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Condition (VIII) of the paper can only be satisfied in general if we 
replace t& *) there by t ,,G)(*). This vitiates the rest of the proof 
which has to be completed as follows. 

We shall choose a subsequence F,, such that any subsequence (fn} 
of F, besides satisfying (I)-(VII) fulfills the following also: 

(VIII) 

and 

I Wfn If1 ,...,fn-111 < 2-Y 

(IX) LFl n-1/2 * J lfn I dp < 03. 
{Ifnl>n13 

That (VIII) now can be fulfilled is contained in Lemma 2. The pos- 
sibility of (IX) will be proved at the end. We now put g, = t &fn), 
h, = fn - g, , 01, = %,(g,), and 5, = (g, - 4, where K-d*) = 
E(- / fi a** fnpl). We now prove that 

(1) JL-1(5n2) e 4c, (cf.(m) 

(2) 

and 

(3) 

k-5 n-l C tk2 = 0 a.e. (cf.(V)) 
k=l 

0 a.e. 

Then by Lemma 6 and Theorem 2, the proof of Theorem 1 will be 
complete. 
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As regards (l), we use 

5n2 -G 2(gn2 + G2), 

whence 

Kz-,(5n’) < 2JL1kn2) + 2Ll(%L2) 

< 4c 

by VII and the fact that 01,~ = (E,-,g,,)2 < En-,gn2 < C. For (2) 
and (3), we note first that by (IX), 

SC 
n-lj2 1 En-,(h,)j dP < 1 n-1/2 

s 
1 h, 1 dP 

whence C n-li2 1 En-,(h,)/ < 00 a.e. This gives from the definition of 
(Y, and condition (VIII) that 

which implies via Kronecker’s lemma that 

]im n-l/2 n n+35 bl I ak I = 0 a.e. 

so 

since 

Also 

k+rnn 72-l C alc2 = 0 a.e. 
!+ != l  

n n 

c ak2 < PI2 zl I 01, j a.e. 
k=l 

n 

n-1 c gkak 

k=l 

1 < (n-1 i gk2)1’2 . (n-1 i ak2)1’2 
li=l k=l 

---f 0 a.e. 
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since 

lim n-l i gk2 = i+y n-l f fk2 = ~9 a.e. 
11’c-z 

k=l k=l 

by (IV) and (V). Finally, fk2 = glc2 + ak2 - 2gp,,. gives (2). For (3), 
we note that 

1 ‘-l” il (fk - 51,) 1 = 1 np”2 f. (fk - gk + ak) / 
k=l 

because 

< n-l/2 i h, 1 + I n-l/z c elk I - o a.e. 
I;=1 k-=1 

il n-lj2 j- I h, 1 dP < co by (IX). 

We now come to the justification of (IX). For this the following lemma 
is sufficient: 

LEMMA. Let sup{ilfl12:f~F} = M < co. Then we can choose a 
subsequence F, such that for any subsequence {fn} of F, , (IX) holds. 

The proof of this is similar to that of Lemma 1 in my paper “A general 
strong law,” Invent. Muth. 9, 235-245 (1970) and so I shall be brief. 
Choose F, = {fn} to be such that 

lim P(j < Ifn I < (j + 1)) = aj n-r 

exists for j = 0, 1, 2 ,..., and so that 

qj < I fn I < (j + 1)) < ai + 2-j 

for 0 <j < n. Then Cj2aj < M, Caj < 1. Also 

1 (,r n ,>nl,s) ’ fn I dp G jcg,2, (% + 2-‘)(j + l) + &,,..) lfn. I dp 

= c, + b, . 
But 

b, e II fn !I2 @‘(I fn I > W2 

< llfn iii/n = M/n. 



SO 

Also, 
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C n-llzb, < co. 

WC, 6 g (j + l)(czj + 2-j) i n-‘i’L 
u=1 

< D .I (j + l)'("j $ 2-j) 

(60 

(where D is a positive constant). 
This completes the proof of the Lemma since any subsequence of 

(f,} will also satisfy the conditions imposed on {f,} itself. 
The proof of Theorem 1 is herewith complete, 


