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Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

Condition (VIII) of the paper can only be satisfied in general if we
replace t.z(-) there by t,;5(-). This vitiates the rest of the proof
which has to be completed as follows.

We shall choose a subsequence F,, such that any subsequence {f,}
of F, besides satisfying (I)-(VII) fulfills the following also:

(VIII) VE(falf1oes Sl < 277

and

(IX) }% -l - f |f.|dP < .
n-l {17,1>n1/2)

That (VIII) now can be fulfilled is contained in Lemma 2. The pos-
sibility of (IX) will be proved at the end. We now put g, = £,:(f,),
hy = fo — &n> o = E,_4(g,), and &n = (&n — O‘n)’ where E,_,(*) =
E(- | f, *** fu_1).- We now prove that

(1 E, 4(£:7) < 4C, (cf(VID)

@) lim 7% ;:il £2=0 ae (cf(V)
and

3) lim gn'1/2 él fo—ni2 gl £l =0 ae

Then by Lemma 6 and Theorem 2, the proof of Theorem 1 will be

complete.
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As regards (1), we use

whence
En—l(gnz) + 2En71(an2)

E, (6.7 <2
< 4c

by VII and the fact that «,?> = (E,_,g,)* < E,_,£,2 < C. For (2)
and (3), we note first that by (IX),
[ S w2 Bus(ha)i aP < Y w2 [ |y | P

<)y nli | ful dP < o0,

{1£,1>01/%)

whence Y. n1/2 | E,_(h,)] < oo a.e. This gives from the definition of
o, and condition (VIII) that

Y o | <

which implies via Kronecker’s lemma that

n
lim n—1/2 —
lim 7 Y 1o =0 ae.
k=1
So
n
lim -1 2
lim 7 Y x2=0 ae.
k=1
since
n n
Y o2 <L CL2 Y o, | ae
k=1 k=1
Also
n n 1/2 n 1/2
’n—1 S g | < (n—l Y gkz) . (n——l ) akz)
k=1 k=1 k=1

— (0 a.e.
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since

llmnlzg *llmn‘IZf,f—H a.e.

n-ro0 1 1

by (IV) and (V). Finally, &2 = g2 4+ o> — 2g,4. gives (2). For (3),

we note that

Y (fo— &) = 12 Y (f— g+ )
k=1 k=1

n

w12 Y

k=1

—0 a.e.

<|wre ¥ |+
k=1

because

0

Y ol f |h,|dP < oo by (IX).

We now come to the justification of (IX). For this the following lemma
is sufficient:

LemMa. Let supf|fly: feF} = M < oo. Then we can choose a
subsequence F, such that for any subsequence {f,} of Fy, (1X) holds.

The proof of this is similar to that of Lemma 1 in my paper “A general
strong law,” Invent. Math. 9, 235-245 (1970) and so I shall be brief.
Choose Fy, = {f,} to be such that

lm PG < |fal < (G + 1) = 4
exists for j = 0, 1, 2,..., and so that

Pl<lful <G+ D) <a+27
for 0 <j < n Then Y j2a; < M, Y a; < 1. Also

) uldP< Y (@20 + D+ [ faldp

{F,1>n1/2 =1l {17 >n}
=c¢, + b, .
But
b < | fulle{P(1fn | > m)}t/2
<



PRINCIPLE OF SUBSEQUENCES IN PROBABILITY THEORY 269

So
Y, n74%, < oo,
Also,

Y
2

e, < Y (j+ Vg +27) Y abi
=1

n=1

P18

n=1

i

< DY (j+ 1P (@ +27)
<
{where D is a positive constant).
This completes the proof of the Lemma since any subsequence of

{f.} will also satisfy the conditions imposed on {f,} itself.
The proof of Theorem 1 is herewith complete.
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