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Recently, the spectrum problem for 2-perfect m-cycle systems has been studied 
by several authors. In this paper we find the spectrum for 2-perfect 6-cycle 
systems with two possible exceptions. The connection between these systems and 
quasigroups satisfying some 2 variable identities is discussed. 0 1991 Academic 

Press. Inc. 

1. INTRODUCTION 

In the last 30 years, there has been much interest in decomposing a com- 
plete graph K, into edge-disjoint copies of a graph G. The most popular 
choices for G have been a complete graph (block designs) and a cycle. 
When G is a cycle of length m, such a decomposition is called an m-cycle 
system of K,,. 

More recently, additional structure has been asked of the decomposition: 
a graph H that is closely related to G is defined; then the decomposition 
into copies of G is constructed in such a way that replacing each copy of 
G by a corresponding copy of H results in a decomposition of the complete 
graph into edge-disjoint copies of H. The problem of most interest then is 
to find the spectrum of such a decomposition; that is, the values of v for 
which there exists such a decomposition of K,. For example, the following 
are such problems that have been solved. 

The nesting of a Steiner triple system is such a problem, where G is K3 
and His the complement of G in K4 (so H is a star, joining a fourth vertex 
to each of the three vertices in G). The problem of finding the spectrum of 
Steiner triple systems that have a nesting has been completely solved 
[3, 8, 161. A generalization of this problem is the nesting of a cycle system: 
in this case G is a cycle of length m and H is the star consisting of m + 1 
vertices, one vertex being joined to each of the vertices in G. Again, the 
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spectrum for which there exists such a decomposition of K, has been found 
[7,9], with a few exceptions for each value of m. 

If G consists of a path containing 3 edges and H is the complement of 
G (so is a path of length 3) then the spectrum for this decomposition has 
been settled [S] (see also [14]). 

A third setting for this problem has been considered, where again G is 
a cycle of length m, but now His formed by joining two vertices if they are 
distance i apart in G, for some 1 < i < m/2. So for m = 5, i must be 2 and 
so G= (1, 2, 3, 4, 5) and H= (1, 3, 5, 2, 4). 

3 
H= 

Such a decomposition of K, when m = 5 is called a Steiner pentagon system 
and its spectrum has been found [lo]. The problem when m = 7 and i = 2 
has also been essentially settled [ll]. This problem has also been studied 
in the context of directed graphs [ 1,6, 12-J. Following the notation used in 
that setting, if G is an m-cycle and H is formed from G by joining two 
vertices if they are distance i apart in G, then such a decomposition of K, 
we define to be an i-perfect m-cycle system of K,. 

In this paper the spectrum for this problem is settled in the case where 
m = 6 (and so i = 2) except for two values of v. Note that G is a 6-cycle and 
so H is the union of two 3-cycles. 

Therefore, when m = 6 the decomposition of K, into edge-disjoint copies of 
H is a Steiner triple system that contains an even number of K3s. Clearly 
a necessary condition for the existence of such a decomposition of K, is 
that v = 1 or 9 (mod 12) ( since the number of edges in K, must be divisible 
by 6 and each vertex must have even degree). The rest of this paper is 
devoted to showing that this condition is also sufficient for the existence of 
a 2-perfect 6-cycle system, except for u = 9 and possibly except for 
v E (45,57}. 

One of the main tools used in proving this result is to find an edge-dis- 
joint decomposition of the complete tripartite graph K2x,2x,zx into 6-cycles 
so that the triangles formed by joining vertices distance 2 apart in the 
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6-cycles also form an edge-disjoint decomposition of K2.Y,21.2x. Naturally we 
define such a decomposition to be a 2-perfect 6-cycle decomposition of 
K 2.x. 2.x. 2x ’ 

Finally, it is worth noting that a 2-perfect 6-cycle system can be used to 
define a quasigroup as follows: Let C be a 2-perfect 6-cycle system of K, 
defined on the vertex set Q. Define a binary operation “0” on Q by: 
xox=xforallxEQ,andxay=zifandonlyif(x,y,z,a,b,c)EC.Then 
(Q, 0) is a quasigroup. A little reflection (but not too much) shows that 
(Q, 0) satisfies the 2-variable identities ( yx)x = y and (xy)( y(xy)) = x( yx). 
On the other hand, a quasigroup (Q, 0) satisfying the above 2-variable 
identities which is also antisymmetric defines a 2-perfect 6-cycle system C 
ofK, where C={(x,y,xoy, yo(xoy), x~(y~x),~~x)Ix,~~Q,~#~}. 
So a 2-perfect 6-cycle system is equivalent to an anti-symmetric quasigroup 
satisfying the three 2-variable identities in Z= (x2=x, (yx)x = y, 
(.xy)(y(xy)) =x( yx)}. Whether or not there exists a finite collection of 
2-variable quasigroup identities K so that a 2-perfect 6-cycle system is 
equivalent to a quasigroup satisfying Zu K is an open and (so it seems to 
the authors) interesting problem. 

2. PRELIMINARY RESULTS 

We begin with some notation. Let (v,,, ur, . . . . u, _ r) denote the m-cycle 
consisting of the edges vivi+r for 0 < i < m - 1, reducing the subscript 
modulo m. Corresponding to the 6-cycle G = (1,2, 3,4, 5, 6) is the sub- 
graph H consisting of the two 3-cycles (1,3, 5) and (2,4,6). Also, define 
2, = (0, 1, . . . . n - 11. 

We need to know that 2-perfect 6-cycle systems exist for some small 
values. 

EXAMPLE 2.1. For v = 13 define 

C1,={(0,5,2,8,7,9)+i10<i<12}, 

where (~a, al, u2, u3,vq, us) + i= (v,+ i, u1 + i, u2 + i, us + i, uq + i, v5 + i), 
reducing each component modulo 13. Then C13 is a 2-perfect 6-cycle system 
of K,, defined on the vertex set Zr3. 

For v = 21 define 

Czl = (((0, Oh (0,6), (0, l), (2, l), (0, 3), (LO)) + (0, 4, 

((0, Oh (42), l&O), t&4), (2,0), (1, 1)) + (0, i), 

((0, 01, (0, 3), (1, 2), (2,6), (2, I), (2,2)) + (0, 4, 

((0, Oh (2,6), (1, 3), (1,2), (1,6), (2,4)) + (0, 4, 

((O,O), (2, 11, (2,4), (1, 3), (2, 5), (1, 5))+(0, i) I O<i<6} 
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reducing the second component modulo 7. Then Czl is a 2-perfect 6-cycle 
system of K2r defined on the vertex set Z3 x Z,. 

For v = 25 define 

reducing each component modulo 25. Then Cz5 is a 2-perfect 6-cycle 
system of Kz5 defined on the vertex set Zz5. 

For v = 33 define 

C33= {WA O), (0, 21, (0, l), (0, 5), (M, (1,9))+ (0, i), 

((LO), (0,4)> (1, 11, (2,3), (2,6), (2,5))+ 040, 

((19 013 (17 2), (4 31, (2,3), (2, 71, (1,4))+ (0, 9, 

(6461, (1, 11, (2, o), (1, 5), (2, I), (2,3)) + (0, i), 

((03 71, (L7), (2, O), (0,4), (2, 31, (0, 10)) + (0, i), 

((09 Oh (2,5), (0,2), (0, 71, (1, l), (2,9)) + (0, 9, 

((0, Oh (1, 31, (‘A 4), (1, 81, C&2), (250)) + (0, i), 

((0, g), (1, lo), (2, o), (0, lo), (2,5), (2, lo)) 

+(o,i))Iodi<lo), 

reducing the second component modulo 11. Then C33 is a 2-perfect 6-cycle 
system of K33 defined on the vertex set Z, x Z,,}. 

Before moving on to the main construction, we need some preliminary 
results. 

LEMMA 2.2. For any integer x > 2, there exists a 2-perfect 6-cycle system 

of &x,2x,2x. 

ProoJ: Let L, be a latin square of order x on the symbols (0, . . . . x- l} 
and define a latin square L of order 2x on the symbols (0, . . . . 2x - 1 } as 
follows: if cell (i, j) of L1 contains symbol k then we have cells (24 2j), 
(2i, 2j+ l), (2i+ 1,2j) and (2i + 1,2j+ 1) of L containing symbols 2k, 
2k + 1, 2k + 3 and 2k -t 2, respectively. Let ( (0, . . . . 2x - 1 }, .) be the 
quasigroup corresponding to L. 

Let the vertex set of K2,,2,,2, be {(i,j) 1 O<i<2x-l,O$jd2). Define 
the 2-perfect 6-cycle system of Kz,,2,,2, by C = { ((2i, 0), (2j, l), 
(2i.(2j+ l), 2), (2i+ LO), (2j+ 1, l), ((2i+ 1).2j), 2)), ((2i,O), (2j+ 1, l), 
(2i.2j,2), (2i+l,O), (2j, l), ((2i+1).(2j+1),2))(O<i<x-1, o<j< 
x - 1 }. It is easy to check this is a 2-perfect 6-cycle system, though it may 

582a/57/1-6 
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help to note that by the construction of L, 2i. (2j + 1) = 2k + 1 # 2k + 3 = 
(2i+l).2j and 2i.2j=2k#2k+2=(2i+1).(2j+l), so the 6-cycles are 
defined on 6 distinct vertices. 1 

LEMMA 2.3. There exists a pairwise balanced design (PBD) of order II 
with block sizes 3 and 4 that has a parallel class for all v G 1 (mod 3) except 
for VE (7, 101. 

ProoJ Brouwer [2] has shown that for all u = 0 or 1 (mod 3) there 
exists a PBD of order u with block sizes 3 and 4. Furthermore, when u = 0 
(mod 3) his construction yields a design which contains at least one block 
of size 4 unless u E { 3,6, 9}. When u E { 3,6,9} such a design with a block 
of size four does not exist. 

We use Brouwer’s result to make sure that when v = 1 (mod 3) the 
PBD’s contain a parallel class. 

If v = 9x + 1 and x > 2, then construct a PBD with the set of blocks 
being B and on the set of symbols (co}u{(i,j)Il<iiQ3, l<j<3x} as 
follows. Place the blocks from a PBD of order 3x with block sizes 3 and 
4 on the vertex set ((i, j)( l< j<3x} in B for each iE {1,2,3}. Let (Q, .) 
be an idempotent quasigroup of order 3x with a transversal T intersecting 
the diagonal in just the cell (1, 1) (a pair of idempotent orthogonal latin 
squares of order 3x is sufficient, (see [17], for example) and it is easy to 
construct one of order 6, so such a latin square exists for all x 2 2). Let B 
also contain the blocks {co, (1, i), (2, i), (3, i)} for 1 < i < 3x and, for i # j, 
the blocks { (1, i), (2, j), (3, i. j)>. This defines a PBD with block sizes 3 
and 4 with a parallel class consisting of the block {co, (1, 1 ), (2, 1 ), (3, 1) > 
and the blocks ((1, i), (2, j), (3, i.j)} f or each cell (i, j) in T except for 
(1, 1). 

If u = 9x + 4 and x > 1, then the same construction as in the case when 
v = 9x + 1 will work if a PBD of order 3x + 1 and an idempotent 
quasigroup of order 3x + 1 with a transversal intersecting the diagonal in 
just the cell (1, 1) is used. 

If u = 9x + 7 and x > 3, then define a PBD with set of blocks B on the 
symbols (cc } u {(i, j) 11~ i < 3, 16 j < 3x + 2 > as follows. Place the blocks 
of a PBD of order 3x + 3 with block sizes 3 and 4, at least one block 
havingsize4(~0~>,3),andonthevertexset {co}u{(i,j)~l<j<3~+2} 
in B for each in {1,2,3}, except that the block (co, (i, l), (i, 2), (i, 3)) is 
omitted. Let L be a latin square of order 3x + 2 with a subsquare of order 3 
(on rows, columns and symbols 1, 2 and 3) which contains a transversal T 
that intersects the subsquare in precisely the cell (1, 1) and let 
((1, ***> 3x + 2}, .) be the corresponding quasigroup. (Such a latin square 
exists of order 8 and for all other orders, the incomplete latin square 
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can be embedded in a latin square of any order n 2 11 in which cells (6,6), 
(7, 7) and (i, i) for 8 < i < n contain symbols 2, 3 and i, respectively [ 151; 
then select T to consist of cells (1, l), (2,4), (3, 5), (4, 2), (5, 3) and (i, i) 
for 6 < i <n). Place the blocks of a PBD with block sizes 3 and 4 of order 
10 on the vertex set {co}u{(i,j))l~i~3,l~j~3} in B, making sure 
that b= (~0, (1, l), (2, l), (3, l)} . is a block. Finally, for 1 < i6 3x + 2, 
1 <j < 3x + 2 but not both i and j in { 1,2, 3}, add the block { (1, i), (2, j), 
(3, i ej)} to B. Then the blocks of B form a PBD of block sizes 3 and 4 and 
the blocks arising from the cells in T without cell (1, 1) together with b 
form a parallel class. 

Suppose u = 9x + 7 and x E { 1, 2). For u = 16 there exists a resolvable 
BIBD with block size 4. For u = 25, introduce four new points co r, co 2, cc 3, 
and co4 to a Kirkman triple system of order 21 (see [17], for example), 
add coi to the blocks in parallel class i for 1 < i < 4 and add the block 
b= {co,, ~02, ~3, 00~). Then parallel class 5 of the Kirkman triple system 
together with b forms a parallel class in the PBD of order 25 constructed 
in this way. 1 

Of course, the PBD’s constructed in Lemma 2.3 are group divisible 
designs (GDD’s) with groups and blocks of sizes 3 and 4. We now obtain 
some more GDD’s. 

LEMMA 2.4. For all x B 2 there exists a GDD of order 6x + 5 with blocks 
of size 3, one group of size 5 and the remaining groups of size 3. 

Proof: We make use of Wilson’s construction for (partial) Steiner triple 
systems [18]. Let G be the graph with V(G) = (0, 1, . . . . 6x+2} - 
(0,2x + 1,4x + 2}, and E(G) = { { y, -y}, { y, 2~) 1 y E V(G)), all elements 
being reduced modulo 6x + 3. Wilson shows that this graph has a one- 
factorization with l-factors F,, F,, and FS, and so the following define a 
PBD with one block of size 5 and the rest of size 3: 

(4 b, co2, 0, 2x+ 1, 4x+2) is a block, 
(b) if (u, u} EF,, F2 or F3 then (co,, U, u>, {cc2, U, u} or (0, U, u} is 

a block respectively, and 
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(c) if u#v#w#u, u+v+wrO (mod6x+3), O${u,t~,w} and 
{y,2y) @ {u, v, w} for any YE {l, . . . . 6x+2), then {u, v, w> is a block. 

Therefore the result follows if (1, . . . . 6x+2}-{2x+l,4~+2}canbepar- 
titioned into sets {u, v, w} such that u + v + w  = 0 (mod 6x + 3), for then 
these blocks together with the block of size 5 form a parallel class. This set 
can be so partitioned. Cyclic triple systems of all orders 6x $3 # 9 have 
been formed [ 131 (or see [4]) by partitioning (1, . . . . 3x + 1 } - {2x + 1 } 
into sets {u, v, w  > satisfying either u + v + w  = 0 (mod 6x + 3) or u + v = w. 
For each triple {u, v, w} with u + v + w  = 0 (mod 6x + 3) take the triples 
{u,v,w} and {-U, -v, -w} and for each triple with U+V=W take the 
triples {u, u, -w} and { - U, -v, w} (reducing elements modulo 6x + 3) to 
produce the desired partition, 1 

The following result is the main construction for 2-perfect 6-cycle 
systems. 

LEMMA 2.5. If there exists a GDD of order t with blocks of size 3 and 
groups h in the set H, and iffor s > 2 there exists a 2-perfect 6-cycle system 
of Kzslhl + 1 for all he H, then there exists a 2-perfect 6-cycle system of 
K 2st+ 1. 

ProoJ Define a 2-perfect 6-cycle system of K,,,+ 1 on the vertex set 
{co} u (Z,, x 2,) as follows: 

(1) for each block {u, v, w  } define a 2-perfect 6-cycle system of 
K 2s, 2s, 2s on the vertex set Zls x (u, v, w  } (this exists by Lemma 2.2), and 

(2) for each group h E H define a 2-perfect 6-cycle system of order 
2s Ihl + 1 on the vertex set (m} u (Z,, x h). 1 

3. CONSTRUCTIONS OF ~-PERFECT ~-CYCLE SYSTEMS 

THEOREM 3.1. For all v - 1 or 9 (mod 12) except for v = 9 and possibly 
v E (45, 57}, there exists a 2-perfect B-cycle system of K,,. 

Proof: We consider the cases v = 1,9, 13, and 21 (mod 24) in turn. 

Case 1. v = 1 (mod 24). 

Let v = 24x + 1. By removing one symbol from a Steiner triple system of 
order 24x + 1 (see [ 171, for example), a GDD with blocks of size 3 and 
groups of size 2 results. We shall use such a design many times! 

If 2x = 6y then v = 12(6y) + 1 and there exists a GDD of order 6y with 
blocks of size 3 and groups of size 2. Apply Lemma 2.5 with t = 6y and 
s = 6. Since Ih( = 2 for all h E H and since a 2-perfect 6-cycle system of 
K 2slhl + r is constructed in Example 2.1, the result follows. 
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If 2x = 6y+ 2 then v = 12(6y+ 2) + 1 and there exists a GDD of order 
6y + 2 with blocks of size 3 and groups of size 2. Apply Lemma 2.5 with 
t = 6~ + 2 and s = 6. A 2-perfect 6-cycle system of K15 is constructed in 
Example 2.1. 

If 2x = 6~ + 4 then v = 6( 12~ + 8) + 1 and there exists a GDD of order 
12~ + 8 with blocks of size 3 and groups of size 2. Apply Lemma 2.5 with 
t = 12~ + 8 and s = 3. A 2-perfect 6-cycle system of K13 is constructed in 
Example 2.1. 

Case 2. v E 9 (mod 24). 

Let v = 24x + 9 =4(6x + 2) + 1. For x # {2,3}, from Lemma 2.3, there 
exists a PBD with set of blocks B on the set of symbols Z3X+ I with block 
sizes 3 and 4 which has a parallel class. Define a 2perfect 6-cycle system 
of K,, on the vertex set {co} u (2, x (Z3X+ 1 x Z,)) as follows: 

(1) for each block {u, u, W} of B which does not lie in the parallel 
class, place four 2-perfect 6-cycle systems of K4,4,4, one on each of the 
followingvertexsets:Z,x {(u,O), (v,O), (w,O)}, Z,x {(u,O), (u, l), (w, l)>, 
&x itup 11, tu, 01, tw, 1)) and &x (tu, l), (u, 11, (w 0)); 

(2) for each block (t, u, V, W} of B which does not lie in the parallel 
class, place eight 2-perfect 6-cycle systems of K4,+,, one one each of the 
following vertex sets: 

and 

(3) for each block b in the parallel class of B, place a 2-perfect 
6-cycle system of order 8 1 bl + 1 on the vertex set ( cc } u (Z, x (b x Z,)) 
(Zperfect 6-cycle systems of Kz5 and of K33 are constructed in Example 2.1). 

If x = 3 then u = 81 and so the construction used in Case 1 starting with 
a GDD of order 8 with blocks of size 3 and groups of size 2 and then using 
2-perfect 6-cycle systems of K,,, 10, r,,, and finally placing a 2-perfect 6-cycle 
system of K2i (see Example 2.1) on the vertex set {cc } u (Z,, x h) for each 
group h gives a 2perfect 6-cycle systems of Ksl. 

Case 3. v = 13 (mod 24). 

Let v = 24x + 13. Then v = 4(6x + 3) + 1 and there exists a GDD of order 
6x + 3 with groups and blocks of size 3 (just remove the blocks in a parallel 
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class from a Kirkman triple system of order 6.x + 3 to form the groups). 
Apply Lemma 2.5 with t = 6.x + 3 and s = 2. A 2-perfect 6-cycle system of 
K,, is constructed in Example 2.1. 

Case 4. u = 21 (mod 24). 

Let v=24x+21. Then v=4(6x+5)+1 and for x22 there exists a 
GDD with blocks and groups of size 3 except for one group of size 5 (this 
is constructed in Lemma 2.4). Apply Lemma 2.5 with t = 6x + 5 and s = 2. 
Examples of 2-perfect 6-cycle systems of K13 and K,, are constructed in 
Example 2.1. 

4. OPEN PROBLEMS 

Clearly many problems related to Theorem 3.1 still remain. To find the 
spectrum of i-perfect m-cycle systems in general is an extremely difficult 
problem. At this stage, the spectrum for m-cycle systems has not yet been 
found, and it is likely that this spectrum will be essentially the same as the 
spectrum for i-perfect m-cycle systems. Then of course there is the more dif- 
ficult problem of constructing Z-perfect m-cycle systems; that is, an m-cycle 
system that is i-perfect for all i E I. In the case where Z= { 1, . . . . Lm/2J} such 
a system is a Steiner m-cycle system. Finally an easier problem: find 
2-perfect 6-cycle systems of Kd5 and K,,. 
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