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Abstract-This paper is concerned with a delay difference system 

2xn - G-1 = f (Yn-k) 1 

2Y?x - Yn-1 = f (X,-k) 1 
n E N, (*I 

where Ic is a positive integer, and f is a signal transmission function of McCulloch-Pitts type. The 
difference system (*) can be regarded as the discrete analog of the artifical neural network of two 
neurons with McCulloch-Pitts nonlinearity. Some interesting results are obtained for the asymptotic 
behavior of the system (*). @ 2001 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Recently, there has been increasing interest in the study of the asymptotic behavior of solutions 

for delay difference equations. See, for example, [l-5]. But there are only a limited number of 

works concerning the asymptotic behavior of delay difference systems; for some results, we refer 

to [6,7]. Let 2 denote the set of all integers. For any a,b E 2, define N(a) = {a,a + 1,. . . }, 

N(a, b) = {a, a + 1,. , b} when a 5 b. N = N(0). In this paper, we consider the delay difference 

system 
2% - G-1 = f (!&-k) 1 

2YTz - Yn-1 = f (G-k) 1 
n E N, (1.1) 

where k E N(l), and 

f(x) = { 
-1, ifz>0, 

1, ifxsa, 
(1.2) 

for some constant a. System (1.1) can be regarded as the discrete analog of the artifical neural 

network of two neurons 
? = -x + j-(y(t - T)), 

Y = -Y + f(x(t - 711, 
(1.3) 
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where k and Ij are replaced by the backward difference xn - x,-l and yn - yn_l, respectively. 

Many interesting applications have been found in system (1.3), for example, image processing of 

moving objects which can be implemented by a delayed cloning-template [8,9]. 

In this paper, we parallel discrete time systems results from continuous time systems [8]. 

However, discrete time systems demonstrate some surprising differences. 

By a solution of (l.l), we mean a ‘sequence {(xcn, y,)} of points in R2 that is defined for 

all n E N(-lc) and satisfies (1.1) for n E N. Let X : N(-k, -1) + R2. Clearly, for any 

@ = (4, $) E X, system (1.1) has a unique solution (zz, g,“) satisfying the initial conditions 

x: = 4(i), y" = q!(i), for i E N(-lc, -1). (1.4) 

Our goal is to determine the limiting behavior of (xz, y,“) as n + DC, for any Cp E X. In particular, 

we concentrate on the case where 4 - u and $ - 0 have no sign change on N(-k, -1). Namely, 

@ E Xz>+ U Xz,- U X;:+ U Xi;- = X, defined by 

with 

R,f = (4; C#J : N(-k, -1) --+ R and qS(i) - g > 0 for i E N(-lc, -1)) : 

and 

R, = (4; c$ : N(-k, -1) + R and 4(i) - o < 0 for i E N(-k, -1)). 

A positive semicycle of a sequence {x~}~=_~ relative to a consists of a “string” of terms 

1x1, Xlfl,. . ., xm}, all greater than u, with 1 > -k and m < co and such that 

either 1 = -k or 1 > -k and xl-1 5 o, 

and 

either m = co or m < co and x,+1 5 g. 

A negative semicycle of a sequence {x~}:=__~ relative to c consists of a “string” of terms 

(21, x1+1,. . . > xm}, all less than or equal to 0, with 1 2 -k and m 5 co and such that 

either 1 = -k or 1 > -k and xl-1 > 0, 

and 

either m = co or m < 00 and x,+1 > 0. 

For the general background on difference equations, refer to [lo-121. 

REMARK. The definition of semicycle in this paper is slightly different from that in [12]. 

The main results of this paper are as follows. 

THEOREM 1.1. Assume that Io( < 1, @ = (4,$) E X$)+ U Xi,-, and 4(-l) = $J(-1). Then 

the solution { (xz, 1~~))~~~~ of the difference system (1.1) satisfies x, = yn for n E N, and the 

following statements are true. 

(a) Every positive semicycle of {xcn} relative to 0, except perhaps for the first one, has at 

least k terms, and terms number is less than log2(2”+’ - 1 + a)/(1 + a). 

(b) Every negative semicycle of {x~} relative to 0, except perhaps for the first one? has at 

least k terms, and terms number is less than log2(2”+l - 1 - a)/(1 - a). 
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COROLLARY 1.1. Assume that G = (c$,$J) E Xz.+ U Xi.- and 4(-l) = $1-1). Then we have 

the following. 

(4 

(b) 

Cc) 

For 0 5 o < 1, every positive semicycle of {xn} relative to u, except perhaps for the first 

one, has just k terms. 

For -1 < u 2 0, every negative semicycle of {x~} relative to 0, except perhaps for the 

first one, has just k terms. 

For 1~7 < l/(2”+’ - l), there exists Qp0 = (I&,$J,o) E X,+9+ with q50(-1) = 7/1,0(-l) such 

that the solution (x,“O, y,““) of (1.1) with initial value Cpa is periodic with the minimal 

period 2k. Moreover, there is an integer m E N(O,2k - 1) such that 

THEOREM 1.2. Let 101 < 1, and @ = (qS,$) E X,. Then (zz,yz) + (-1,1) as n 4 co if 

@ E Xl,+; and (zz,yz) + (1, -1) as n --+ CC if @ E Xz,-. 

THEOREM 1.3. Let 1~1 > 1, for any initial value Q = (4, Q) E X. Then (x:, yz) + (1,l) as 

n + co for o > 1; (xz,$) -+ (-1, -1) for 0 < -1. 

THEOREM 1.4. Let CJ = 1. Then we have the following. 

(a) (z$ y$) -+ (1,l) if either 

(i) 4(-l) 5 1, $(-1) I 1, or 
(ii) @ = (4,$) E X,+,+ and 2l-” < (1 + $I-l))/(l + 4(-l)) I 2k-1. 

(b) (zE,yz) ---f (-1,l) ifeither@ = (c#I,$) E Xi,+ or@ = (c$,$) E X$,+ and(l+$(-l))/(l+ 

4(-l)) > 2”. 
(c) (x:, yz) -+ (1, -1) ifeither @ = (#,$I) E X:,- or @ = (q5,$) E Xz,+ and (1+4(-l))/(l+ 

$I-1)) > 2”. 

THEOREM 1.5. Let a = -1. Then we have the following. 

(a) (x,“, $) + (-1, -1) if either 

(i) 4(-l) > -1, $(-1) > -1, or 

(ii) @ = (c$,$) E X,J,- and 21-lc 5 ($(-1) - 1)/(4(-l) - 1) 5 2’-l. 

(b) (xz,yz) + (-1,1) if@ = (q5,$) E X;l+ or B = (q5,$) E Xi.- and (4(-l) - 1)/(4(-l) - 
1) 5 2-k. 

(c) (x$$) 4 (1,-l) if@ = (4,111) E X,+9- or Q = (4, $J) E Xi,- and (q5( -1) - 1)/($(-l) - 
1) < 2-k. 

2. PROOFS OF MAIN RESULTS 

Assuming no E N, we first note that the difference equation 

2x, - x,-r = -1, 71 E N (no), 

with initial condition x,,,_l = a is 

(2.1) 

X n = (1 + a) (;)“““” - 1, 71 E N(no). (2.2) 

The solution of the difference equation 

2rc, - Z,_l = 1, 1% E N (no), (2.3) 
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with initial condition x,,-1 = a is 

zn = (u - 1) ($+l+O + 1, n E N(nc). (2.4) 

For the sake of convenience, in the sequel, x, denotes xz, and yn denotes yz. 

PROOF OF THEOREM 1.1. We only consider the case where Cp = (4, $) E Xz>+. The case where 
Q = (4, $J) E X;l- is similar, and the proof is omitted. 

Using (1 .l), we can easily obtain that x n = yn for all n E N. Therefore, it suffices to show 
that the solution {xn} of the equation 

23% - X71-1 = .f (X,-k) > (2.5) 

with initial conditions 

satisfy (a) and (b). 

xi E R,f, for i E N(--lc, -l), 

Assume that the first semicycle of {xn} relative to cr is {x-k,. . . , x,,_l}, which is a positive 

semicycle. This implies that 

X,1-1 > 0, Xm, I ff. (2.6) 

By (2.5). we see that 

2x, - x,-i = -1, nEN(-k,rnifIc-1). 

By (2.2), we have 

n-ml+1 

X n=(l+X,,-1 f 

)(> 

- 1, nEN(ml,ml+k-l). (2.7) 

Assume that the second semicycle of {x,} relative to ~7 is {x,, , . . . , x,,_~}. This is a negative 

semicycle, which implies that 

X,*-l - ffr < x,, > c7. (2.8) 

By (2.7), it is easy to see that x,,+k-1 2 x,,+k-2 < ... 5 x,, 5 g. Thus, m2 2 ml + !c, and 

22, -x,-i = 1, 72 E N (ml + k, ma + Ic - 1) 

By (2.4), we get 

X - (X n- ml+k-1 - 1) ; 

0 

n-ml-k+1 

+1 

1 

0 

n-ml-k 
1 

=- - 

2 
+(1+X77%-1 2 

)(-I 

n-m*+1 

+ 1. 

In particular, 
1 

2 m-1 = - 
0 

m-ml-k-1 
1 

mz--ml 

5 
+(1+X,,-1 2 

)(-I 

+ 1. 

Noting (2.6) and (2.8), we see that 

1 

-(-> 

mz-ml-k-1 

2 
+(1+(T) ; 

0 

m2--m1 

+ 1 < x,,-1 IO, 

which implies 

m2 - ml < log, 
2”+1 _ 1 _ g 

l-0 . 
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Assume that the third semicycle of {zn} relative to cr is {zr,, , . . . , x,,_I} clearly this is a positive 

semicycle. By a similar way to the second semicycle, we can prove 

k 5 In3 - 1122 < log, 
2”+1 -1+C7 

lfC7 

The proof of Theorem 1.1 is complete by induction. 

PROOF OF COROLLARY 1.1. If 0 I c < 1, since 

lo 2k+i - 1 + CT 
g2 1+a 

< log2 21i+’ = k + 1, 

we see that (a) holds. 

Similarly, we know that (b) holds. 

If 1~71 < l/(2’+’ - l), then 

1+1 
log, 2 

-1+a 
<k+l and 

lfa 
log, “+; I’,- cr < k + 1. 

By Theorem 1.1, we know that every semicycle of {J..~~} relative to 0, except perhaps for the first 

one, has k terms. We consider the case where Q, = (4, $) E X$3+, the case where Q = (4, $) E 

Xi,- is similar and the proof is omitted. Assume that ml is the least nonnegative integer such 

that (2.6) holds. Then the ith semicycle of {zcn} is {z nLl+(r-2)kr:l’m1+(2-2)k+l,. . . :Xv,,+(,-l)k-I > 

for 1; E N(2). From (2.5), we have, for i E N(l), 

22,, - .?&_I = -1, n E N (ml + (2i - 2)k, ml + (2i - 1)k - 1)) 

22, - J&-i = 1, 7% E N (ml + (2i - l)k, ml + 2ik - 1). 

Thus, we have 

n-ml+1 

X ?I = (1+X,,,-l ; 
0 

- 1, 

n-m-k+1 

X - (X,,+k-1 - 1) 7L - +1 

= ((1 +2,,,_1) (g _2) (;)““““” + l 

1 =-C-J 
n-ml-k n-TrLl+l 

2 l 

+ (1 +z,,-1 + 1, 

In general, for i E N(l), we have 

(2.9) 

( 0 1 n-ml-k ‘p-2)1; _ 1 1 
2 2” + 1 + (1 + Xm,-1 

+> n-?rLl+l 

- 2 1, 

for 1% E N (n%i + (2i - 2)k, ml + (2i - 1)k - 1) ; 

X 71 = ( 

-(-> 2 1 TX-ml-k 2(2j-i)k 2” + 1 + 1 + (1 + IL’,,_1 )(-> 2 1 71-rn1+1 + 1, 

\ for 7% E N (mi + (2i - l)k, ml + 2ik - 1). 

Let @0 = ($0, $43) E X,+,+ with 40(-l) = ,$0(-l) = (2” - 1)/(2” + 1). Then from (2.9), we 

get, for i E N(l), 

1 1 n-(2z-1)k 

- n E N ((21: 2)k, (2i l)k - - - 1)) 
‘h 

xv, 

2”+1 0 z 1, 

= 1 1 n-2zk 

-- 0 + 1, 
2”fl z 

11, E N ((2i l)k, 2ik 1). - - 
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Clearly, {z~~}~?~ is periodic with minimal period 2k. In view of (2.9), it is easy to see that 

00 ( Gn,-1 

2” - 1 1 j+i 
xm,+j --x3 - - -- 

2”+1 
>o 

5 
+ 0, asjioo. (2.10) 

Let m = ml - 2k[m1/2k], where [.I denotes the greatest function. Then m E N(O,2k - l), and 

bY (2.10), 

lim 
71’CC ( 

xn -~$0, = 0. 
> 

This completes the proof of Corollary 1.1. 

PROOF OF THEOREM 1.2. We only prove the case where @ = (4,$) E X;>+, the case where 

@ E X:9- is similar and the proof is omitted. 

Since @ E X;,+, from (l.l), we see that 

2x, -x,-1 = -1, 

2&l - Yn-1 = 1, 

for n E N(0, k - 1). Therefore, 

2, = (1+ qq-1)) (q+l - 1, 

n+l 

Yn=($(-1)-l) f fl, 
0 

(2.11) 

(2.12) 

for n E N(0, k - 1). This implies 5, < 0, yn > 0, for n E N(0, k - l), and (2.11) is satisfied for 

n E N(k, 2k - 1). Thus, x, < 0, yn > (T, for n E N(k, 2k - 1). Repeating this procedure, we can 

obtain that (z,, yn) satisfies (2.12) for all n E N, from which we know that (z,, yn) + (-1,1) 

as n --f 03. 

PROOF OF THEOREM 1.3. We only prove the case where g > 1, the case where o < -1 is similar 

and the proof is omitted. 

In view of (l.l), we see that 
2x, - 2,-i < 1, 

2YYn - Yn-1 I 1, 

for n E N. By induction, this implies 

& I (4(-l) - 1) ; 
0 

n-t1 

+ 1, 

~1. E N. 

yn 5 ($(-1) - 1) 
0 

; n+l + 1, 

From (2.14), we see that there exists a positive integer ml such that x, < 

1% E N(mi). Thus, 
2x, - x,-i = 1, 

2Y, - Yn-1 = 1, 
71 E N(mi + Ic). 

Therefore, 

0 

n--ml -k+l 

X - (X n- ml+k-1 -1) ; + 1, 

0 

n-ml-k+1 n E N(ml+ k), 

%I = (?hn~+k-1 - 1) ; + 1, 

which implies that (xn, Yn) -+ (1,1) as n + co. 

(2.13) 

(2.14) 

ff, Yn < 0, for 

(2.15) 

(2.16) 
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PROOF OF THEOREM 1.4. We first prove (a). In Case (i), the conclusion can be obtained by a 

similar argument as that in Case 1 for the proof of Theorem 1.3. Now we consider Case (ii) where 

@ = (&7/J) E x,+3+ and 2l-” < (1 + $J(-l))/(l + 4(-l)) < 2”-l. By the symmetry of (l.l), 

there is no harm in assuming that (1 + $J(-l))/(l + 4(-l)) L 1. By using (2.2), we get 

2, = (1+4(-l)) (q+l- 1, 

0 

n+l 
yn=(l+ti(-1)) f -1, 

(2.17) 

for n E N(0, k - 1). Assume that ml is the least nonnegative integer such that 

X ml-1 > 0, Gn, 5 0, 

then (2.17) holds for n E N(O,mi + k - 1). By (2.17), 

(2.18) 

!hl+k-1 = (I+ $‘(-I)) f 
0 

ml+k 
- 1 5 (1+ qb(-1)) 

0 
; 

I-k+ml+k 

- 1 = x,, < CT, 

which implies 

2, I CJ, Yn 5 fJ, for n E N(mi + k - 1). 

Therefore, 
2x, -x,-i = 1, 

2Yn - Yn-1 = 1, 
nEN(ml+2k-1). 

In view of (2.4), we see that (x,, yn) -+ (1,l) as n --+ oo. 

Consider the conclusion (b). If Q = ($, $) E X; I+, then the conclusion follows from a similar 

argument as that in Case 1 for the proof of Theorem 1.2. If @ = (&$I) E X,+3+ and (1 + 

$(-l))/(l + 4(-l)) 2 2k, then (2.17) holds for n E N(0, k - 1). Letting ml be as in Case (ii) 

of (a) such that (2.18) holds, then we can prove 

m1+i+l 

Y?n1+i = (1 + @(-I)) 
0 

f -1 

2 (1+4(-l)) f 
0 

ml+i+l-k 

-1 

> (1+4(-l)) ; 0 
ml 

- 1 

= Xrn,-1 > 07 i E N(0, k - 1). 

Thus, 

Xmlfi 2 UT Yml+i > 07 for i E N(0, k - 1). 

Similar to the previous case, we know the conclusion holds. 

By the symmetry of (l.l), we see that conclusion of (c) holds. This completes the proof of 

Theorem 1.4. 

Theorem 1.5 can be proved in a similar fashion to Theorem 1.4, we omitted the proof. 
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