The structure of shift invariant spaces on a locally compact abelian group

R.A. Kamyabi Gol, R. Raisi Tousi *

Department of Mathematics, Ferdowsi University, PO Box 1159, Mashhad 91775, Iran

Received 27 March 2007
Available online 30 August 2007
Submitted by Steven G. Krantz

Abstract

We investigate shift invariant subspaces of $L^2(G)$, where G is a locally compact abelian group. We show, among other things, that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Locally compact abelian group; Shift invariant space; Principle shift invariant space; Parseval frame

1. Introduction

In the last decade, shift invariant subspaces of $L^2(\mathbb{R}^n)$ have been studied from different aspects, by many authors such as: Aldroubi, Benedetto, Bownik, de Boor, DeVore, Li, Ron, Rzeszotnik, Shen, Weiss and Wilson, cf. [1,3,4,6,7,12,16]. This theory plays an important role in many areas, specially in the theory of wavelets, and multiresolution analysis. It has been used to show a new characterization of orthonormal wavelets conjectured by Weiss [14], a result originally proved in [5] by applying the techniques of [11,12].

In this paper we investigate the structure of shift invariant subspaces of $L^2(G)$, where G is a locally compact abelian group. Our results generalize some of the results appearing in the literature on shift invariant spaces. Such a unified approach seems to be useful, since it describes the basic features of shift invariant spaces, and includes most of the special cases.

This paper is organized as follows: In Section 2, we state some preliminaries and notations related to locally compact abelian groups and shift invariant spaces. Moreover we give a characterization of elements in a principle shift invariant subspace of $L^2(G)$. In Section 3, we prove a necessary and sufficient condition for shifts of a function $\varphi \in L^2(G)$ to be an orthonormal system. In particular, we investigate a necessary and sufficient condition for shifts of a function $\varphi \in L^2(G)$ to be a Parseval frame. We also construct a function in a principle shift invariant space whose shifts form a Parseval frame. We show a decomposition of a shift invariant subspace of $L^2(G)$ into an orthogonal sum

* Corresponding author.

E-mail addresses: kamyabi@ferdowsi.um.ac.ir (R.A. Kamyabi Gol), re_ra97@stu-mail.um.ac.ir (R.R. Tousi).

0022-247X/S – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.08.039
of spaces each of which is generated by a single function whose shifts form a Parseval frame. Moreover we find a Parseval frame for every shift invariant space.

2. Notations and preliminary results

Throughout this paper we assume that G is a locally compact abelian group. It is well known that such a group possesses a Haar measure μ that is unique up to a multiplication by constants. We refer to the usual text books about locally compact groups [8,9]. We shall denote the measure of a measurable set A by $|A|$. Let \hat{G} denote the dual group of G equipped with the compact convergence topology. The elements of \hat{G} which we usually denote by ξ, are characters on G, but one can also regard elements of G as characters on \hat{G}. More precisely $\hat{G} = G$ [8, Pontrjagin duality theorem].

Let the Fourier transform $\hat{\cdot} : L^1(G) \to C_0(\hat{G})$, $f \to \hat{f}$, be defined by $\hat{f}(\xi) = \int_G f(x)\hat{\xi}(x)\,dx$. The Fourier transform can be extended to a unitary isomorphism from $L^2(G)$ to $L^2(\hat{G})$ known as the Plancherel transform [8, Plancherel theorem].

Suppose G is a locally compact abelian group and H is a closed subgroup of G. Let G/H be the quotient group whose Haar measure is μ (which is unique up to a constant factor). If this factor is suitably chosen we have

$$\int_G f(x)\,dx = \int_{G/H} \int_H f(xy)\,dy\,d\mu(xH), \quad f \in L^1(G).$$

This identity is known as Weil’s formula [8].

A subgroup L of G is called a uniform lattice if it is discrete and co-compact (i.e. G/L is compact). The subgroup $L^\perp = \{\xi \in \hat{G} ; \xi(L) = \{1\}\}$ is called the annihilator of L in \hat{G}.

Let L be a uniform lattice in G. Then the identities $L^\perp = \hat{G}/L$ and $\hat{G}/L^\perp = \hat{L}$, together with the fact that a locally compact abelian group is compact if and only if its dual group is discrete [8], imply that the subgroup L^\perp is a uniform lattice in \hat{G} (see also [10,15]).

We now define a shift invariant space in $L^2(G)$.

Definition 2.1. Let G be a locally compact abelian group and L be a uniform lattice in G. A closed subspace $V \subseteq L^2(G)$ is called a shift invariant space (with respect to L) if $f \in V$ implies $T_k f \in V$, for any $k \in L$, where T_k is the translation operator defined by $T_k f(x) = f(k^{-1}x)$ for all $x \in G$. For $\varphi \in L^2(G)$, $\text{span}(T_k \varphi; \ k \in L)$ is called the principle shift invariant space generated by φ and will be denoted by V_φ.

Let $\varphi \in L^2(G)$. We denote by $L^2(\hat{L}, w_\varphi)$ the space of all functions $r : \hat{L} \to \mathbb{C}$, which satisfy

$$\int_{\hat{L}} |r(\xi)|^2 w_\varphi(\xi)\,d\xi < \infty,$$

where

$$w_\varphi(\xi) = \sum_{\eta \in L^\perp} |\hat{\varphi}(\xi \eta)|^2. \quad (2.1)$$

Note that $w_\varphi \in L^1(\hat{L})$. Indeed, by Weil’s formula and the Plancherel theorem $\int_{\hat{L}} \sum_{\eta \in L^\perp} |\hat{\varphi}(\xi \eta)|^2\,d\xi = \int_{\hat{G}} |\hat{\varphi}(\xi)|^2\,d\xi = \|\varphi\|^2$. In this case $\|r\|^2_{L^2(\hat{L}, w)} = \int_{\hat{L}} |r(\xi)|^2 w_\varphi(\xi)\,d\xi$ is a norm in $L^2(\hat{L}, w)$.

The following proposition gives a characterization of elements in a principle shift invariant subspace of $L^2(G)$ in terms of their Fourier transforms.

Proposition 2.2. Let $\varphi \in L^2(G)$. Then $f \in V_\varphi$ if and only if $\hat{f}(\xi) = r(\xi)\hat{\varphi}(\xi)$, for some $r \in L^2(\hat{L}, w_\varphi)$.

Proof. Consider $A_\varphi = \text{span}(T_k \varphi; \ k \in L)$, then $V_\varphi = \overline{A_\varphi}$. For $f \in A_\varphi$ let $f(x) = \sum_{i=1}^n a_i \varphi(k_i^{-1}x)$, $a_i \in \mathbb{C}$, $k_i \in L$, $1 \leq i \leq n$, for some $n \in \mathbb{N}$. Then we have
\[\hat{f}(\xi) = \sum_{i=1}^{n} a_i \hat{\xi}(k_i) \hat{\phi}(\xi) = r(\xi) \hat{\phi}(\xi) \]

(2.2)

where \(r(\xi) = \sum_{i=1}^{n} a_i \hat{\xi}(k_i) \). Conversely every trigonometric polynomial will give us a function \(f \in A_\phi \), via formula (2.2). So \(f \in A_\phi \) if and only if \(\hat{f}(\xi) = r(\xi) \hat{\phi}(\xi) \) where \(r \) is a trigonometric polynomial. Denote the set of all trigonometric polynomials by \(P \). The operator \(U: A_\phi \to P \) given by \(U(f) = r \) is an isometry which is onto. In fact by using the Plancherel theorem and Weil’s formula we have

\[\|f\|_2^2 = \int_\hat{G} |\hat{f}(\xi)|^2 \, d\xi \]
\[= \int_\hat{L} \sum_{\eta \in L^\perp} |r(\xi\eta)|^2 |\hat{\phi}(\xi\eta)|^2 \, d\xi \]
\[= \int_\hat{L} w_\phi(\xi) |r(\xi)|^2 \, d\xi \]
\[= \|r\|_{L^2(\hat{L}, w_\phi)}^2. \]

(3.2)

Therefore there is a unique isometry \(\tilde{U}: \overline{A_\phi} \to \overline{P} \), which extends \(U \) from \(V_\phi \) onto \(\overline{P} = L^2(\hat{L}, w_\phi) \). (Note that for a compact abelian group \(G \) the set of all trigonometric polynomials is dense in \(L^2(G) \) [13].) \(\square \)

Note that in the case \(G = \mathbb{R}, \mathbb{Z} \) is a uniform lattice. In this case we have the following corollary which is also proved in [14, Theorem 1.2.4].

Corollary 2.3. Let \(V_\phi \) be a principle shift invariant subspace of \(L^2(\mathbb{R}) \). Then \(f \in V_\phi \) if and only if \(\hat{f}(\xi) = r(\xi) \hat{\phi}(\xi) \), for some \(r \in L^2(\mathbb{T}, w_\phi) \), where \(w_\phi(\xi) = \sum_{k \in \mathbb{Z}} |\hat{\phi}(\xi + k)|^2 \).

3. Main results

It is natural to ask if for any given principle shift invariant space we can find a function \(\phi \) in \(L^2(G) \) whose shifts are orthonormal. In general the answer is not affirmative. (However, we will find another kind of generator for every principle shift invariant space; see Corollary 3.8 below.) In the following theorem we state a necessary and sufficient condition for shifts of a function \(\phi \) in \(L^2(\hat{G}) \) to be an orthonormal system. Throughout this section the notations are as in Section 2.

Proposition 3.1. Suppose that \(\phi \in L^2(G) \), then \(\{T_k \phi; \ k \in L\} \) is an orthonormal system in \(L^2(G) \) if and only if

\[w_\phi = 1 \quad a.e. \text{ on } \hat{G}. \]

(3.1)

Proof. We have to show that for \(k_1, k_2 \in L \), \(\langle T_{k_1} \phi, T_{k_2} \phi \rangle = \delta_{k_1,k_2} \) if and only if \(w_\phi(\xi) = 1 \ a.e. \ \xi \in \hat{G} \). Using the Plancherel theorem and Weil’s formula, we have

\[\langle T_{k_1} \phi, T_{k_2} \phi \rangle = \langle \phi, T_{k_2} T_{k_1}^{-1} \phi \rangle \]
\[= \langle \hat{\phi}, T_{k_2} T_{k_1}^{-1} \hat{\phi} \rangle \]
\[= \int_{\hat{G}} |\hat{\phi}(\xi)|^2 \xi \xi(k_2 k_1^{-1}) \, d\xi \]
\[= \int_{\hat{L}} \sum_{\eta \in L^\perp} |\hat{\phi}(\xi\eta)|^2 \xi \xi(k_2 k_1^{-1}) \, d\xi \]
\[= \int_{\hat{L}} w_\phi(\xi) \xi \xi(k_2 k_1^{-1}) \, d\xi. \]

(3.2)
Pontrjagin duality theorem and [8, Proposition 4.3] imply that L is an orthonormal basis for $L^2(\mathcal{L})$, i.e. \(\{ e_k: k \in L \} \) is an orthonormal basis for the Hilbert space $L^2(\mathcal{L})$, where $e_k(\xi) = \xi(k)$ for $\xi \in \hat{G}$. Now (3.2) completes the proof. \qed

If V_φ is a principle shift invariant space and w_φ is given by (2.1), then the set supp w_φ is called the spectrum of V_φ and is denoted by Ω_φ. (Note that by supp w_φ we mean the set of all ξ such that $w_\varphi(\xi) \neq 0$. Also our convention is that all measurable sets are determined up to a null set.) In the case of Proposition 3.1, Ω_φ is equal to \hat{G}. The following example shows the existence of principle shift invariant spaces which do not satisfy this property.

Example 3.2. Let $G = (\mathbb{R}^2, +)$, $L = \mathbb{Z}^2$ (so $L^1 = \mathbb{Z}^2$), $E = [0, 1/2] \times [1/2, 3/2]$, and φ be given by $\hat{\varphi} = \chi_E$. Then $w_\varphi(\xi) = \sum_{k \in \mathbb{Z}^2} \chi_{E}(\xi + k)$. So $\Omega_\varphi = \bigcup_{k \in \mathbb{Z}^2} (E + k) \neq \mathbb{R}^2$.

Now we shall determine how the information about orthogonality of V_{φ_1} and V_{φ_2} can be transferred into some other information about the generators φ_1 and φ_2 in $L^2(G)$.

Proposition 3.3. The spaces V_{φ_1} and V_{φ_2} are orthogonal if and only if

$$\sum_{\eta \in L^1} \hat{\varphi}_1(\xi \eta) \hat{\varphi}_2(\xi \eta) = 0 \quad \text{a.e. } \xi \in \hat{G}.$$

Proof. Observe that by the Plancherel theorem $\langle T_{k_1} \varphi_1, T_{k_2} \varphi_2 \rangle = 0$ for $k_1, k_2 \in L$, if and only if

$$\int_L \sum_{\eta \in L^1} \hat{\varphi}_1(\xi \eta) \hat{\varphi}_2(\xi \eta) \xi(k_2 k_1^{-1}) d\xi = 0.$$

By an argument similar to the proof of Proposition 3.1 the desired result follows. \qed

As a consequence of Propositions 3.1 and 3.3, we have the following corollary (see also [16]).

Corollary 3.4.

(i) Suppose $\psi \in L^2(\mathbb{R})$. Then \{ $\psi(-k); k \in \mathbb{Z}$ \} is an orthonormal system if and only if $\sum_{k \in \mathbb{Z}} |\hat{\psi}(\xi + k)|^2 = 1$, for a.e. $\xi \in \mathbb{R}$.

(ii) For any two functions $\varphi, \psi \in L^2(\mathbb{R})$ the sets \{ $\varphi(-k); k \in \mathbb{Z}$ \} and \{ $\psi(-k); k \in \mathbb{Z}$ \} are biorthogonal, if and only if $\sum_{k \in \mathbb{Z}} \hat{\varphi}(\xi + k) \hat{\psi}(\xi + k) = 0$, for a.e. $\xi \in \mathbb{R}$.

Definition 3.5. Let \mathcal{H} be a Hilbert space. A subset $X \subseteq \mathcal{H}$ is called a frame for \mathcal{H} if there exist two numbers $0 < A \leq B < \infty$ so that

$$A \|h\|^2 \leq \sum_{\eta \in X} |\langle h, \eta \rangle|^2 \leq B \|h\|^2 \quad \text{for } h \in \mathcal{H}. \quad (3.3)$$

If $A = B = 1$, X is called a Parseval frame.

Now we prove that every principle shift invariant space has generators whose shifts form a Parseval frame. The key is the following theorem.

Theorem 3.6. Let $\varphi \in L^2(G)$. The shifts of φ (with respect to L) form a Parseval frame for the space V_φ, if and only if

$$w_\varphi = \chi_{\Omega_\varphi} \quad \text{a.e. on } \hat{G}. \quad (3.4)$$

Proof. Let $\varphi \in L^2(G)$. By Proposition 2.2, for every $f \in V_\varphi$ we have $\hat{f}(\xi) = r(\xi)\hat{\varphi}(\xi)$, for some $r \in L^2(\mathcal{L}, w_\varphi)$. So by using the Plancherel theorem and Weil’s formula,
\[\langle f, T_k \varphi \rangle = \langle \hat{f}, \hat{T}_k \varphi \rangle = \int_{\widehat{G}} r(\xi) |\hat{\varphi}(\xi)|^2 \xi(k) \, d\xi \]
\[= \int_{\widehat{L}} \sum_{\eta \in L^\perp} |\hat{\varphi}(\eta \xi)|^2 r(\xi) \xi(k) \, d\xi \]
\[= \int_{\widehat{L}} w_\varphi(\xi) \xi(k) r(\xi) \, d\xi. \]

Consequently,
\[
\sum_{k \in L} |\langle f, T_k \varphi \rangle|^2 = \sum_{k \in L} \int_{\widehat{L}} w_\varphi(\xi) \xi(k) r(\xi) \, d\xi \int_{\widehat{L}} r(\eta) w_\varphi(\eta) \eta(k) \, d\eta
\]
\[= \sum_{k \in L} \int_{\widehat{L}} \overline{F}(\xi) \overline{k}(\xi) \, d\xi \int_{\widehat{L}} F(\eta) k(\eta) \, d\eta
\]
\[= \sum_{k \in L} F(k) \overline{F}(k)
\]
\[= \langle F, F \rangle_{L^2(\widehat{L})}
\]
\[= \int_{\widehat{L}} |r(\xi)|^2 |w_\varphi(\xi)|^2 \, d\xi. \tag{3.5} \]

(where \(F(\xi) = r(\xi)w_\varphi(\xi) \)). But by definition, \(\{T_k \varphi; \ k \in L\} \) is a Parseval frame for \(V_\varphi \) if and only if
\[
\sum_{k \in L} |\langle f, T_k \varphi \rangle|^2 = \|f\|^2 \text{ for every } f \in V_\varphi. \tag{3.6} \]

By (2.3) and (3.5), this is equivalent to \(\int_{\widehat{L}} |r(\xi)|^2 |w_\varphi(\xi)|^2 \, d\xi = \int_{\widehat{L}} |r(\xi)|^2 w_\varphi(\xi) \, d\xi \), or \(\int_{\widehat{L}} |r(\xi)|^2 w_\varphi(\xi) \chi_{\Omega_\varphi}(\xi) - w_\varphi(\xi) \, d\xi = 0 \), for all \(r \in L^2(\widehat{L}, w_\varphi) \). Put \(r = \chi_M \), where \(M = \{\xi \in \Omega; \ w_\varphi(\xi) > 1\} \) or \(M = \{\xi \in \Omega; \ w_\varphi(\xi) < 1\} \). We see that \(\chi_{\Omega_\varphi}(\xi) = w_\varphi(\xi) \), for a.e. \(\xi \in \widehat{G} \) if and only if (3.4) holds. \(\square \)

Remark 3.7. Equality (3.4) is obviously a more general version of equality (3.1) that characterizes the orthonormality of the system \(\{T_k \varphi; k \in L\} \).

Corollary 3.8. If \(V_\varphi \) is a principle shift invariant space and \(\psi \) is given by
\[
\hat{\psi}(\xi) = \begin{cases} \hat{\varphi}(\xi) w_\varphi(\xi)^{-1/2}, & \xi \in \Omega, \\ 0, & \text{otherwise}, \end{cases}
\]
then \(\{T_k \psi, \ k \in L\} \) is a Parseval frame for \(V_\varphi \).

Proof. First by Proposition 2.2, we have \(\psi \in V_\varphi \), since \(s \in L^2(\widehat{L}, w_\varphi) \) where \(s(\xi) = w_\varphi(\xi)^{-1/2} \), in fact
\[
\|s\|^2 = \int_{\widehat{L}} |s(\xi)|^2 w_\varphi(\xi) \, d\xi = \int_{\widehat{L}} \chi_{\Omega}(\xi) \, d\xi = |\widehat{L} \cap \Omega| \leq |\widehat{L}| < \infty \quad \text{(since } \widehat{L} \text{ is compact}).
\]
Also we have \(\sum_{\eta \in L^\perp} |\hat{\psi}(\xi \eta)|^2 = \chi_{\Omega}(\xi) \). By Theorem 3.6 the proof is complete. \(\square \)

Definition 3.9. If \(V_\varphi \) is a principle shift invariant space and the system \(\{T_k \varphi, k \in L\} \) is a Parseval frame for \(V_\varphi \), the function \(\varphi \) is called a Parseval frame generator of \(V_\varphi \).
Corollary 3.8 shows that every principle shift invariant space has a Parseval frame generator.

Now we show the existence of a decomposition of a shift invariant subspace of $L^2(G)$ into an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame.

Theorem 3.10. Let G be a locally compact abelian group and let L be a uniform lattice in G. If V is a shift invariant space in $L^2(G)$, then there exists a family of functions $\{\varphi_\alpha\}_{\alpha \in I}$ in $L^2(G)$ (where I is an index set), such that

$$V = \bigoplus_{\alpha \in I} V_{\varphi_\alpha},$$

(3.7)

and φ_α is a Parseval frame generator of the space V_{φ_α}. Moreover, $f \in V$ if and only if

$$\hat{f}(\xi) = \sum_{\alpha \in I} r_\alpha(\xi) \hat{\varphi}_\alpha(\xi),$$

(3.8)

and $\|f\|^2 = \sum_{\alpha \in I} \|r_\alpha\|^2_{L^2(\hat{\mathbb{L}} \cap \Omega_{\varphi_\alpha}, w_{\varphi_\alpha})}$, where $r_\alpha \in L^2(\hat{\mathbb{L}} \cap \Omega_{\varphi_\alpha}, w_{\varphi_\alpha})$ and Ω_{φ_α} is the spectrum of V_{φ_α}, for every $\alpha \in I$.

Proof. Choose a non-zero $\varphi \in V$ and apply Corollary 3.8 to obtain $\psi \in V_\varphi$ satisfying (3.4). By Zorn’s lemma there is a maximal collection $\{V_\varphi\}_{\alpha \in I}$ of mutually orthogonal principle shift invariant subspaces of V so that φ_α is a Parseval frame generator of V_{φ_α}, for every $\alpha \in I$. If there was a non-zero $g \in V$, orthogonal to all the V_{φ_α}’s, then the principle shift invariant space generated by g would be orthogonal to the V_{φ_α}’s, contradicting maximality. Hence (3.7) holds. If \hat{f} is given by (3.8), then clearly $f \in V$ by Proposition 2.2. For the converse, let P_α be the orthogonal projection onto the space V_{φ_α}. For every $f \in V$ we have $f = \sum_{\alpha \in I} P_\alpha f$, so $\hat{f} = \sum_{\alpha \in I} (P_\alpha \hat{f})$. By Proposition 2.2 we obtain $P_\alpha \hat{f}(\xi) = r_\alpha(\xi) \hat{\varphi}_\alpha(\xi)$, where $r_\alpha \in L^2(\hat{\mathbb{L}} \cap \Omega_{\varphi_\alpha}, w_{\varphi_\alpha})$, for every α. Since φ_α is a generator for V_{φ_α}, it follows $\|P_\alpha f\|^2 = \|r_\alpha\|^2_{L^2(\hat{\mathbb{L}} \cap \Omega_{\varphi_\alpha}, w_{\varphi_\alpha})}$, for all $\alpha \in I$. Thus

$$\|f\|^2 = \sum_{\alpha \in I} \|P_\alpha f\|^2 = \sum_{\alpha \in I} \|P_\alpha f\|^2 = \sum_{\alpha \in I} \|r_\alpha\|^2_{L^2(\hat{\mathbb{L}} \cap \Omega_{\varphi_\alpha}, w_{\varphi_\alpha})}. \quad \square$$

Remark 3.11. Using the above theorem we can find a Parseval frame for every shift invariant subspace of $L^2(G)$: If $\{T_k \varphi_\alpha\}_{k \in \mathbb{L}}$ is a Parseval frame for V_{φ_α}, for every $\alpha \in I$, then $\{T_k \varphi_\alpha\}_{k \in \mathbb{L}, \alpha \in I}$ is a Parseval frame for the orthogonal sum $\bigoplus_{\alpha \in I} V_{\varphi_\alpha}$. Indeed, for every $f = \sum_{\alpha \in I} P_\beta f \in \bigoplus_{\alpha \in I} V_{\varphi_\alpha}$, where P_β is the orthogonal projection onto V_{φ_β}, we have

$$\sum_{\alpha \in I} \sum_{k \in \mathbb{L}} |\langle T_k \varphi_\alpha, f \rangle|^2 = \sum_{\alpha \in I} \sum_{\beta \in I} \sum_{k \in \mathbb{L}} |\langle T_k \varphi_\alpha, P_\beta f \rangle|^2$$

$$= \sum_{\alpha \in I} \sum_{k \in \mathbb{L}} |\langle T_k \varphi_\alpha, P_\alpha f \rangle|^2$$

$$= \sum_{\alpha \in I} \|P_\alpha f\|^2$$

$$= \sum_{\alpha \in I} \|P_\alpha f\|^2$$

$$= \sum_{\alpha \in I} \|P_\alpha f\|^2$$

$$= \|f\|^2.$$

Example 3.12. Let $\psi \in L^2(\mathbb{R})$. For $j, k \in \mathbb{Z}$, define $\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k)$. Obviously, $W_j := \text{span} \{\psi_{j,k}; k \in \mathbb{Z}\}$ is a shift invariant space, for $j \geq 0$. So by Theorem 3.10, there exists a sequence of functions $\{\varphi_n\}_{n=1}^\infty$ that are mutually orthogonal and for each n, $\{\varphi_n(., -k); k \in \mathbb{Z}\}$ is a Parseval frame for V_{φ_n} and $V = \bigoplus_{n=1}^\infty V_{\varphi_n}$ (since \mathbb{R} is second countable, each W_j is separable and so the decomposition is countable).
Acknowledgments

We thank Professor Gitta Kutyniok for stimulating discussions and insightful remarks. Also we are grateful to the referee for constructive comments and fruitful suggestions and specially for bringing our attention to [2, Proposition 2.10].

The first author is partially supported by the Center of Excellence in Analysis on Algebraic Structure (CEAAS), in Ferdowsi University of Mashhad.

References