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New analytical solutions for gravity, scalar and vector field localization in Randall–Sundrum (RS) models
are found. A smooth version of the warp factor with an associated function f (z) = exp(3A(z)/2) inside
the walls (|z| < d) is defined, leading to an associated equation and physical constraints on the continuity
and smoothness of the background resulting in a new space of analytical solutions. We solve this
associated equation analytically for the parabolic and Pöschl–Teller potentials and analyze the spectrum
of resonances for these fields. By using the boundary conditions we are able to show that, for any of these
solutions, the density probability for finding a massive mode in the membrane has a universal behavior
for small values of mass given by |ψm(0)|2 = β1m + β3m3 + βLm3 log(m) + · · ·. As a consequence, the
form of the leading order correction, for example, to the Newton’s law is general and does not depend
on the potential used. At the end we also discuss why complications arise when we use the method to
find analytical solutions to the fermion case.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

After the seminal work of Randall and Sundrum (RS) [1] several
other results have been developed based on the idea of mem-
branes as topological defects and its implications for brane world
physics [2–7]. In these models one must determine the space of
solutions of a Schrödinger equation with a specific potential which
depends on the warp factor. That is, one needs to solve a Sturm–
Liouville problem to find eigensolutions with eigenvalues. A par-
ticular application of this kind of model is in the study of gravity
trapping in a finite thickness domain wall [8], where a constant
potential in the region near/over the membrane is chosen in or-
der to find analytical solutions. The benefits of such analytical
solutions are worth because allow explicit analysis of the Kaluza–
Klein masses and opens up possibilities for analytical studies of
fermionic modes. These analysis and possibilities can be extended
even more if different potentials for the graviton wave function
modes can be solved analytically.

In this manuscript, we present a new explicit integrable
Schrödinger potentials for the graviton wave function modes pa-
rameterized by the thickness of the wall. The warp factor is chosen
in order to be continuous in the boundary of two regions of the
space–time. These two regions basically describe the interaction
right near/over the membrane location and interactions far from
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the membrane. We find an equation that drives the profile of the
brane. With this we show that the function used in [8] is just a
particular solution of the equation presented here. This reveals a
new space of analytical solutions and, as direct consequences, new
zero modes, Kaluza–Klein modes, new resonance behavior, and so
on. The new analytical solutions are encoded in a Schrödinger-like
differential equation with zero eigenvalue. With this it is possi-
ble to show that, for small values of m, the probability density for
finding a mass mode in the membrane does not depend on the
chosen potential. In this way, the leading order correction of the
four dimensional Newton’s law, for example, has a general expres-
sion that does not depend on the potential used. In the following
lines we discuss how to apply this method to study the physics of
gravitational fields, scalar fields and gauge vector fields in the RS
scenario.

2. The associated equation

To start our reasoning we remember the fact that the mass
spectrum of the gravity field is driven by a Schrödinger like equa-
tion [9]

−ψ ′′
m(z) + U (z)ψm(z) = m2ψ(z), (1)

where the effective potential depends on the warp factor, A(z), as
below

U (z) = 3
A′′(z) + 9

A′(z)2, (2)

2 4 

 Funded by SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2014.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:geovamaciel@gmail.com
http://dx.doi.org/10.1016/j.physletb.2014.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.02.004&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


132 R.R. Landim et al. / Physics Letters B 731 (2014) 131–135
and the metric in the conformal coordinate is given by ds2 =
e2A(z)(dx2 + dz2). By analyzing the above equation it has been
shown that the zero mode (m = 0) is trapped in the membrane.
However as limz→∞ U (z) = 0, the massive modes are not localized.
An important phenomenological aspect related to this is the ap-
pearance of resonances. This allows for the possibility of unstable
massive modes that could be seen in the membrane. Most of these
studies have been performed numerically by considering smooth
versions of the RS model. These smooth versions can be obtained,
for instance, by considering the membrane as a topological defect
generated by a scalar field. In this scenario the condition imposed
is that for large z the RS warp factor is recovered. These mod-
els have many interesting properties and have been widely studied
over the last decade [2–7].

Another way to get a smooth version of the RS model is by
considering the brane as a thick domain wall [8,10]. In these pa-
pers the potential used depends on one parameter 0 � x � π/2
which determines the thickness of the membrane. In order to get
the desired smooth version, A and A′ must be continuous and this
imposes some restrictions on the form of A(z) in the membrane.
The choice of [8] was A(z) = 2

3 ln cos(
√

V 0|z|) and this give the ef-
fective potential U = −V 0. With this, the resonances of the model
were studied analytically in detail.

In order to obtain a wider class of new exact solutions, we di-
vide the warp factor A(z) in two regions, |z| � d and |z| � d:

A(z) =
{

2
3 ln[ f0(z)], |z|� d,

ln( 1
|z|+β

), |z|� d,
(3)

where we defined f0(z) as the associated function. The analytical
solution for |z| � d is already known [8,10], then we focus in ana-
lytical solutions for |z|� d. With Eqs. (2) and (3) we get that f0(z)
satisfies the associated equation

− f ′′
0 (z) + U (z) f0(z) = 0, (4)

this is exactly the effective Schrödinger equation (1) for m2 = 0. In
order to implement the boundary conditions, we restrict to even
functions f0(z) = f0(−z) = g0(z) with U (z) = U (−z) in (4), guar-
antying that the boundary conditions are satisfied in both edges of
the brane, z = d and z = −d. The condition A(0) = 0 implies that
g0(0) = 1. Since g0(z) is an even function we also have A′(0) = 0.
This conditions fix completely the solution of (4). With the above
considerations and by imposing continuity of A(z) and A′(z) at
z = ±d we obtain

2

3
g′

0(d) = −g0(d)1+2/3, (5)

β = −d + 1

g0(d)2/3
, (6)

with the conditions g′
0(d) < 0 and g0(z) positive and limited in

|z| � d. In the last section it will become clear why we have writ-
ten 5/3 = 1 + 2/3.

3. Analytical solutions

As a first example, let us consider a constant potential −|V 0| in
the region |z| � d [8]. We know that the solution for the Schrödin-
ger equation (1) is a linear combination of cos(

√
m2 + |V 0|z)

and sin(
√

m2 + |V 0|z). The even solution for m = 0 that satisfies
g0(0) = 1 is cos(

√|V 0|z). The conditions g′
0(d) < 0 and g0(z) > 0

implies that 0 <
√|V 0|d < π/2. This is the solution introduced

in [8,10]. As a straightforward application of the method devel-
oped here lets examine the harmonic oscillator with Schrödinger
equation
−ψ ′′
m(z) + z2ψm(z) = m2ψm(z). (7)

The above equation can be cast in the form of a Kummer equation
[11], by writing ψm(z) = e−z2/2 wm(z) and next using the transfor-
mation u = z2, we obtain

uF ′′(u) + (b − u)F ′(u) − aF (u) = 0, (8)

with b = 1/2 and a = (1 − m2)/4. Then, solutions of (7) are
linear combinations of gm(z) = e−z2/2 F1(a; 1

2 ; z2) and hm(z) =
ze−z2/2 F1(a + 1

2 ; 3
2 ; z2), where F1(a;b; z) is the Kummer confluent

hypergeometric function. From now on we will use for the even
(odd) solution in |z| � d the notation gm(z) (hm(z)). The even so-
lution for m = 0 with g0(0) = 1 is g0(z) = e−z2/2 F1(

1
4 ; 1

2 ; z2).
In fact, we can find a large new class of solutions simply con-

sidering U (z) = az2 + b, with a > 0. Using the above-mentioned
steps we find the pair of solutions

gm(z) = e−√
az2/2 F1

(
b

4
√

a
− m2

4
√

a
+ 1

4
; 1

2
;√az2

)
, (9)

hm(z) = ze−√
az2/2 F1

(
b

4
√

a
− m2

4
√

a
+ 3

4
; 3

2
;√az2

)
, (10)

and W (g,h)(z) = 1, where W ( f1, f2)(x) = f1(x) f ′
2(x) − f ′

1(x) f2(x)
is the Wronskian of f1, f2. It is worthwhile to mention that the
Wronskian is constant for Schrödinger-like equations. The even so-
lution satisfies g0(0) = 1 and the value of the constants a, b and d
are related in order to give g′

0(d) < 0 and g0(z) > 0. As an example,
for b = −5 and a = 1, g0(z) is positive defined for |z| < 0.707107
and d = 0.243928.

The method described here can be applied to many other cases
known in physics. One possibility is the problem for a particle in a
box subject to a constant field. This is described by a linear poten-
tial U (z) = az giving rise to the Airy functions with solutions Ai(z)
and Bi(z). However, this potential do not satisfies the condition of
being even. Another class of analytical solutions can be found by
considering exponential potentials. From these the only even one
is the Pöschl–Teller potential, where the Schrödinger-like equation
is

ψ ′′
m(z) + (

m2 + a2b(b + 1) sech2(az)
)
ψm(z) = 0. (11)

Rewriting ψ(z) = w(z)/ coshb(az) and next using the transforma-
tion u = − sinh2(az), we can write (11) as a hypergeometric differ-
ential equation

u(1 − u)F ′′(u) + (
γ − (α + β + 1)u

)
F ′(u) − αβ F (u) = 0,

where γ = 1/2, α = (−b + im/a)/2 and β = −(b + im/a)/2.
Therefore the linearly independent solutions of (11) are gm(z) =
F (α,β;1/2;− sinh2(az))/ coshb(az) and hm(z) = sinh(az)F (α +
1/2, β + 1/2;3/2;− sinh2(az))/ coshb(az) with W (gm,hm)(z) = a
and g0(0) = gm(0) = 1.

After fixing the background with the above method we turn
our attention to the gravity resonances. The interesting fact about
this background is that we automatically have exact solutions to
Eq. (1) just by not fixing m = 0. With this we get an analytical
expression for our resonances. As we are interested in resonances
we must consider a plane wave coming from −∞. This plane wave
will collide with the membrane and will generate a reflected and
a transmitted wave. Therefore, for z < −d we must have a linear
combination of waves moving to the left and to the right. For z > d
we must have only one wave moving to the right. In order to an-
alyze the resonances we fix the coefficient of the incoming wave
equal to one. In this way, the Schrödinger-like equation (1) has the
solution
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Fig. 1. The transmission coefficient for parabolic potential with: (a) a = 0.001,
b = −0.1 (d = 3.8122); (b) a = 0.01, b = −0.1 (d = 5.49082) and (c) a = 0.00001,
b = −0.01 (d = 13.9833).

ψm(z) =
{ Am gm(z) + Bmhm(z), |z|� d,

Fm(z) + Cm Em(z), z �−d,

Dm Fm(z), z � d
(12)

where Em(z) =
√

πu
2 H (2)

2 (u), Fm(z) =
√

πu
2 H (1)

2 (u), with u =
m(|z| + β). We shall use the convention that gm(0) = 1. Taking
the continuity of the wave function and its derivative at z = ±d
and using the fact that gm(z), Em(z), Fm(z) are even and hm(z) are
odd we finally obtain the transmission coefficient

T (m) = m2|W (gm,hm)(d)|2
|W (Fm, gm)(d)W (Fm,hm)(d)|2 . (13)

With this expression and the solutions found before we can easily
obtain graphics for the transmission coefficients. In Fig. 1 we show
the transmission for the parabolic potential. As expected, depend-
ing on the parameters we can have different peaks of resonances.
It is important to point that as narrow the resonance peak the
stronger is the signal of the mass mode. In Fig. 1 we see that hap-
pening for the first peaks. For the Pöschl–Teller potential Fig. 2
shows resonances depending on the parameters. For the parame-
ters used the resonances are more peaked, what is phenomeno-
logically more interesting. It is clear that the potentials present
resonances with different characteristics.

4. Correction to the Newton’s law

In order to analyze the deviation of Newton’s law, we must cal-
culate the probability density of the wave function at z = 0:

∣∣ψm(0)
∣∣2 = |Am|2 = m2

|W (Fm, gm)(d)|2 . (14)

The above expression is plotted in Fig. 3 for the parabolic potential
with a = 0.00001 and b = −0.01.

For small values of m, Fm(z) has the following form for z > 0:

Fm(z) ≈ a−3/2(z)m−3/2 + a1/2(z)m1/2

+ a5/2(z)m5/2 + aL(z)m5/2 log(m), (15)
Fig. 2. The transmission coefficient for the Pöschl–Teller potential with (a) a = 0.01,
b = 1 (d = 115.369); (b) a = 0.1, b = 1 (d = 10.1721), and (c) a = 1, b = 1
(d = 0.537862).

Fig. 3. The amplitude probability as function of m.

where

a−3/2(z) = −2i

√
2

π
(z + β)−3/2, (16)

a1/2(z) = −i
(z + β)1/2

√
2π

, (17)

a5/2(z) = (
γ0 + 4i log(z + β)

) (z + β)5/2

16
√

2π
, (18)

aL(z) = 4i
(z + β)5/2

16
√

2π
, (19)

with γ0 = 2π − 3i + 4iγ − 4i log(2) and γ is the Euler–Mascheroni
constant. The function gm(z) is well defined for m = 0, i.e., gm(z)
do not have poles at m = 0. Therefore, for small m we can ex-
pand gm(z) in a power series in m2: gm(z) = g0(z) + b1(z)m2 +
b2(z)m4 + · · · . The Wronskian W (a−3/2, g0)(d) is zero due to the
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boundary conditions (5). Then we have W (Fm, gm)(d) = √
m(α0 +

α2m2 + αLm2 log(m) + · · ·). With this we arrive to the following
expansion for m � 1:∣∣ψm(0)

∣∣2 = β1m + β3m3 + βLm3 log(m) + · · · , (20)

where β1, β3, βL are coefficients that depend on the potential used
through ai(d), bi(d). For large m, Fm(z) ∼ eimz and gm(z) ∼ cos mz
consequently |Am|2 → 1 when m → ∞.

To calculate the deviation of Newton’s law we have to plug the
expansion (20) in the expression

δ(r) =
∞∫

0

∣∣ψm(0)
∣∣2

e−mr dm, (21)

and integrate from (0, Mc) for the small M expansion and (Mc,∞)

with Mc < 1. The integration gives us

δ(r) = β1

r2

(
1 − e−Mcr(1 + Mcr)

)
+ β3

r4

(
6 − e−Mcr((Mcr)3 + 3(Mcr)2 + 6Mcr + 6

))
× βL

r4

(
11 − 6γ + 6 log(Mc) − Γ (4, Mcr) log(Mc)

− 6 log(Mcr) − G3,0
2,0(1,1,0,0,4 | Mcr)

) + e−Mcr

r
, (22)

where Γ (y, x) is the complete gamma function and G3,0
2,0(1,1,0,

0,4|x) is the Meijer G-function.

5. Scalar, vector and fermion fields

In a previous work the present authors have found analyti-
cal solutions for other bosonic fields in the potential well case
U = −V 0 [10]. We can use this and the above method to find
new analytical solutions to the scalar and vector fields. What was
pointed out in that work is that for any effective potential which
takes the form U (z) = c A′′ + c2 A′ 2, an analytical solution can be
found easily just by changing some parameters of the theory. We
have also shown that for the scalar and vector fields c = 3/2 and
c = 1/2 respectively. We also pointed that the parameter for the
scalar field is the same of the gravity field, therefore all results
are identical and we just need to consider the vector case here.
The only thing we need to do is to change 2/3 → 1/c in Eqs. (3)
and (5). The effect of this for the exterior solution is to change the
order of the Hankel function 2 → 1/2 + c. The interior region is
changed throughout the contour conditions (5). Therefore all the
main results, namely Eqs. (12), (13), (14) and (20) are kept un-
changed up to the above change in the parameters. Therefore, the
expansion for small masses have the same general behavior also
for the scalar and vector fields. In Fig. 4 we show the transmission
coefficients for the vector case. Note that the change of the poten-
tial can give very different phenomenological results for a observer
in the brane.

At this point some discussion about the fermion case is im-
portant. The main difference between this and the bosonic case
is the fact that the way to get a nontrivial potential is through
the addition of a coupling with a scalar field. This is described
in very well in Ref. [12], where it is used the constant poten-
tial of [8]. The fact is that when this coupling is considered two
additional complications arise. One is the fact that the following
relation φ′(z)2 = 3(A′(z)2 − A′′(z)) must be satisfied [12]. There-
fore we must impose the continuity of the second derivative of
the warp factor if we wants a continuous first derivative of the
Fig. 4. The transmission coefficient for the parabolic (d = 9.9967, a = 0.00001; b =
−0.01) and Pöschl–Teller potentials (d = 0.222377, a = 1, b = 1).

scalar field. Another and more difficult problem is that the effec-
tive potential is given by

U±(z) = (
ηF

(
φ(z)

)
e A(z))2± d

dz

(
ηF

(
φ(z)

)
e A(z)), (23)

which do not posses a general analytical solution even for the sim-
plest case of the constant potential [12].

6. Summary and conclusions

In summary we have described a prescription to find new ana-
lytical solutions in thick brane models. Two cases are presented as
examples: we have shown results for the parabolic and the Pöschl–
Teller potentials. We have studied the problem of resonances in
co-dimension one brane world, finding the mass spectra of the
new profiles for the thick branes proposed. For these potentials,
the transmission coefficients for the masses are plotted expressing
the different peculiarities of each potential. It is important to stress
that this work is a generalization of the article [8]. We have shown
that the solution used by Mirjam et al. is a particular solution of a
wider class described here, including the cases of scalar and vec-
tor fields. We also have shown that the correction in the Newton‘s
law found by them is valid for any of these wider class of solu-
tions. The results found here opens up the possibility to explore
different backgrounds to study gravity, scalar and vector field res-
onances in the Randall–Sundrum model. For the fermionic case it
is not possible to apply the same methods. Only numerical results
were found and we hope, in next studies, to go one step further in
finding pure analytical solutions.
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