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1. INTRODUCTION

In this paper we consider the mixed boundary-initial value problem for the
partial differential equation

Bgp == Uy + o(ity)y , xe(0, 1)ze[0, T, (L.1)
with initial conditions

u(x, 0) = uy(x), xe(0, 1), (L.2)

(%, 0) = 1y(x), xe(0, 1), (1.3)
and boundary conditions either

0, 1) = u(1, 1) =0, tel0, T, (1.4)
or o(u 0, 1)) = u(l, 1) =0, tef0, T]. (L.5)

This problem arises when one considers the purely longitudinal motion of a
homogeneous bar which, in its original stress-free state, is of uniform cross-
section and unit length. The displacement of a cross-section of the bar at time
t is given by u(x, £). 'Thus condition (1.4) corresponds to the case when both
ends of the bar are fixed, while condition (1.5) corresponds to the case when
one end is stress-free.

If T(x, #) denotes the stress on a cross-section of the bar at time ¢, then the
equation of motion takes the form

pottss = T, xe(0,1)1€[0, T] (1.6)

where p, is the density of the bar in its original configuration. We obtain
equation (1.1) from (1.6) by making the constitutive assumption

T(x, £) = Auyy(x, 1) + o(u,(x, 1)), A>0 (1.7
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and then setting p, = A = 1. That is, we are assuming that the bar is composed
of a visco-elastic material of the rate type. This is the simplest model of a
material whose stress depends on the history of the motion.

The addition of the visco-elastic term u,, in the constitutive assumption
makes the problem more tractable than the equation of one-dimensional non-
linear elasticity

wy = o(Uy)y - (1.8

It is well-known that, even for smooth initial data, global smooth solutions to
(1.8) do not, in general, exist, as some second derivative of the solution may
become infinite in a finite time (see MacCamy and Mizel [12]).

Equation (I.1), together with (1.2), (1.3) and (1.4), was first treated by
Greenberg, MacCamy and Mizel ([10]). They assumed that the function ¢ was
monotonic, i.e.

o'(§) >0 for all e R (1.9
and that the initial data was smooth, specifically
uy = CH[0 1]), u, € C¥([0, 1}).

Under these assumptions they were able to show the existence of a unique
smooth solution which decays to the zero solution as f— cc. (See also
Greenberg [8] and Greenberg and MacCamy [9].)

Dafermos [6] treated the somewhat more general problem in which T =
o(u, , #,,). He made the hypotheses

ap,q) = K >0 forall p,ge# (1.10)
Lop(p, 9) | < N(op, )}  for some N > 0. (I.1H

Then, taking initial data #, and u;, in C>={[0, 1]), he was able to prove the
existence of a unique global smooth solution. In the case when the viscoelastic
term is linear, that is when the stress is given by (1.7), condition (1.11) can be
replaced by the weaker condition o,(p, ¢) = — IV for some N > 0. Note that
Dafermos made no monotonicity assumption, analogous te (1.9), concerning
the elastic part of the stress. As he points out, this makes the problem of
asymptotic behaviour rather more interesting.

A different approach to equation (1.1) was initiated by Tsutsum: [14]. He
used the Galerkin method to obtain a global “weak’ solution in the Sobolev
space I771-7(0, 1). As well as imposing a growth condition on o, it is essential
for his method of proof to impose the monotonicity assumption (1.9). Un-
fortunately Tsutsumi’s proof runs into technical problems; he asserts that if
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a Banach space V" can be compactly imbedded into a Banach space W, then
L*((0, T); V) can be compactly imbedded into L3((0, T'); W); this is not true,
as the example I = W = Z shows. These problems can, however, be overcome;
see, for example, the methods used by Clements [5] when considering periodic
solutions of (1.1).

In this paper we separate the problems of local and global existence of
solutions to (1.1). First we prove the local existence of weak solutions, in a
sense to be made more precise in section 2, under a mild hypothesis on ¢ and,
in particular, without imposing a monotonicity condition. Then we see what
additional hypotheses are sufficient to prove global existence. This approach
makes clear the purpose of each restriction on the function ¢. The existence
theorem gives a weak solution in the Sobolev space W2-<(0, 1); it is hoped that
this will be a good space in which to tackle the problem of the asymptotic
behaviour of solutions to equation (I.1) when o is not montone.

A full statement of the results, along with some definitions and remarks on
notation, is given in section 2. After some lemnmas on the Green’s function of
the heat equation in section 3, we prove the main local existence theorem in
section 4. This theorem is proved with the help of a fixed point theorem due to
Krasnosel’skii (see Proposition 2.2). It does not seem to be possible to use
instead the contraction mapping principle or Schauder’s fixed point theorem.
The proofs of the results in sections 3 and 4 will be given for the case when
the boundary conditions are given by (1.4), but we will remark on the changes
which are needed when the boundary conditions are given by (1.5).

In section 5 we discuss the problem of global existence of solutions. Under
quite mild conditions on o, which do not imply monotonicity, we are able to
prove the existence of a global weak solution in the space W1-=(0, 1). When the
boundary conditions are given by (1.5) we assume that o(z)z > 0 whenever
| 2| = A, for some £ > 0. When the boundary conditions are given by (1.4)
we have to impose the stronger hypothesis that (6(2,) — o(25))(2;—2;) > 0
for all |2y — 2, > & These global existence results are proved by using a
priori estimates obtained from a maximum principle for the function g(x, ¥)
given by:

q(x, t) = fwut(z, 1) dz — uy(x, t), tel0, T], x[0, 1},
0
for the boundary condition (1.5), or by
a(e, 1) = | "z, 1) dr — u(x, 1) + ugxg, 1)y £e[0, T, x, x4 [0, 1],

Lo

for the boundary condition (1.4). Note that ¢ 1s not a locally defined function;
it was demonstrated by Chueh, Conley and Smoller (see [4]) that there is no
locally defined function which will give the required bounds on the solution.
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2. STATEMENT OF RESULTS

We denote the norm of the space L#(0, 1), 1 <{p <C o, by || - ||, . The Sobolev
space W20, 1), m=1, 2, 3,...,1 < p <{ o0, consists of those functions #
belonging to LP(0, 1) with weak derivatives d’u/dx’, j < m, also belonging to
L#(0, 1). ™20, 1) is a Banach space under the norm

e = e -

2.1)

By Sobolev’s imbedding theorem all elements of W1-#(0, 1) are continuous
functions on [0, 1]. Also all elements of W-2(0, 1) for which %(0) = 0 andjor
#(1) = 0 satisfy

du
, . 2
lul, < Sup [u(x)] < ” T }!p (2.2)
Define

W0, 1) = {ue (0, 1) : «(0) = u(1) = 0}

Inequality (2.2) shows that [| du/dx ||, forms an equivalent norm for the Banach
subspace Wy*?(0, 1) of W-2(0, 1). For a sequence {u,} in L=(0, 1), u,, converges
weaksk in L=(0, 1) to u, which we write as u, —* u in L=(0, 1), if and only if

[ al) $() d [ ulw) o) d,  for every $eLi0, 1).

For a sequence {v,} in W%=(0, 1) we define weaksx convergence as follows:
v, =% v in W-2(0, 1) if and only if v, —* v in L=(0, 1) and dv,/dx —* dv/dx in
L={0, 1).

Later on we will make use of the following result.

ProrposiTion 2.1.  Let {u,} be a bounded sequence in #1:=(0, 1). Then there
exists a subsequence {u,} and a function we W%=(0, 1) such that #, —* w in

wr=(0, 1).

Let G(, v, t) be the Green’s function for the heat equation on (0, 1) X (0, o)
with zero Dirichlet boundary data. Suppose, for the moment, that #, and
are smooth and that u(x, #) is a smooth solution to the problem (1.1) — (1.4).
Then

0 0%
(G — ) w0 = ol

Applying the inverse of the heat operator to both sides of this equation we obtain

1 i a1
uMQ=L%MMmM@+LLQMW—ﬂWMWM@%
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so that

i sl
1) = wol) + [ [ Glw 3, 9 () dy ds

- f: JOS J:)l Gyx,y, s — 1) o(u,(y, 7)) dy dr ds. (2.3}

Thus any smooth solution of the mixed boundary-initial value problem
(1.1) — (1.4) is also a solution to the integral equation (2.3). Our main local
existence theorem states that, under certain hypotheses, there exists a unique
solution u(x, ¢) to equation (2.3) for a sufficiently small time interval [0, T'].
We will lock for a solution to equation (2.3) in the space X(7") defined by

X(T) = ([0, TT; Wy™(0, 1)
This is a Banach space under the norm

H u HX(T) = sup {” u(" t)”l,oo}
telo. 7]

or equivalently, using (2.2)
l#llxay = sup {{| (s o} (2-4)
tefo, 7]

Our hypotheses on u, , #; and o are as follows:
(H1) The initial data u, and %, satisfy u, € Wg=(0, 1), u, € W30, 1).
(H2) The function ¢ : # — Z is locally Lipschitz continuous, that is, for
each bounded subset 4 of # there exists a constant «(4) with
| o(z)) — ofzs) | <o) |2y — 25|, forall =y, 2, 4.
TrEOREM 1. Under hypotheses (H1) and (H2) there exists a unique solution
ue X(T) to the integral equation (2.3) provided T > 0 is sufficiently small.
The proof of Theorem I depends on the following fixed point theorem due
to Krasnosel’skii (see [11] page 143).
ProposiTiON 2.2. LetA be a closed, bounded, convex subset of a Banach space X.
Let T and S be operators defined on A with values in X and satisfying the conditions
(2) Tx - Sye .4 whenever x, ye A,

(b) Tis a contraction on 4, that is, there exists a constant £ <C 1 such that
I Tx — Ty <kllx—yl, forall wmyed,

(¢) S is continuous and compact.
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Then there is at least one point x* in 4 such that
Tx* + Sx* = x*.
This proposition was later shown to be a special case of the existence theorem
for k-set contractions.
In Lemma 4.5 we show that the solution # € X(T') to the integral equation (2.3}

is also a weak solution to the mixed boundary-initial value problem (1.1} — {1.4)
in the sense that u satisfies u(x, 0) = #,(x) and

at

.1 st a1
| J uy(x, s) b, 5) dx ds + J J Uys(%, 5) Pal, 5) div ds
o Yo 0 o
¢ o1
+ f o(uy(x, )) balx, 5) dx ds
0 Yo
o1 a1
= Jo (%) d(x, 0) dx — J ug(x, 1) b, 1) dx (2.6)
¢
for every ¢ in the set
{$: ¢ € C([0, T]; W50, 1)), ¢ € C([0, T]; Wy*(0, 1))}
Similar results on local existence hold when the boundary conditions are given
by (1.5) rather than (1.4).
In order to prove that the solution to (2.3) exists for all time we have to place

further restrictions on the function ¢. When the boundary conditions are given
by (L.5) that is

o(u, (0, 1)) = u(l, ) =0, [0, 7],
we can obtain global existence by assuming that;

(H3) there exists a constant £ > 0 such that
o(2)z >0, for all 'z =h

TreorREM II.  Under hypotheses (H1), (H2) and (H3) there exists a unique
u € X(T') which satisfies the integral equation (2.3) and the boundary conditions
(1.5) for any T > 0. Moreover

H u(', t) “1,00 < C(” uO ”1,00 ’ “ ul ”1,2)’ fOI’ aH te [0, T]
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When the boundary conditions are given by (1.4), that is
u0,1) =u(l,8) =0, tel0, 17,
a somewhat stronger condition on ¢ is needed.

(H4) There exists a constant 2 > 0 such that
(o(21) — o(2))(2y — 25) >0 whenever |2y — 2| = h
Note that (H4) implies (H3).

TueoreM III.  Under hypotheses (H1), (H2) and (H4) there exists a unique
u € X(T) which satisfies the integral equation (2.3) and the boundary conditions (1.4),
Jor any T > 0. Moreover

(s, Do < Cl #o o [ 21 l10),  forall  2€[0, T

3. Tue GreeN’s FuncrioN For THE Linear Heatr Equation

In this section we prove several results which deal with the Green’s function
for the linear heat equation on (0, 1) X (0, o), that is,

Up = Upy s xe(O,l),t>0.
When the boundary conditions are
u(0,2) = u(l,t) =0, forall >0

the Green’s function is given explicitly by

1
G(x, y, t) = W

- —(x —y + 2n)? —(x +y+2n)°
X X exp ( 4 ) —exe ( 4 );
(3.1)
(see Friedman [7] p. 84). Throughout C will denote a positive constant.
LemmMa 3.1. For every feL=(0, 1),
1
|[ Guwm i ay| <crtifl., >0 ()

H f ' Grual, 3, 1) S(3) dy H < Ct*2|fllo, t>0. (3.3)
0 0
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Proof. Using Hoélder’s inequality
g quality

[ Gutn070) | < [ 16t 05001 a0

< (f: | Cualet, 9, O ) lifle - (34)
From (3.1) we have that
Gl 3, 1) — m;—— i o exp (== 207
+ '21? exp ( — +4‘; + ) )
- ‘«th 28 exp ( —( S 2n)? )
~_@+i:bﬁem(—w+i+ny»

For # > 0 this series is uniformly convergent in x and y, so we may integrate
term by term. Now,

J-l 7t11/2 exp ( ——(V —y -+ 2n)2 ) dy < f(x+2n)/'2t1:’2 o dy
0 « / ¢

4 w21} j21/%
Hence,
w0 1 oy 1 ___(x,_y + 271)2
D e R T e K
<o F eV dy < Ct1
S A Y = .
Similarly
s L 1 by
n:z:—ac (47Tt)1'l2 0 Et—eXp( 4t )dy Xz Ci L,
Also,
Lo d (x —y + 2np? —(x — y + 2n)? ]
[JERTETEINNEE N
(x+2m) /2642 )
< Vi v dy

(g+-2n-1) /212

o L r—y42mP o —(x—y+2mP
W2 () J i exp 4 )&

1 @, ,
< | vevdr <o
L S
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Similarly,
- 1 x4y 2n) —(x +y + 2n)* -
X Ty ), e a1 )& <o
Hence,
rl
| 1G5, 1 dy < €t (3:5)
0

Thus (3.4) and (3.5) give the required result.
In order to prove inequality (3.3) we note that

1 2 (—=3x—y-+ 24 —(x—y L 2n)2
G 3, 1) = G 3 =3 - )exp( ( A ))

St

3(x 4y -+ 2n) (x + y + 2n)?

T 4 % (— T)
(x —y+2np (® —y + 2np

- 87 exp (— 4z )
(x +y+2np (* +y -+ 2n)?

+ 88 P (— 4t ) g

For ¢ > 0 this series is uniformly convergent in x and ¥, so that we may integrate
term by term to obtain

1 o G
[16umn iy <cor [ 1y1era+ [ 1ypes a]
0 - 0
< C13/2
and by Holder’s inequality we arrive at inequality (3.3).

Lemma 3.2, For every fe L=(0, 1)

| % (f: f: G, 3,1 — 9 () dy ds)| < Clfl, 130, (36)

Proof. Consider the heat equation on (0, 1) X (0, 00) with zero Neumann
boundary data, i.e.

Uy = Upz X € (O’ 1), t>0 (37)

2,0, 1) = v,(1, 1) =0, t>0 (3.8)

o(x, 0) = f(x), xe (0, 1). (3.9)
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Let H(x, y,t) be the Green’s function for the above boundary-initial vatue
problem, so that the solution #(x, f) is given by

o(x, 1) = fo ! H(x, v, 1) (3) dy. (3.10)

For any ¢ > 0, o(x, t) is infinitely differentiable with respect to x in (0, 1) and

d"n£7
o (5 1) = f e B 505 a (3.11)
It can easily be shown that G (%, y, t) = — H,(x, y, t), so that

fol Gyx, 3, t —9) f(y) dy = “f: Hy(x, 3, 1 — ) f(y) dy

= —v,(x, t — 5).

In a similar manner to Lemma 3.1 we can show that

o, Dl << Ct % fls , hence for almost all x (0, 1)
t—e pl t pl
ip [ Gt =90 d = [ [ Gyt = 95() dv
ri

= J (%, 1 — $) ds. (312)

¢

Using Lemma 3.1 we have that for e >0

0
dx

(f h ' G, 3, t — ) f(9) dy ds) = j:_s J: Goalts 3, t — 5) f(3) dy ds
= _ft_s 'vaca;(x, t S} ds
= [Tofm 1 -9 s

= o(x, €) — o(x, 1)

Thus for almost all x € (0, 1)

lim —(f f S5 3, £ — ) f(3) dy ds) = fx) — ol 1) (3.13)

0+ Ox
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Hence, by (3.12) and (3.13),

_gx— (J: fl Gy(s, 3, t =) f(9) dy ds) = f(x) — o(x, 1)

which immediately implies the result.

Lemma 3.3. For every feL>(0, 1)

1 A1
f G0, 3, 1) f(y) dy = jo G(l,y, ) f(y)dy =0, forall t>0. (3.14)
0

Proof. As in the proof of lemma 3.2, let o(x, t) denote the solution to the
heat equation on (0, 1) X (0, co) with zero Neumann boundary data and with

initial data f(x) and let H(x, y, t} denote the corresponding Green’s function.
Then

o(x, 1) = fol H(x, v, ) f(y) dy

and since G,(x, y, t) = — H,(x, y, t) we have that

ol ) = [ Hulo 3, 0 f0) dy = = Gylos3,1)(5) .

But v,(0,1) = 2,(1,t) =0 for ¢ >0, and the result follows.

4. Tue PrROOF OF THEOREM 1

For positive constants R and K we define two subsets A(R, K) and B(R, K)
of the Banach space X(T') as follows;

AR K)={ueX(T):llulym <R, |uty) —wlt)lhe <Kty =t |7
forall #,%¢c[0,T]} 4.1)

where £ <y << ¥,

B(R, K) = {uc A(R, K) : tes[lgr;]{ll (s Dlla, o} < R} (4.2)

Clearly A(R, K) is a closed, bounded and convex subset of X(T). Define
mappings %, 4 and % on the set A(R, K) by

(Fu)x, 1) = — fo ‘ fo ’ fo "Gy 3,5 — 1) o(w,(y, 7)) dy dr ds — B(x, t) (4.3)
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wwmo=~j]if@m%s—ﬂw%wn»—dwmn»@wa
) (4.4)
(Cw)(x, t) = —j;) J; J:) Gy(x, y, s — 7) alwy(y, 5)) dy dr ds +- D(x, 1) (4.5)

B, 1) = ue) + [ [ Glo 3. 9) m(y) dy . (4.6)

so that Fw = %w -+ Fw. For clarity we divide the proof of Theorem I into
a number of lemmas whose aim is to show that ¢ and % satisfy the hypotheses
of Proposition 2.2, which will imply that & has a fixed point.

Lemma 4.1, Under hypotheses (H1) and (H2) we can choose R > 0 and K > 6
such that, for a sufficiently small T >0, Yw, + Fw,c AR, K) for all w,,
2, € A(R, K).

Proof. Let w; , w,€ A(R, K) and let 7, s € [0, T]. Then, using (H2) and the
definition of 4A(R, K)

| o(zo4(x, 7)) — o(wye(®, 5)) | < (R) | wr(x, 7) — wie(, 5) |
for almost all x [0, 1]. So, by the Holder continuity of functions in A(R, K),
[ oz, 7)) — o(we(x, ) | < Ko R) | 75 [ (4.7}

for almost all x € [0, 1] and for all 7, s € [0, T].
Now, the expression

f@m%hwwwmm~mm%w@

»

is differentiable with respect to x and its derivative is
i
| Guts s = o(wnly, 7) — oy, )} dy
Also, for almost all x [0, 1], using Lemma 3.1,

| [ Guntos 35 = Moty 7) — o3, N}

K Cls— 7 o{wy(y, 7)) — o(wily, Y[
LCls—7["YK(R) |7 — s|¥) (4.8}
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Hence by the theorem on differentiation of an integral

)
== [ ]} Guslor 315 = (3, ) — olans(3, ) dy dr s
and
“ 38 @y, ) U f CKo(R) | s — = |1 dr ds
< CKoR) £+,
| S ey < CRoAR)TH. 49)

For the mapping € we use Lemma 3.2 to obtain

| men | <[5 ([ 6 s — o) otwntn o) dy av)]|as
+ ” D, t)lly,
< [l ool Mo s+ 20 D (4.10)
Also,
sy oL
19, Do <Nty + [ | [ Gulos 3,9 i) dy | s
Now G (x,y,5) = — Hy(x,, s), where H is given by (3.10). Therefore on
integrating by parts, using the fact that #%(0) = u,(1) =0,
190, O <l + [ | [ He3 0 G 0) | o
<lmlyo+ [ ([ 152,90 dy) "t e
< ttglleo + CT3 [ uy g5 - (4.11)
Hence, from (4.10) and (4.11)
[ Gz llxy < CAAR)T + [ #hg [l1,0 + CT** |t [l (4.12)

and from (4.9) and (4.12) we deduce that for all =, , w, € A(R, K)

| o, + Cw, |lxiry <l G lxay + | € llxay

S CRoAR)T? + CAR)T + [ty |ly,o0 + CT3R [ty [0 (4-13)
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Now choose R so that [ ul; » <X R/2. Then by choosing T sufficiently small
we have that

| Fw, + Cws|lyy <R for all w, , w, € A(R, K). (4.14)

Next we show that Yw; - €w, satisfies the Holder condition with respect to ¢
whenever w, , wo € A(R, K). Let ¢, £, [0, T with #; > ,.

A 0%
“ o w5 ) — e wy(*, 25)

R

< [ 1L Gt s = otomlon ) — oot 0 ol a

and using Lemma 3.1 and inequality (4.7) we obtain

I 0% 0%
“ e wy(*, £;) — wr wy(*, )

i lieo

S CRuR)T | t; — t, 1. (4.15)

Also, by the same method as was used to obtain inequality (4.12) it follows that

1

! ot
“ e wy(*y 1) — v wa(*, ty)

S CT'R) [ £ — 1|7

.

+ CT3 7 [t — Y |y [y (4.16)

Now choose K so that C(a{(R)T* 4 || 4y |l 5) T3 < K/2, and then choose ¥
sufficiently small that Co(R)T < §. Inequalities (4.15) and (4.16) now imply
that Pw, -+ Fw, satisfies the required continuity condition in ¢, that is

| Gw,(o, t1) + Cws(, 1) — Gaoy(, 1) — Cwp(, ) o <K |8 — £, ¥

for all w; , w, € A(R, K).

Finally we show that %w(x, t) and €w(x, t) satisfy the boundary conditions
for any we A(R, K). For any te[0, T'], o(w,(, £)) eL>(0, 1), so we can use
Lemma 3.3 which immediately implies that Fw(0, {) = Fw(l, t) =0 for all
1[0, T']. Since #y(0) = uy(1) = 0 we have that @(0, 1) = @(1,2) = 0 for all
te [0, T] and Lemma 3.3 implies that Fw(0, £) = u(l, 1) = 0.

Lemma 4.2.  The set B(R, K), given by (4.2}, is a pre-compact subset of X(T')
for any choice of positive constants R, K and T.

Proof. By Sobolev’s imbedding theorem W?2<(0,1) can be compactly
imbedded into W%=(0, 1). For any we B(R, K) and 1[0, T] w(-, #) lies in a
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bounded subset of #2=(0, 1) and hence in the compact subset {w € W1>=(0, 1):
20 lls,0 << R} of W1=(0, 1). Also any w € B(R, K) satisfies

law(,t) —w( ) he <Ky~ <y<i

and hence B(R, K) is an equi-continuous family of functions in X(7'). By the
infinite~dimensional version of the Ascoli-Arzela theorem (see Yosida [15] p. 85),
B(R, K) is a pre-compact subset of X(T').

Levma 4.3. % as a map from AR, K) into X(T) is compact and continuous,
provided that T is sufficiently small.

Proof. To prove that % is a compact map it is sufficient to show that
Yw e B(R, K) whenever w € A(R, K).

29
| =t 0]

t s
<[]
0 Y0

Now use inequality (3.3) of Lemma 3.1

J: Guaal®, 3, 5 — T{o(wy(y, 7)) — o(w(y, $))} dy “w dr ds.

0*g

Ox?

w0 <[ [ s r oty ) - otmlr, o dr s

t ps

<cj f |s — 7|32 Ka(R) | s — 7 |7 dr ds
0 Yo

< CKo(R) T+,

Combining this with inequality (4.9) we see that
| G2l 1) [lo,e0 < CRARYTE - T¥HL).

Hence, provided T is sufficiently small
sup {H gw(’ t)”2,oc} < R
telo. 11

so that Yw € B(R, K) whenever w € A(R, K).
To prove that ¢ is continuous, let {z,} be a sequence in A(R, K) with w, — @
in X(T'), so that w € A(R, K). Then
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I (-, t) — Gw,(-, )l

Gy(x, v, s — mH{o(w, (¥, 7))
= owy(y, ) — ofag, (3, 7)) + ol (3, N} dy| _dr ds
t ps ”
<[ [ 1s—r 2oy, ) — oy, )
- U(wn,,(y » 7))+ O'(wnv(y s Nlleo dr ds
< CTPPu(R) | @ — wy Iz -
Hence,

sup {|| Fu(-, 1) — Gw,(:, Do} < CT3?R) | w — w, lixcr)
telo 7]

so that w,, — Fw in C([0, T]; L=(0, 1)).

Now, for sufficiently small T, % is a compact map on A(R, X), so there exists
a subsequence {Fw,} of {Fw,} which converges in X(T'). Thus there exists
£e C([0, TT; L=(0, 1)) such that

oY
w

S ¢  in ([0, T1; L, 1)).

But since we A(R, K), Gwe A(R, K) for T sufficiently small. Therefore
£ = 0%w|0x and hence ¥ is continuous on A(R, K). This completes the proof
of the lemma,

LevMa 4.4. The map € is a contraction on A(R, K), provided that T is
sufficiently small.

Proof. Let w, , w, e A(R, K) then,

d(i wy(+, t) — wz( 1) U

ds

gf: ” —gx_ (J: f: Gyx, 3, s — tHo(wi(y, 8)) — olws(y, 5)} dy 071').:c

and by Lemma 3.2 we obtain

| ws ) — e ma )| <€ [ ol ) = olwnln Dl &

i
< CoR) f [ 20("y 8) — 23", )10 ds-
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Hence,
| €y — Cws [[xary < CAR)T || oy — 205 [|x(r)

and choosing 7" > 0 so that Ca(R)T <{ § we see that ¥ is a contraction map
on A(R, K).

By Lemmas 4.1 to 4.4 we have verified all the hypotheses of the fixed point
theorem given in Proposition 2.2 for the mappings % and % on the subset
A(R, K) of the Banach space X(7'). Thus the map & = € -+ ¥ has at least
one fixed point # € A(R, K) which satisfies

u(x, 1) = uy(x) + J: J: G(x, v, 5) uy(y) dy ds

% s pl
— fo fo fo Gy(x, v, s — 7) o(u,(y, 7)) dy dr ds,

whenever u, € Wy=(0, 1), u; € W30, 1) and o satisfies (H2).

Remark. Although initially u,(-, 0) = #() € Wi*(0, 1), for any 7>0
u-, t) e We™(0, 1) since

1 At pl
u(s, ) = [ G,y Du(y)dy — [ [ Gy, 3, t— 1) olu(y, 7)) dy dr
0 00
and therefore

s Dhee < [ Gt 1) (9) |

[ G 30— ) ot ) dy e

1,%

< Oy il , + CKa(R) t* + C(R).

Remark. It does not seem to be possible to work in the space W1-2(0, 1)
with 1 << p << o in place of W12(0, 1) and still use the method of Theorem I,
except in a very special case which we remark on below. For example, we might
take u,e W0, 1), assume that |o(2) | << C|z[?! and try to prove the
existence of a solution u € C([0, T]; Wg*(0,1)). However when u(-, t) € Wy'%(0,1),
o(ty(-, t)) € LP/?-1)(0, 1), and for every s >0

8 nl
[ [ Guler, 3 s = 7) olwv(y, 7)) dy dr € W12, 1),
o Y0

but is not in the space WW1-#(0, 1), so our method breaks down. This is because
for the equation

vy(%, 1) = Uy(20, ) + f(%, 1)
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f(,t)eL¥0, 1) implies that o(, ) € W2(0, 1). So for
Ugl(%, 1) = Uygy(, 1) + o(uy X, 1)),
o(u,(, 1)) e L2[2=1(0, 1) will give u(-, £) € WL-2/(>-1)((), 1} instead of W-2(0, 1).

Remark. We can obtain slightly different results by making the stronger
assumption that ¢ is uniformly Lipschitz continuous, that is, there exists a
constant « such that

io(z) — o) | S|z — 2, forallz,, 2, € 4. 4.17)
If ¢ is everywhere differentiable (4.17) implies that

[o'(z) | < o forallze 4.

Now, by taking initial data #,, %, € W3*(0, 1), we can prove that there exists
a solution u € C([0, T]; W3'¥0, 1)) to the integral equation (2.3) for any T' > 0.
The method used is similar to that of Theorem I except that we can now work
in the space W0, 1) in place of =0, 1). The reason that this case is an
exception to the previous remark is that (-, z)e F2-%(0, 1) implies that
o(m-, £)) € LX(0, 1) and for every s 2> 0

8 1
[ Gutw, 9, 5 — =) oy, 1) dy dr e W0, 1)
0 Y0

as required.

Note also that we automatically obtain global existence when o satisfies (4.17).
This hypothesis is, however, too restrictive to be considered as a model for a
viscoelastic material.

All that remains in Theorem I is to prove that the solution is unique. To do
this we first show that any solution to the integral equation is also a “‘weak”
solution to the partial differential equation.

Lemma 4.5. Let ue C([0, T); Wy=(0,1)) be a sobaion ifo the integral
equation (2.3). Then u also satisfies u(-, 0y = u, and

—J:: J: us(%, ) Pal%, ) div ds + J: jol Uy (%, 5) olx, $) dx ds
+ J: J: G(”m(x’ $)) dafx, s) dx ds

- f " () $(x, 0) dv — f S, 1) Bl 1) dx (4.18)
1} 0
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for every ¢ in the set
{6 : ¢ € C(I0, T}, W50, 1)), ¢4 € C([0, TT; WO, 1))}

Proof.  First assume that ¢(x, 1) is smooth. Now
1 T sl
uy(x, £) == j G(x, v, ©) uy(y) dy — J' f Gy, y, t — 1) o(u,(y, 7)) dy dr.
0 0 Yo
Multiplying by ¢, and integrating over (0, 1) X (0, ¢) we obtain
t a1l
[ f u(x, s) by(x, 5) dx ds
Yo Yo
t pl 1
= [ [ s 9 ([ G2, 9 uln) dy) dw as
o Yo o
t el s pl
— [ [ e ([ [ Gulon 3 s — ) olnly, 7)) dy dr) d ds. (419)
o 7o o Yo
Also
1
s, ) = [ Gl 3, 1) (y) dy
& 't el
~ % (fo fo Gz, v, t — 7) o{u,(y, 7)) dy d’r).
Multiplying by ¢, and integrating over (0, 1) % (0, t) we obtain
b pd
i f Uy %, §) b, 5) dx ds
Yo Jo
= [ [ 09 ([ Gatrs 3 9 () ) i s
(Ut} [

+ f: j: basl, 1) ( L s fo ! G %, v, s — 7) a(u, (v, 7)) dy d,,.) de ds.
(4.20)

Now subtract (4.19) from (4.20), interchange the order of integration in the
integrals on the r.h.s. of the resulting equation, integrate by parts and use the
properties of the Green’s function G(x, v, #).In this way we obtain equation{(4.18)
for all smooth functions ¢. We can then pass to the limit to obtain the full result.

We now prove that solutions to the integral equation are unique. In fact
we prove the following stronger result which gives the extent to which the
solution depends continuously on the initial data.
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ProposITION 4.6. Let {u{™(x)} be a sequence in Wy=(0, 1) and let {u{")(x)} be
a sequence in W;*(0, 1) such that
w” > uy  in WE0,1) and @™ X uyin WRS(0, 1)

ul(") — in W¥¥0, 1).

Let u™(x, £) be the solution to the integral equation (2.3) with initial data
#{™ and #{"’ and let u(x, £) be the solution with initial data 4, and #u, . Then
there exists 7' > 0 such that every solution % exists on [0, 7] and there exists

R > 0 such that

sup {{| #™(, D)l.of <R for every . (4.21)
telo,T]

Moreover for any ¢ [0, T'], as n — 0

w8 > u(, 1) in W0, 1) (4.22)

WP, ) (1) in WO, 1) (4.23)

w(, 1)y —=uf- 1) in W0, 1) (4.24)
and fort >0

wP(, ) B, 1) in WHR0, 1) (4.25)

Proof. Since the sequence {#{™} converges weak x in W=(0, 1) and {u{™}

converges in W0, 1) we can find a constant R > 0, independent of # such that

(VMo < forall =

l\)\ b+

I ”in)(')Hl,-z <R for all =.

In the earlier part of the proof of Theorem I, the interval of existence [0, T] for
a solution was determined only by || #; |}, » and [| %, [l; . Thus we can choose
an interval [0, 7] depending only on R and therefore independent of # as
required. Moreover as Lemma 4.1 shows, on [0, T'] we have that

sup || #™(, )l <R forevery =
telo.7]

as required.
It remains to prove relations (4.22)-(4.25). Let w(x, ) = u™(x, £} — u(x, 7).
From Lemma 4.5 we have that
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[ [} w9 bt ) d s [ [ w9 gl o) dv s
ijWerww@mwmmww
= [ 0) 8, 0 dx — [ i, 1) o, 1) (4.26)

holds for every ¢ e C([0, T]; Wy'(0, 1)) for which &, C([0, T']; W30, 1)).
In particular (4.26) must hold when ¢ = ™), so that

— [ a1 o, 9 wle, 9 d de
f [ (o™, 5)) — o(ug(x, $))} w(x, 5) dx ds

_ J'l ")(10) w(n)(x) dx — Jd wgn)(x, ) w(n)(x, t) dx 4.27)

(n)

where @} )

— uo (n) __

— #yand (¥ = 4™ — u, . Now

) @ _lprd ot
f f Wae (%, §) Wy (%, §) dx ds = 2J;) 7 (J;} (%, 5)* dx)
1 R, 7.
= 21l O — Sl e (4.28)

Substituting (4.28) into (4.27), estimating the remaining terms and using
Gronwall’s inequality gives us that, as # — o0

w (-, £) — u(-, 1) is W0, 1) for any €0, 7.

Since, for t [0, T, || u™(-, 1) ;.. < R, we can use Proposition 2.1 to show that
there exists a subsequence {#!™)(+, #)} which converges weak= in W1.=(0, 1) to a
limit which must be u(-, #) as (-, #) converges strongly to u(-, t) in W10, 1).
This proves (4.23). The results for u,(x, t) follow from the above results.

CorOLLARY 4.7. There exists a unique solution u to the integral equation (2.3)
within the subset A(R, K) of X(T'). This completes the proof of Theorem I.

Remark. Theorem I remains true if the boundary conditions (1.4) are
replaced by (1.5). In this case we work in the Banach space;
X(T) = {u e C([0, T]; W-=(0, 1)) such that »(1, ) = O for all £ € [0, T]}.
We also assume that the initial conditions satisfy #, € W~(0, 1) with #y(1) =0
and #; € Wy*(0, 1). In the integral equation we replace G(x, ¥, ) by the Green’s
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function for the heat equation on (0, 1) x (0, o) together with the boundary
condition

u,(0,1) = u(l,t) =0 for all # > 0.

Since u,(x, t) is not necessarily continuous in ¥ we cannot say that the boundary
condition at x = 0 is satisfied in the usual sense. However it can be shown that
for any given ¢ > 0 there exists § > 0 such that for any ¢t € [0, T]

ess supf| u(x, 1) — o |} < e
zelo,s]

where « is a root of o(z) = 0, provided that %, satisfies the boundary condition
in the same way.

Remark. 'The method used in the proof of Theorem I can be adapted to
prove regularity results. For example, assume that u;, #, € W%2(0, 1) for some
p =1 and that uy(0) = #y(1) = #,(0) = u,(1) = 0. Then, by Theorem I there
exists a unique solution u € C([0, T]; W§™(0, 1)) to the integral equation (2.3),
where the size of T" depends only on || #,{; . and || #, |l; . To obtain smoother
solutions we also have to assume that o € CY{#) and that ¢ is locally Lipschitz,
we then have that u(-, t) € W20, 1) and u,(-, £) € W20, 1) for every t € [0, T'].

To prove this result we work in the space
Z(Ty={uecC(0, TT; W220,1)) : w0, £) = u(1l, 1) =0 forall £ [0, T]}
together with the norm
I lizey = sup ™[4, 2o, o}

where § > 0. The introduction of the factor ¢~ allows us to use the same
interval [0, 77 as occurs in the proof of Theorem I. (See Chu and Diaz [3]).
Similar results hold for higher ordar Sobolev spaces W=-2(0, 1} with m = 3.

5. GLoBAL EXISTENCE

Since we would not expect to obtain global existence for all possible choices
of o, we would like to find conditions on ¢ which are sufficient to give a priori
bounds on || #(*, £) |l and || (-, t)]l;.2, but which, hopefully, do not imply
that ¢ is monotone nor that o is uniformly Lipschitz continuous. Neither the
energy equation, (5.5.), nor an application of Gronwall’s Lemma to the integral
equation provide the required estimates. Instead we use, in Theorems 5.2 and
5.3 a maximum principle method which is similar to certain techniques in the
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theory of nonlinear parabolic equations (see Chueh, Conley and Smoller [4]).
Throughout this section we will assume, for convenience, that o € C¥%).
We deal with the two types of boundary condition separately. Firstly we

consider the case

o(u,(0, 1)) = u(l, ¢) =0, for all [0, 7. (5.1)
In Theorem 5.2 we will show that the hypothesis
(H3) there exists 2z > 0 such that

o(2)z >0, forall|z| =7

is sufficient to prove the existence of a bound on [[u(-, £) i o -
Secondly we condier the case

0,8y =u(l,t) =0, forallze[0, T]. (5.2)
In Theorem 5.3 we will show that the hypothesis
(H4) there exists £ > 0 such that
(o(z) — o(2y))(zy — 25) >0 whenever |2z, — 2| >4
is sufficient to prove the existence of a bound on || u(-, #) ||, in this case. Note
that (H4) implies (H3).
In the following lemma, which applies to both types of boundary condition,

we use the energy equation associated with the initial-boundary value problem
to obtain a priori estimates in L3(0, 1).

Lemma 5.1. Let u(x, t) be a C? solution on [0, T'] of
Uy = Ugye + 0(Uy)y, t€[0,T], 2€(0,1), (5.3)
together with the initial conditions
u(x, £) = uy(x), uy(x, 0) = uy(x), »¢(0, 1), (5.4)

and either of the boundary conditions (5.1) or (5.2). Then u(x, ¢) also satisfies
the energy equation

3l O+ [ Wt ) s + [ e 3 ds

— %Ii w (YR + fo ' w( ‘Z’;? (%)) dx (5.5)
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where
W) = [ o) de. (56)
If o satisfies hypothesis (H3), then
la, 6}l <L, forallze[0, 71, (5.7

where L depends only on || #; |l , || #; |l and .

Proof. First we note that smooth solutions to equation (5.3) exist on [0, 7]
by the remark on regularity made in section 4. Multiply equation (5.3) by
ux, t) and integrate over (0, 1).

1 1 a1
J. Uty dx == f Upeitls dX + J a(u,), u, dx
0 0 0

with either type of boundary condition we can integrate by parts to obtain

1(d e s [

===l l5) = —l e lls — ) Uy AX

5 (i wl8) = e [ o) wer da
d 1 =

— 3 2 Wiu,) de) = —| ths |5
g (w3 [ W) d) = e

and integrating over (0, ) immediately gives the energy equation {5.5). Now
we note that hypothesis (H3) implies that for some e %

Wiz) = ], forallze#

so, from the energy equation

Liul, 0 < 5hmOE+ [ W (G @) det T

which immediately gives inequality (5.7).

Remark. A solution u(x, t) to the integral equation (2.3) with initial data
u, € W=(0, 1) and u, € Wp*(0, 1) also satisfies the enrgy equation (5.5). This
can be proved by approximating #, and = by a series of smooth functions and
using Proposition 4.6.

THEOREM 5.2. Let u(x,t) be a C3 solution to equation (5.3) on [0, T'], with
initial condition (5.4) and boundary conditions

(1,0, £)) = u(l,t) =0, forall rel0, T1.

505/35/2-7
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If o satisfies hypothesis (H3), then
oy &) o < M, forall #e€[0, T (5.8)

where M depends only on [ #;l; « , || #, [ls and o.

Proof. Define a mapping ¢ from the space C¥([0, T'] x [0, 1]) into the space
C¥([0, T] x [0, 1]) by

g(w(x, ) = jl wi(z, t) dz — wyx, 1), for te[0, T),x<[0, 1]. (5.9}

Thus for a fixed function = and a fixed x € [0, 1], the function g(w(x, -)) maps
[0, T] into . In particular when u(x, #) is a2 smooth solution to equation (5.3}
then,

o (0t ) = [ (s, 1) ds — s, 1

= a3, 1) F o{alz, £)2} d3 — wl, 1)

= [u(z, £) + olu(z, Vs — el 7)
= o(uy(x, 1)) — {440, 7) + o(u,(0, 1)}

Hence, by the boundary condition at x = 0

2 (alutx, 1) = ofuls, D) (5.10)

By Lemma 5.1 there exists an M such that

sup (| [ wa, t)dz!)g%/{ forall ze[0,T]  (5.11)
xzelo,1] 0
and
sup_ | w(x, 0)) < o- (5.12)
zele,1] 3
so that
oM

su u(x, 0))] < =—.
sup [ gl O) <=3

* Assumning that the zeros of ¢ are isolated.
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We also assume that M/3 > &, where % is the constant appearing in {H3). Now
fix £ > 1. Suppose that for some x € [0, 1] there exists ¢ e [0, T'] such that

qlutz, ) > 2

Since the map ¢ — g{u(x, £)), for this fixed x € [0, 1], is continuously differenti-
able, the intermediate value theorem implies that there exists £* € (0, £) such
that

gz, 7)) = 21 (5.13)
g, 1) < g forall tel0, ]

oq

A (a1 > 0. (5.14)

Now (5.11) and (5.13) imply that u,(x, 1*) < — M/3, so, since we assumed
that M/[3 > A,

ufx, t*) < — k.
But by hypothesis (H3)
o(uy(x, 1%)) uy(x, t¥) > 0.

Hence o(u,(x, 1*)) < 0, which, by (5.10), implies that
oq "
v (u(x, %)) < O

which contradicts inequality (5.14).

If q(u(x, t)) << 2kM/3 for some te [0, T], we obtain a similar contradiction.

Hence,

2M
3

| gu(x, 1)) < forall tel0, T]. (5.13)
Therefore, from (5.11) and (5.15)

lufx, 8y} <M forall 2e[0, T]
That is, provided M is large enough to satisfy (5.11) and M/3 > A, then for

any x € [0, 1], | #(x, 0) | <X M/3 implies that | u,(x, 2) | < M for all 1[0, T].
Hence, if {4y, << M/3 then || u(-, )]l < M, as required.
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Next we deal with the Dirichlet boundary conditions (5.2). The method used
is similar to the proof of Theorem 5.2, but it needs certain modifications and

instead of (H3) we have to assume that o satisfies the stronger condition (H4).

TrHEOREM 5.3, Let u(w, t) be a C? solution fo equation (5.3) on [0, T] with
initial data (5.4) and boundary conditions

u(0,1) =u(l,t) =0  forall te[0, T}
If o satisfies hypothesis (H4), then
Nu(", ) heo <M  forall ze(0, T] (5.16)

where M depends only on || 4y |l . » || #, [l 2nd 0.

Proof. Using Lemma 5.1, let M be a constant such that

[t 1) dz|)<—];i forall ze[0, T] (5.17)

Zo

su (
:L'e[ol,)l]
and

M
= (5.18)

sup (| #,(x, 0)]) <
zelo,1]

We also assume that M/3 > & where £ is the constant appearing in hypothesis
(H4). Define the mapping g by

gl 1) = [ wilz, 1) ds — wyfa, 1) + wilxo , )

o

where x, is any point in [0, 1]. Then, when u(x, #) is a smooth solution to (5.3),

L Gt 1)) = o, 1) — el ). (519)

Also, by (5.17) and (5.18)

2M
sup | g(u(x, 0))] < ——. (5.20)
zelo,1]

Fix & > 1. Suppose that for some x € [0, 1] there exists # € [0, T'] such that

g(u(x, £)) > i}’ﬁ{_ .
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Then, by the intermediate value theorem, there exists 1* € [0, 7' such that

2&kM

glulx, %)) = —3 (5.21)
qlul(x, 1)) < Ek?’if— for all 1ef0, t*]
%3— (u(x, %)) = 0. (5:22)
Now (5.17) and (5.21) imply that
M
— %, t¥) + ugxy, 1¥) > -5 > h>0 (5.23)

so that, by hypothesis (H4)
[o(u(x, 1*)) — o(uy(xg , )] [sal, 1%) — ualag, )] >0
and hence by (5.19) and (5.23)

o
g

7 (qulx, %)) = olu(x, %)) — oluy(x, , 1%)) < 0

which contradicts (5.22).
If g(u(x, 1)) < — 2kM]/3 for some ¢ e [0, T] we obtain a similar contradiction.
Hence

| gu(x, )] gz_;vzr_ forall [0, T] (5.24)

which implies that
Va1 — w(x,, )| <M forall te[0, T). {3.25)
Now inequality {5.25) holds for any x, & [0, 1]. In particular, using the boundary
conditions, Rolle’s theorem and the smoothness of #(-, ), we can choose
xg € [0, 1] such that
um(xo , 1) =0.

Hence, provided M satisfies (5.17) and M/3 > 4,

| u,(x, O] <-]‘6/i imphies that | u,(w, £} <M forall ze{0, 7]
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Thus || #; l;,, << M[6 implies that || u(", £) |}y, << M for any ¢ [0, T'] which
completes the proof of Theorem 5.3.

In order to prove global existence we also require an a priori estimate on
(-, £) |l;,» . This follows from the estimate on || %(-, #) ||; . since

we, ) = [ Gy ) m0) dy— [ [ Gl — o) oy, ) dy

and therefore

| (s e < “ f: Gulx, 3, 1) wy(y) dy .L

+f:

+ ]} fot jol Gy, y, t — 1) o(w(y, 1)) dy dr

J:)l Gualx, 3, t — ){o(u(y, 7)) — o(u,(y, 1))} dv “3 dr

2

<C H Uy Hl.z
14
+C fo Lt — 7L (MK |t — 7 dr + Co(M)|| (-, t)y.0c

< C(lty Iy + (MK + (M) | (-, D).
¥
Thus [ #,(-, £) |l is bounded whenever [ u(, ) {l;., is bounded. So far in this
section we have assumed that u(x, t) is smooth. Using Proposition 4.6 we now
extend the results of Theorems 5.2 and 5.3 to any solution of the integral
equation for which #,e W-=(0,1) and %, € Wy*0, 1) and so prove global
existence.

Turoren II.  Under hypotheses (H1), (H2) and (H3) there exists a unique
we X(T) which satisfies the integral equation (2.3) and the boundary conditions
(1.5) for any T > 0. Moreover

Fa(, ) e < CU o ll,m - g o) for all te[0, T).

TuroreM III.  Under hypotheses (H1), (H2) and (H4) there exists a unique
u e X(T') which satisfies (2.3) and (1.4) for any T > 0. Moreover

e Do < Cllwlliw, | #lhe),  forall ze[0, T

Proof. We will only give the proof of Theorem III as the proof of Theorem 1I
is nearly identical.
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The first step is to approximate u,(x) and #,(x) by smooth functions u{(x)
and #{?(x) which vanish for x = 0 and x = 1. Let ¢ > 0 and define

Op(®) = #y((1 — de)x - 2¢), for xe(2 1 — 2)
0, for xe{0,2¢] Ul — 26, 11.

Since #, € Wy=(0, 1), v,€ W3=(0,1) and v, has compact support in (0, 1).
Moreover

v e << H g ll,eo -

Let peCy(#) be non-negative and such that p(x) =0 if [x|>1, and
ffw p(x)dx = 1. Forany ¢ > 0 the function p(x) = ¢~'p(x/e) is non-negative,
belongs to Cy(%), satisfies p(x) =0 if | x| >e and [, p(x)dx =1. The
function p, is called a mollifier. If we take the convolution of p, with 7, , that is

1
(pe* 00)) = [ pde =) (3) dy
then p v, € C,2(0, 1). It is now easy to show that (see Adams [1])

15.1551 | pexvp— u#pllie =0 (5.26)
and

IF pe * Do llno <l Zollie <l #pllim - (5.27)

Thus {p.+w,} forms a bounded set in Wy®(0, 1), so we can find a sequence
<" —0 such that p, * vg—* uyin W=(0, 1). Let uy(x) = p,_* v(x), then as
7> 00

u >y, in WU, 1)
P Eye i WE(0, 1)

In a similar fashion we can construct a sequence {#{™} of functions in W5*(0, 1)
such that as # — o0

P >u in WO, 1).
Let M be the constant such that
N e <M and  fui i, < M. (5.28)

Let w!™(x, t) be the solution to the integral equation with initial data #{™ and

#™, and let u(x, t) € X(T) be the solution with initial data %, and 2;. By
(] (i Y
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Theorem I we can choose T' > 0 sufficiently small so that every solution #*
and u exists on [0, 7', and by Proposition 4.6 we have that for every # [0, T']

u('n)(.’ t) * u(., t) in Wl.oo(o’ 1) (529)
wP(, ) > uf, 1) in WO, 1). (5.30)

But using Theorem 5.3 (or Theorem 5.2 in the proof of Theorem II) inequalities
(5.28) imply that there exists a constant N > 0, independent of # such that
for all te[0, T

1470, Ol <N and a4, Ol <N forall

Hence from (5.29) and (5.30)

Nu(, ) o <N forall te[0, T] (5.31)
g O)lhe <N  forall zef0, 7). (5.32)

The existence of a unique solution on an arbitrary interval [0, T'] now follows
from (5.31) and (5.32) by a standard method (Reed [13] page 9).
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