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a b s t r a c t

In this work, an improved SQP method is proposed for solving minimax problems, and
a new method with small computational cost is proposed to avoid the Maratos effect.
In addition, its global and superlinear convergence are obtained under some suitable
conditions.
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1. Introduction

Consider the following minimax optimization problems:

min f (x) = max
1≤j≤m

fj(x), s.t. x ∈ Rn, (1.1)

where fj (j = 1 ∼ m) are continuously differentiable real-valued functions defined on Rn.
Due to the non-differentiability of the object function f (x), we cannot use the classical gradient methods directly to solve

such optimization problems [1–3,6].
Many schemes have been proposed for solving the problem (1.1), by converting it to a smooth constrained optimization

problem in Rn+1 as follows:

min z
s.t. fj(x)− z ≤ 0, j ∈ I = {1, . . . ,m}.

(1.2)

Obviously, from the problem (1.2), the K–T condition of (1.1) is defined as follows:

m∑
j=1

λj∇fj(x) = 0,
∑
j=1

λj = 1,

λj(fj(x)− f (x)) = 0, λj ≥ 0, j = 1, . . . ,m,

(1.3)

It is well known that, because of its superlinear convergence rate, the SQP method is one of the most effective methods
for solving nonlinear programming problems. In [4], an SQP algorithm is proposed for solving the problem (1.1). There, the
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main search direction d and its Maratos revised direction d̃ are computed by solving two QP subproblems. In order to obtain
the global convergence as well as the superlinear convergence rate, it is necessary to perform a nonmonotone line search
along the arc td+ t 2̃d.
Recently, an SQP type algorithm was proposed in [5] for solving the problem (1.1). In contrast with the case for [4],

the monotone line search assures acceptance of the unit step size. However, in order to avoid the Maratos effect, it is still
necessary to solve two QP subproblems to obtain the search direction dk and its high-order revised version d̃k. Moreover,
in order to obtain the superlinear convergence rate, an additional posteriori assumption is made:

∑m
j=1(λ

k
j − u

∗

j )∇fj(x
k) =

o(‖dk‖), which involves the behavior of the gradient of the functions fj(xk), the direction dk, the approximate multiplier λk,
and the K–T multiplier u∗.
In this work, an improved SQP algorithm for solving the problem (1.1) is proposed. This algorithm overcomes the

shortcomings just pointed out. It takes advantage of the active set of the QP subproblem, and constructs a suitable
nonsingular matrix. With this matrix, the new revised method is proposed to overcome the Maratos effect problem, that is
to say, the Maratos revised direction is obtained by solving a system of linear equations, instead of a QP subproblem which
is equivalent to a nonlinear system. Unlike in [5], under some general conditions, the global convergence is obtained as well
as the superlinear convergence rate.

2. Description of the algorithm

For the sake of convenience, define

I = {1, . . . ,m}, I(x) = {j | fj(x) = f (x)}.

The following general assumptions are true throughout the work.

H 2.1. fj (j = 1, . . . ,m) are continuously differentiable.

H 2.2. For all x ∈ Rn, vectors
{(
∇fj(x)
−1

)
, j ∈ I(x)

}
are linearly independent.

Now, the algorithm for the solution of the problem (1.1) can be stated as follows.

Algorithm A.

Step 0 Initialization and data:
Given x0 ∈ Rn,H0 ∈ Rn×n, a symmetric positive definite matrix, parameters α ∈ (0, 12 ), τ ∈ (2, 3), set k = 0.

Step1 Computation of the search direction:
1.1 Compute (zk, dk) by solving the following quadratic problem at xk:

min z +
1
2
dTHkd

s.t. fj(xk)− f (xk)+∇fj(xk)Td ≤ z, j ∈ I.
(2.1)

Let λk be the corresponding multiplier vector. If (zk, dk) = (0, 0), stop.
1.2 Let

Jk = {j | fj(xk)+∇fj(xk)Tdk − f (xk)− zk = 0}, jk = min{j : j ∈ I(xk)}, (2.2)
and compute

f
jk
(xk) =

(
f
j,jk
(xk), j ∈ Jk \ {jk}

)
∈ R|Jk\{jk}|,

f
j,jk
(xk) = fj(xk)− fjk (x

k), j ∈ Jk \ {jk},

Ak = ∇f jk (x
k) =

(
∇fj(xk)−∇fjk (x

k), j ∈ Jk \ {jk}
)
∈ Rn×(|Jk\{jk}|).

(2.3)

1.3 If the matrix Ak is of full rank, obtain s̃k by solving the following system of linear equations:
ATks = −‖d

k
‖
τ e− f

jk
(xk + dk), (2.4)

where
e = (1, . . . , 1)T ∈ R

|Jk\{jk}|
, f
jk
(xk + dk) =

(
f
j,jk
(xk + dk), j ∈ Jk \ {jk}

)
. (2.5)

1.4 If ‖̃sk‖ > ‖dk‖ or the matrix Ak is not of full rank, set d̃k = 0; otherwise, set d̃k = s̃k.
Step2 The line search:

Compute tk, the first number t of the sequence {1, 12 ,
1
4 , . . .} satisfying

f (xk + tdk + t 2̃dk) ≤ f (xk)− αt(dk)THkdk. (2.6)

Step3 Updates:
Compute a new symmetric definite positive matrix Hk+1. Let xk+1 = xk + tkdk + t2k d̃

k, k = k+ 1. Go back to step 1.
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3. Global convergence of the algorithm

In this section, we first show that Algorithm A given in Section 2 is globally convergent. For this reason, wemake another
assumption and let it hold for the remainder of this work.

H 3.1. There exist two constants 0 < a ≤ b such that a‖d‖2 ≤ dTHkd ≤ b‖d‖2, for all k, for all d ∈ Rn.

According to (1.3) and (2.1), it is easy to obtain the following result.

Lemma 3.1. Let (zk, dk) be the solution of the QP (2.1) at xk. If dk = 0, then xk is a K–T point of (1.1); otherwise, it holds that

∇fj(xk)Tdk ≤ zk ≤ −
1
2
(dk)THkdk < 0, j ∈ I(xk).

From Lemma 3.1, it is obvious, if dk 6= 0, that the line search in step 2 yields a step size tk = ( 12 )
j for some finite j = j(k),

that is to say, the line search step 2 is always completed.

Lemma 3.2. If dk 6= 0, then the line search in step 2 yields a step size tk = ( 12 )
j for some finite j = j(k).

Proof. For (2.1), it obvious that

zk +
1
2
(dk)THkdk ≤ 0, zk ≤ −

1
2
(dk)THkdk < 0.

For j ∈ I , define

ak
4
= fj(xk + tdk + t 2̃dk)− f (xk)+ αt(dk)THkdk

= fj(xk)− f (xk)+ t∇fj(xk)T(dk + t̃dk)+ αt(dk)THkdk + o(t)

≤ (1− t)(fj(xk)− f (xk))+ tzk + αt(dk)THkdk + o(t)

≤

(
α −

1
2

)
t(dk)THkdk + o(t).

This implies that there exists some t j > 0 such that ak ≤ 0. Define t = min{t j, j ∈ I}. It is clear that the line search condition
(2.6) is satisfied for all t in [0, t]. �

Lemma 3.3. ∀xk ∈ Rn, ik ∈ I(xk), the matrix

Ck = ∇f ik (x
k) =

(
∇fj(xk)−∇fik (x

k), j ∈ I(xk) \ {ik}
)

is always of full rank.

Proof. It is only necessary to prove that the vectors {∇fj(xk)− ∇fik (x
k), j ∈ I(xk) \ {ik}} are linearly independent. Suppose

that there exist λj, j ∈ I(xk) \ {ik} such that∑
j∈I(xk)\{ik}

λj(∇fj(xk)−∇fik (x
k)) = 0.

Define λik = −
∑
j∈I(xk)\{ik}

λj; then it holds that∑
j∈I(x)

λj∇fj(x) = 0,
∑
j∈I(x)

λj = 0,

and thereby,∑
j∈I(x)

λj

(
∇fj(x)
−1

)
= 0.

According to H 2.2, it is easy to see that λj = 0,∀j ∈ I(xk) \ {ik}. So, the matrix Ck is of full rank. �

Theorem 3.4. Algorithm A either stops at the K–T point xk of (1.1) in finite iterations, or generates an infinite sequence {xk} of
which any accumulation point is a K–T point of (1.1).
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Proof. The first statement is obvious, the only stopping point being in step 1.1. Thus, suppose that the algorithm generates
an infinite sequence {xk}, and we might as well assume that there exists a subsequence K such that

xk → x∗, Hk → H∗, dk → d∗, zk → z∗, k ∈ K . (3.1)

According to Lemma 3.1, in order to finish the proof of this result, it is only necessary to prove that dk → 0, k ∈ K . In view
of (2.6), and Lemma 3.1, it is evident that {f (xk)} is monotonically decreasing. Hence, considering {xk}k∈K → x∗ and the
continuity of f (x), it holds that

f (xk)→ f (x∗), k→∞. (3.2)

Suppose by contradiction that d∗ 6= 0, then z∗ < 0. Thereby, according to the conclusion about the successful line search
under Lemma 3.1, it is easy to conclude that the step size tk obtained by the linear search is bounded away from zero on K ,
i.e.,

tk ≥ t∗ = inf{tk, k ∈ K} > 0, k ∈ K . (3.3)

So, from (2.6), (3.2) and (3.3), we get

0 = lim
k∈K

(
f (xk+1)− f (xk)

)
≤ lim
k∈K
−αtk(dk)THkdk ≤ −

1
2
αt∗(d∗)TH∗d∗ < 0.

This is a contradiction, which shows that dk → 0, k ∈ K . The claim holds. �

4. The rate of convergence

Now we discuss the convergence rate of the algorithm, and prove that the sequence {xk} generated by the algorithm is
superlinearly convergent. For this purpose, we add some stronger regularity assumptions.

H 2.1′. The functions fj(j ∈ I) are twice continuously differentiable.

H 4.1. The sequence {xk} generated by the algorithm possesses an accumulation point x∗ (in view of Theorem 3.4, a K–T
point). Hk → H∗, k→∞.

H 4.2. Thematrix
∑m
j=1 u

∗

j ∇
2fj(x∗) =

∑
j∈I(x∗) u

∗

j ∇
2fj(x∗) is nonsingular. The second-order sufficiency conditions with strict

complementary slackness are satisfied at the K–T point x∗ and the corresponding multiplier vector u∗, that is to say, it holds
that u∗j > 0, j ∈ I(x

∗), and

dT
(
m∑
j=1

u∗j ∇
2fj(x∗)

)
d > 0, ∀0 6= d ∈ Y (x∗, u∗),

where

Y (x∗, u∗) =
{
d ∈ Rn | ∇fj(x∗)Td = ∇fjk(x

k)Td, j ∈ I(x∗), u∗j > 0, jk ∈ I(x
∗)
}
.

According to Theorem 2 and Lemma 6 in [5], we have the following results.

Theorem 4.1. The K–T point x∗ is isolated.

Lemma 4.2. For k→∞, we have

xk → x∗, dk → 0, zk → 0, λk → u∗, k→∞, Jk ≡ I(x∗).

Lemma 4.3. For k large enough, the matrix Ak is of full rank, and the direction d̃k computed in Step 1.3 satisfies that ‖̃dk‖ =
O
(
‖dk‖2

)
.

Proof. Due to Jk ≡ I(x∗), I(xk) ⊆ I(x∗), imitating the proof of Lemma 3.3, it is obvious that, for k large enough, the
matrix Ak is of full rank. So, the direction d̃k is well defined. From H 4.2 and Lemma 4.2, we have, for k large enough, that
λkj > 0, j ∈ I(x

∗). Thereby, I(xk) ⊂ I(x∗), it holds, from (2.2), for j ∈ Jk ≡ I(x∗), jk ∈ I(xk) ⊆ I(x∗), that

f
j,jk
(xk + dk) = fj(xk + dk)− fjk(x

k
+ dk)

= fj(xk)+∇fj(xk)Tdk + O(‖dk‖2)−
(
fjk(x

k)+∇fjk(x
k)Tdk + O(‖dk‖2)

)
= O(‖dk‖2).

So, from the definition of d̃k, it holds that ‖̃dk‖ = O
(
‖dk‖2

)
. �
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In order to obtain superlinear convergence, we make the following assumption:

H 4.3. The matrix sequence {Hk} satisfies that∥∥∥∥∥Pk
(
Hk −

∑
j∈I(x∗)

λkj∇
2fj(xk)

)
dk
∥∥∥∥∥ = o (‖dk‖) ,

where Pk = In − Ak(ATkAk)
−1ATk .

Lemma 4.4. Define λk = {λkj , j ∈ I(x
∗) \ {jk}), d

k
= −Ak(ATkAk)

−1f jk(x
k); then, for k large enough, there exists some constant

c > 0 such that

dk = Pkdk + d
k
, ‖d

k
‖ = O

(
‖f jk(x

k)‖
)
, f jk(x

k)Tλ
k
≤ −c‖f jk(x

k)‖. (4.1)

Proof. According to Jk ≡ I(x∗), I(xk) ⊂ I(x∗), it holds, for k large enough, from (2.2), that

fj(xk)+∇fj(xk)Tdk = fjk(x
k)+∇fjk(x

k)Tdk, j ∈ I(x∗) \ {jk},

so,

ATkd
k
= −f jk(x

k).

Thereby,

Pkdk = dk − Ak(ATkAk)
−1ATkd

k
= dk + Ak(ATkAk)

−1f jk(x
k),

i.e.,

dk = Pkdk + d
k
.

In addition, from the definition of d
k
, it holds that

‖d
k
‖ = O

(
‖f jk(x

k)‖
)
.

In view of fjk(x
k) = f (xk), we have that f jk(x

k) ≤ 0. According to Lemma 4.2 and H 4.2, we get that

λ
4
= min{λkj , j ∈ I(x

∗)} > 0.

So, there exists some constant c > 0 such that

f jk(x
k)Tλ

k
≤ λ

∑
j∈I(x∗)\{jk}

f
j,jk
(xk) ≤ −c‖f jk(x

k)‖.

The claim holds. �

Lemma 4.5. Under the above-mentioned assumptions, for k large enough, tk ≡ 1.

Proof. Since the indexes jk, ∀k have only finite different value, without loss of generality, we assume that jk ≡ j0 ∈ I(x∗).
For s, t ∈ I(x∗) \ {j0}, according to the definition of d̃k, we have that

(∇fs(xk)−∇fj0(x
k))T̃dk = −‖dk‖τ − (fs(xk + dk)− fj0(x

k
+ dk)).

Thereby,

fs(xk + dk + d̃k) = fs(xk + dk)+∇fs(xk + dk)T̃dk + O
(
‖̃dk‖2

)
= fs(xk + dk)+∇fs(xk)T̃dk + O

(
‖dk‖3

)
= −‖dk‖τ + fj0(x

k
+ dk)+∇fj0(x

k)T̃dk + O
(
‖dk‖3

)
,

ft(xk + dk + d̃k) = ft(xk + dk)+∇ft(xk + dk)T̃dk + O
(
‖̃dk‖2

)
= ft(xk + dk)+∇ft(xk)T̃dk + O

(
‖dk‖3

)
= −‖dk‖τ + fj0(x

k
+ dk)+∇fj0(x

k)T̃dk + O
(
‖dk‖3

)
,

fj0(x
k
+ dk + d̃k) = fj0(x

k
+ dk)+∇fj0(x

k
+ dk)T̃dk + O

(
‖̃dk‖2

)
= fj0(x

k
+ dk)+∇fj0(x

k)T̃dk + O
(
‖dk‖3

)
.

As τ ∈ (2, 3), it is easy to see that

fi(xk + dk + d̃k) = fj(xk + dk + d̃k)+ o
(
‖dk‖2

)
, ∀i, j ∈ I(x∗). (4.2)



Z. Zhu et al. / Applied Mathematics Letters 22 (2009) 464–469 469

In addition, the facts that dk → 0, d̃k → 0 imply, for k large enough, that I(xk+dk+ d̃k) ⊆ I(x∗). So, for t ∈ I(xk+dk+ d̃k) ⊆
I(x∗), we obtain that

f (xk + dk + d̃k) = ft(xk + dk + d̃k) = fj(xk + dk + d̃k)+ o
(
‖dk‖2

)
(∀j ∈ I(x∗)).

Thereby, it holds that

f (xk + dk + d̃k) = fj(xk + dk + d̃k)+ o
(
‖dk‖2

)
(∀j ∈ I(x∗))

=

∑
j∈I(x∗)

λkj fj(x
k
+ dk + d̃k)+ o

(
‖dk‖2

)
=

∑
j∈I(x∗)

λkj

(
fj(xk)+∇fj(xk)T(dk + d̃k)+

1
2
(dk)T∇2fj(xk)dk

)
+ o

(
‖dk‖2

)
. (4.3)

From (2.1), we have that∑
j∈I(x∗)

λkj∇fj(x
k)T(dk + d̃k) = −(dk)THkdk + o

(
‖dk‖2

)
,

∑
j∈I(x∗)

λkj = 1, (4.4)

so, for every k, it holds that∑
j∈I(x∗)

λkj fj(x
k) = λkj0 fj0(x

k)+
∑

j∈I(x∗)\{j0}

λkj fj(x
k)

= fj0(x
k)+

∑
j∈I(x∗)\{j0}

λkj
(
fj(xk)− fj0(x

k)
)

= fj0(x
k)+ f j0(x

k)Tλ
k

≤ f (xk)− c‖f j0(x
k)‖. (4.5)

From (4.3)–(4.5), we have that

f (xk + dk + d̃k) ≤ f (xk)− c‖f j0(x
k)‖ − (dk)THkdk +

1
2
(dk)T

(∑
j∈I(x∗)

λkj∇
2fj(xk)

)
dk + o

(
‖dk‖2

)
= f (xk)− c‖f j0(x

k)‖ −
1
2
(dk)THkdk +

1
2
(Pkdk + d

k
)T

(∑
j∈I(x∗)

λkj∇
2fj(xk)− Hk

)
dk + o

(
‖dk‖2

)
.

Thereby, from H 4.3 and (4.1), we have that

f (xk + dk + d̃k) ≤ f (xk)− c‖f j0(x
k)‖ − α(dk)THkdk +

(
α −

1
2

)
(dk)THkdk + o

(
‖dk‖2

)
+ o

(
‖f j0(x

k)‖
)
.

So, according to α ∈ (0, 12 ), it holds, for k large enough, that

f (xk + dk + d̃k) ≤ f (xk)− α(dk)THkdk.

The claim holds. �

From Lemma 4.5 and the method of Theorem 5.2 in [7], we can get the following theorem:

Theorem 4.6. Under the above-mentioned conditions, Algorithm A is superlinearly convergent, that is to say, the sequence {xk}
satisfies that

‖xk+1 − x∗‖ = o(‖xk − x∗‖).
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