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We provide a holographic dual description of Milgrom’s scaling associated with galactic rotation curves.
Our argument is partly based on the recent entropic reinterpretation of Newton’s laws of motion. We
propose a duality between cold dark matter and modified Newtonian dynamics (MOND). We introduce
the concept of MONDian dark matter, and discuss some of its phenomenological implications. At cluster
as well as cosmological scales, the MONDian dark matter would behave as cold dark matter, but at the
galactic scale, the MONDian dark matter would act as MOND.
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1. Introduction

One of the most outstanding puzzles of contemporary physics
is the nature of the “missing mass” or dark matter [1]. That cold
dark matter (CDM) should exist is strongly supported by various
observations such as the galactic rotation curves, the large scale
structure surveys and the cosmic microwave background [1]. On
the other hand, there is a remarkable observation due to Milgrom,
regarding a very successful scaling observed in the galactic rotation
curves that goes by the name of modified Newtonian dynamics, or
MOND [2]. Milgrom’s approach aims to reinterpret the “missing
mass” problem as the “acceleration discrepancy”, and thus points
to a radical modification of gravity and the laws of motion [3].
Specifically, Milgrom postulates that the acceleration of a test mass
m due to the source M is given by

a =
{

aN , a � ac,√
aNac, a � ac,

(1)

where aN = GM/r2 is the magnitude of the usual Newtonian ac-
celeration. Coincidentally, the critical acceleration ac is related to
the speed of light c and the Hubble scale H : ac ∼ cH/(2π) ∼
1.2 × 10−8 cm/s2. It turns out that MOND fits hundreds of galactic
rotation curves very well and the Tully–Fisher relation is automati-
cally satisfied. Since the galactic dynamics is very complex, it is not
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surprising that MOND doesn’t explain all of the observed galac-
tic rotation curves. But the success of this simple MOND relation
seems to suggest that it may hold the key to the problem.

The basic difference between the above two approaches is
nicely encapsulated in two possible modifications of Einstein’s
equations of motion Gμν ≡ Rμν − 1

2 gμν R = Λgμν +8πG N Tμν . One
can either change the source term, Tμν → Tμν + T DM

μν , which is the
conventional dark matter approach, or one can attempt to change
the Einstein tensor Gμν → F (Gμν) (where F is either a local or
possibly non-local operator), and thus modify gravity, which is the
approach associated with MOND.

While the CDM paradigm has its attractive features, it cannot
easily explain the observed galactic flat rotation curves and the
observed Tully–Fisher relation [4] that the MOND scenarios can. On
the other hand, there are problems with MOND at the cluster and
cosmological scales, where apparently CDM works much better [1].
This inspires us to ask: Could there be some kind of dark matter
that can behave like MOND at the galactic scale?

The two ideas, one based on the existence of dark matter and
one that denies it, but requires the radical modification of the laws
of motion, are apparently contradicting and hence irreconcilable.
However, that seemingly incompatible ideas can be incorporated
in a new concept is well known in the history of physics, with the
wave-particle duality being one of the most astonishing instances.
Inspired by such lofty examples, we would like to suggest a recon-
ciliation of the dark matter and MOND approaches by introducing
a new concept of “MONDian dark matter”. In a nutshell, we pro-
pose a scheme such that the MONDian dark matter looks like CDM at
cluster and cosmological scales, but it behaves like MOND at the galactic
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scale. This would perhaps explain the apparent failure of MOND at
cluster and cosmological scales.

In fact, a preliminary attempt to mimic Milgrom’s scaling from
the CDM paradigm has been conducted in [5], although it has com-
pletely ignored the low-surface-brightness galaxies in which the
acceleration is everywhere smaller than ac . We think that it is
important to have a deeper theoretical understanding about the
connection between the nature of dark matter and Milgrom’s scal-
ing. It is our intention to combine the salient successful features of both
CDM and MOND into a unified scheme, by introducing the concept of
MONDian dark matter. Hopefully our proposal could also point to
quantum gravitational origins of the “missing mass”.

As a remark, it is not clear how MOND follows from a relativis-
tic modification of Einstein’s gravity. One possibility is to modify
the effective metric [3] by introducing other degrees of freedom
gμν → g̃μν(gμν, Aμ,ϕ, . . .), where Aμ and ϕ correspond to the
vector and scalar degrees of freedom respectively. Then, a theory
is sought in terms of these degrees of freedom, which reproduces
MOND and is consistent with some general symmetry principles
(such as relativistic invariance, causality, etc.). However, we are not
committed to a concrete model for such a modification of gravity.
We simply assume that the bulk space–time gravitational theory
could be deformed by these new degrees of freedom so as to im-
ply MOND at the galactic scale (GS):

∫
d4x

√−g[R g + LSM(φg)] →∫
GS d4x

√−g̃[R g̃ + LSM(φg̃)], where LSM is the Standard Model La-
grangian.

2. Entropic reinterpretations

We start with the recent work of E. Verlinde [6] in which the
canonical Newton’s laws are derived from the point of view of
holography. Using the first law of thermodynamics, Verlinde [6]
proposes the concept of entropic force Fentropic = T �S

�x , where �x
denotes an infinitesimal spatial displacement of a particle with
mass m from the heat bath with temperature T . He then invokes
Bekenstein’s original arguments concerning the entropy S of black
holes [7] by imposing �S = 2πkB

mc
h̄ �x. Using the famous formula

for the Unruh temperature, kB T = h̄a
2πc , associated with a uniformly

accelerating (Rindler) observer [8], he obtains Newton’s second law
	F = m	a, with the vectorial form being dictated by the gradient of
the entropy.

Next, Verlinde considers an imaginary quasi-local (spherical)
holographic screen of area A = 4πr2 with temperature T . Then,
he assumes the equipartition of energy E = 1

2 NkB T with N being
the total number of degrees of freedom (bits) on the screen given
by N = Ac3/(Gh̄). Using the Unruh temperature formula and the
fact that E = Mc2, he recovers exactly the non-relativistic Newton’s
law of gravity, namely a = GM/r2. This is precisely the fundamen-
tal relation that Milgrom is proposing to modify so as to fit the
galactic rotation curves. Therefore, in view of Verlinde’s proposal
for the entropic [7], and thus holographic [9–11] reinterpretation
of Newton’s law, it is natural to ask: What entropic or holographic
interpretation lies behind Milgrom’s modification of Newton’s sec-
ond law?

First, a comment on the entropic approach. While it has not
yet offered any radically new physics, the entropic approach has
consistently brought together a few crucial notions in physics and
has provided an alternative unifying point of view. Below we will
show that this approach can be used to shed new light on dark
matter.

Now to proceed, we first have to recognize that we live in an
accelerating universe. This suggests that we will need a generaliza-
tion of Verlinde’s proposal to de Sitter (dS) space. For convenience,
we set h̄ = c = 1 henceforth. In particular, the Unruh–Hawking
temperature, as measured by an inertial observer in de Sitter space
with a positive cosmological constant Λ, is given by TdS = 1

2πkB
a0

where a0 =
√

Λ
3 [9]. Notice that Λ is related to the Hubble scale H

through Λ = 3H2. The corresponding Unruh temperature as mea-
sured by a non-inertial observer with acceleration a will be [12]

TdS+a = 1

2πkB

√
a2 + a2

0. (2)

This formula can be derived by straightforward but lengthy cal-
culation. Instead, it can also be heuristically derived by noticing
that dS4 can be embedded into a five-dimensional Minkowski
space–time M5. World lines with proper acceleration a in dS4

(parametrized by Λ = 3a2
0) can be viewed as world lines with

proper acceleration
√

a2 + a2
0 in M5. Consequently, we can define

the net temperature as measured by the non-inertial observer (due
to some matter sources that cause the acceleration a) to be

T̃ ≡ TdS+a − TdS = 1

2πkB

[√
a2 + a2

0 − a0
]
. (3)

As a remark, this formula can be formally applied to anti-de Sitter
(AdS) space as well by taking Λ → −Λ.

Interestingly, Milgrom has suggested in [13] that the differ-
ence between the Unruh temperatures as measured by non-inertial
and inertial observers in de Sitter space, namely 2πkB�T =√

a2 + a2
0 − a0, could give the correct behaviors of the interpo-

lating function between the usual Newtonian acceleration and his
suggested MONDian deformation for very small accelerations. Even

though
√

a2 + a2
0 −a0 could somehow mimic the correct behaviors

of his MOND theory, Milgrom was not able to justify why the force
is related to the difference between the Unruh temperatures as
measured by non-inertial and inertial observers in de Sitter space.
Or, in his own words: “it is not really clear why �T should be
a measure of inertia”. Thus, without a reasonable justification, his
suggestion remains to be an ad hoc mathematical function that can
reproduce the behaviors of the MOND theory. As we will see in
the next section, adopting Verlinde’s entropic force point of view
allows us to justify Milgrom’s suggestion naturally.

3. CDM-MOND duality

Following Verlinde’s approach, the entropic force, acting on the
test mass m with acceleration a in de Sitter space, is given by

Fentropic = T̃ ∇x S = m
[√

a2 + a2
0 − a0

]
. (4)

For a � a0, we have Fentropic ≈ m a2

2a0
. In order to fit the galactic

rotation curves as Milgrom did, we require

Fentropic ≈ m
a2

2a0
= FMilgrom ≈ m

√
aNac, (5)

⇔ a = (
4aNa2

0ac
) 1

4 = (
2aNa3

0/π
) 1

4 . (6)

Numerically, it turns out that 2πac ≈ a0, and so we set ac =
a0/(2π) for simplicity. To reproduce the flat rotation curves, we

first need to realize that Fcentripetal = m a2

2a0
for a � a0. Thus, the

terminal velocity v should be determined from m a2

2a0
= mv2

r , with
a given by Eq. (6). Obviously, this leads to a constant v (indepen-
dent of r) and hence the flat rotation curves.

On the other hand, similar to Verlinde’s holographic approach
which invokes the imaginary holographic screen of radius r, we
can write
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2πkB T̃ = 2πkB

(
2Ẽ

NkB

)
= 4π

(
M̃

A/G

)
= GM̃

r2
, (7)

where M̃ represents the total mass enclosed within the volume
V = 4πr3/3. What is M̃? Suppose we set M̃ = M , which means
that there is only ordinary matter enclosed by Verlinde’s imaginary
holographic screen. In that case, we will have Fentropic = maN even
for a � a0. But this implies that there is neither dark matter nor
consistency with modified gravity given by Eq. (5) and Eq. (6), and
as such is obviously incompatible with observations. The only way
to be consistent with the observational data is to have M̃ = M + M ′
where M ′ is some unknown mass — that is, dark matter. Thus, we
need the concept of dark matter for consistency.

In what follows, we propose that

M ′ = 1

π

(
a0

a

)2

M. (8)

Note that the above formula can be generalized to AdS space, in
which case the missing matter makes a negative contribution. With
Eq. (8), we can write

Fentropic = m
[√

a2 + a2
0 − a0

] = maN

[
1 + 1

π

(
a0

a

)2]
. (9)

For a � a0, we have Fentropic ≈ ma ≈ maN , and hence a = aN . But,

for a � a0, we have Fentropic ≈ m a2

2a0
≈ maN(1/π)(a0/a)2. Solving

for a, we get a = (2aNa3
0/π)

1
4 , which is exactly the same expres-

sion as required for the explanation of the galactic rotation curves.
In conclusion, using the proposal as given by Eq. (8), we can actually de-
rive MOND. We also observe that M ′ is greater for smaller a, which
is consistent with the observations that there is more dark mat-
ter in the galactic halos than in the regions closer to the galactic
centers.

We can now realize the idea of CDM-MOND duality. On one
hand, we can interpret Eq. (9) to mean that there is no dark matter,
but that the law of gravity is modified. On the other hand, we can
rewrite it as

Fentropic = m
G(M + M ′)

r2
, (10)

where M ′ denotes the total mass of dark matter enclosed in the
volume V = 4πr3/3, which, by construction, is compatible with
MOND. We are thus led to the very intriguing dark matter profile
M ′ = 1

π (
a0
a )2M . Dark matter of this kind can behave as if there

is no dark matter but MOND. Therefore, we call it “MONDian dark
matter”. As a remark, to obtain M ′ as a function of r, one can solve

the cubic equation (see Eq. (9))
√

a2 + a2
0 − a0 = aN [1 + 1

π (
a0
a )2]

for a general solution of (
a0
a )2 and substitute it into the expression

for M ′ .

4. Friedmann’s equations

One important issue regarding our theory is to ensure that it
is completely compatible with cosmology. Thus, we would like to
derive the corresponding Friedmann’s equations within our frame-
work. Our derivation follows the procedure of [14]. The FRW met-
ric is given by ds2 = −dt2 + R(t)(dr2 + r2 dΩ2), where R(t) is the
scale factor. Assume that the matter sources in the universe form
a perfect fluid. Then, in the rest frame of this fluid, the energy–
momentum tensor is given by Tμν = (ρ + p)uμuν + pgμν , where
uμ = (1, 	0) is the four velocity of the fluid. Now, consider Ver-
linde’s imaginary holographic screen of comoving radius r. The
physical radius would be r̃ = rR(t). In de Sitter space, the net tem-
perature observed by an accelerating observer (with acceleration a)
is T̃ , which leads to the entropic force discussed above. As a result,

the effective acceleration aeff of the observer is aeff =
√

a2 + a2
0 −a0,

which is also given by aeff = − d2(rR(t))
dt2 = −R̈r. Using 2πkB T̃ =

GM̃
r2 R2 , we get R̈ = − GM̃

r3 R2 . Following [14], in a fully relativistic sit-

uation, we replace M̃ by the active gravitational (Tolman–Komar)
mass M = 1

4πG

∫
dV Rμνuμuν . By Einstein’s field equation, we ob-

tain M = 2
∫

dV (Tμν − 1
2 T gμν + Λ

8πG gμν)uμuν = ( 4
3 πr3 R3)[(ρ +

3p) − Λ
4πG ]. Finally, it follows that

R̈

R
= −4πG

3
(ρ + 3p) + Λ

3
, (11)

which, with the continuity equation ρ̇ + 3H(ρ + p) = 0, can be
used to obtain the other Friedmann’s equation, viz.

H2 = 8πG

3
ρ + Λ

3
. (12)

We thus conclude that the corresponding Friedmann’s equa-
tions derived from our framework are exactly the same as the
usual ones. The following remark is in order: The entropic ap-
proach has not replaced general relativity as sometimes miscon-
strued. To do cosmology, we still need Einstein’s general relativity.
Indeed we have just shown that our theory would be completely
consistent with the 
CDM model, if the quantity ρ is interpreted
as the total energy density of ordinary matter and MONDian dark
matter. Furthermore, in our approach, we have assumed a cer-
tain symmetry, but one that is consistent with the FRW metric.
As usual, one can categorize metric perturbations based on a ho-
mogeneous and isotropic background. Of course, ultimately it is
important to do cosmological perturbation theory so as to com-
pare with observations such as CMB.

The above computation suggests that one can in principle have
Einstein’s gravity together with a MONDian dark matter source.
The departure from MOND happens when we replace M̃ with M,
i.e. when a non-relativistic source is replaced by a fully relativis-

tic source. In that case, Eq. (9) is replaced by
√

a2 + a2
0 −a0 = G M

r̃2 ,

where r̃ = rR(t) is the physical radius, i.e.,
√

a2 + a2
0 − a0 = G(M(t) + M ′(t))

r̃2
+ 4πGpr̃ − Λ

3
r̃. (13)

If M ′ = 1
π (

a0
a )2M really gives the correct profile for dark matter,

then Eq. (13) works well at the cluster scale without any modifi-
cation of gravity. The above expression indicates that if we naively
use MOND at the cluster scale, we would be missing 4πGpr̃ − Λ

3 r̃
which could be significant. This may explain why MOND doesn’t
work well at the cluster scale, despite the CDM-MOND duality re-
alized at the galactic scale.

5. dS/CFT correspondence

So far, our arguments have been thermodynamic but not micro-
scopic, and thus the precise nature of MONDian dark matter is still
obscure. Apparently, at the galactic scale, the MONDian dark mat-
ter quanta should be massless to realize the MOND-like behavior.
However, at the cluster and cosmological scales, they should be-
come massive and hence CDM-like. In what follows, we will argue
that the holographic dual picture might shed some light on this
issue.

We can at least use the general concept of holography in de
Sitter space [15] to understand a possible CDM-MOND crossover.
First of all, any holographic formulation of MONDian bulk gravity
in de Sitter space should be able to define a dictionary between
the modified bulk gravity theory consistent with MOND, and some
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non-gravitational degrees of freedom associated with the appro-
priate “boundary” holographic screen. Currently, a precise holo-
graphic dictionary exists only in asymptotic AdS space [11]. But
there have been some proposals for such a holographic dictio-
nary in the dS4 space [15]. One idea is to relate the dS fields φ

to their AdS counterparts ψ through a non-local transformation
[15]: ψ(Y ) = ∫

dX K (X, Y )φ(X), where dX is the invariant mea-
sure on dS4 and K (X, Y ) is a non-local kernel that commutes
with the isometries of dS4. As in the AdS/CFT correspondence, one
computes the on-shell bulk action Sbulk and relates it to the ap-
propriate boundary correlators. Therefore, given a modified bulk
(dS4) theory of gravity consistent with MOND, one would ex-
pect (in the semiclassical limit) the standard holographic formula:
〈exp(− ∫

JO)〉 = exp[−Sbulk(g̃, φg̃, . . .)].
In fact, the holographic dual of a uniformly accelerating ob-

server in de Sitter space has been examined in [16]. It was
shown that the Unruh formula in de Sitter space is holographically
mapped to a constant one-point function, namely 〈O 〉 ∼ constant,
in a suitable coordinate system on the boundary [16]. Thus, an in-
terpolation between the Newtonian acceleration and MOND would
amount to modifying the one-point function in the boundary the-
ory. Once some non-gravitational degrees of freedom, which are
holographically dual to the bulk modified theory of gravity consis-
tent with MOND, are turned on, the relevant one-point function
should get “dressed”, and in principle, could have different val-
ues along the renormalization group flow. The question is: Where
is the crossover between the Newtonian and MOND regimes in
the bulk? It is reasonable to conjecture that one can separate
the global de Sitter metric from the perturbations at smaller bulk
scales, while this would not be possible at larger bulk scales. Pre-
sumably, this crossover should happen around the galactic scale.
Of course, only a complete microscopic theory could answer such
a detailed question.

6. Phenomenological implications

The usual way of determining the effective mass of CDM par-
ticles is to first assume some couplings to the Standard Model
particles and impose some “parity-like” quantum numbers that
insure stable dark matter. Then, one computes the relevant cross-
sections and plugs them into Boltzmann’s kinetic equation. Finally,
one compares the relic abundance with cosmological constraints,
such as the WMAP data [1]. This logic should be repeatable in our
case.

The MONDian dark matter could lead to some distinctive phe-
nomenological implications: (1) The nature of MONDian dark matter
quanta is constrained by the holographic non-gravitational degrees
of freedom dual to the bulk modified theory of gravity. Thus, not
any dark matter quantum numbers would be allowed. For instance,
vector and scalar degrees of freedom may be preferred, as sug-
gested by [3]. (2) The couplings of MONDian dark matter to the
Standard Model particles could be non-standard, and perhaps even
of a spin–orbit type, as implied by remarkable particle physics
realizations of the Unruh effect [17]. (3) In our proposal, the to-
tal mass of MONDian dark matter is related to the cosmological
constant as well as the total mass of ordinary matter. This seems
to suggest that the microscopic MONDian dark matter degrees of
freedom would know about the cosmological constant. Such “non-
locality” is obviously a unique feature not shared by any other dark
matter candidates. (4) Our scheme (see Eq. (6)) may also hint at a
fixed energy density ratio between the different cosmological com-
ponents of the Universe, thus helping to alleviate the coincidence
problem.

7. Conclusions

In this Letter, we have provided a holographic dual description
of Milgrom’s scaling associated with galactic rotation curves. We
have proposed a duality between cold dark matter and modified
Newtonian dynamics (MOND), encapsulated in the new concept
of MONDian dark matter. Work on a phenomenological model of
MONDian dark matter is in progress.
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