibly equivalent, ways to replace each one. By brute force computation, it
is often possible to compute the inherited automorphism groups of these
planes (i.e., the group of collineations which leave the ambient Desarguesian
plane invariant as well); the details are quite messy in general, and we refer
the interested reader to Dover [8] for an example of such a computaton.

Of course, one might ask if this inherited automorphism group is the full
collineation group of the plane. The analogous statement for planes obtained
from subregular spreads of PG(3, q) was proven by Walker [14], where he
showed that for any spread obtained by reversing a set of k pairwise disjoint
reguli, the collineation group of the resulting plane is inherited unless
k"q!1 or k"q~1

2
. It would be interesting to see if an analogous result

holds in the higher-dimensional cases; Ostrom [11] has obtained some
results in this direction, but does not seem to have solved the whole problem.

A final issue of interest is the characterization problem; in particular, one
may ask if it is possible to determine that a plane arises from reversing a set of
pairwise disjoint hyperreguli by looking at some properties of the collinea-
tion group of the plane. Indeed, it is not difficult to see that each hyperregulus
replacement is given by images of a suitable subspace under the kernel
homology group given in Proposition 3.2; Ostrom [11] has given a general
group-theoretic characterization of planes obtained by this kernel homology
action. Much recent work has been devoted to this and related problems; for
example, we refer the reader to Jha and Johnson [9].
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