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Axial Tubules of Rat Ventricular Myocytes Form Multiple Junctions with the
Sarcoplasmic Reticulum
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ABSTRACT Ryanodine receptors (RyRs) are located primarily on the junctional sarcoplasmic reticulum (SR), adjacent to the
transverse tubules and on the cell surface near the Z-lines, but some RyRs are on junctional SR adjacent to axial tubules. Neither
the size of the axial junctions nor the numbers of RyRs that they contain have been determined. RyRs may also be located on the
corbular SR and on the free or network SR. Because determining and quantifying the distribution of RyRs is critical for both
understanding and modeling calcium dynamics, we investigated the distribution of RyRs in healthy adult rat ventricular myocytes,
using electron microscopy, electron tomography, and immunofluorescence. We found RyRs in only three regions: in couplons on
the surface and on transverse tubules, both of which are near the Z-line, and in junctions on most of the axial tubules—axial junc-
tions. The axial junctions averaged 510 nm in length, but they occasionally spanned an entire sarcomere. Numerical analysis
showed that they contain as much as 19% of a cell’s RyRs. Tomographic analysis confirmed the axial junction’s architecture,
which is indistinguishable from junctions on transverse tubules or on the surface, and revealed a complexly structured tubule
whose lumen was only 26 nm at its narrowest point. RyRs on axial junctions colocalize with Cav1.2, suggesting that they play
a role in excitation-contraction coupling.
INTRODUCTION

The subcellular distribution of ryanodine receptors (RyRs) in

a myocyte determines the size, shape, and duration of the

whole-cell calcium transient, and it creates microdomains

in which the local calcium concentration is far greater than

that of the cellular average. If we are to model the calcium

transient and to understand local physiological control of

calcium-dependent processes, we must know the location

of the RyRs, as well as that of the organelles and other mole-

cules to which they are adjacent.

Our current understanding is that most RyRs are located in

clusters that are found only in specialized regions of the sarco-

plasmic reticulum (SR): the junctional SR (jSR) and the corb-

ular SR (cSR). jSR membranes are positioned 10–15 nm away

from clusters of voltage-gated calcium channels, Cav1.2,

that are located either in the sarcolemma or in the transverse-

axial tubule system (TATS) (1–3). These closely apposed

membrane surfaces and their associated proteins create

distinct, unmistakable structures in transmission electron

micrographs termed ‘‘junctions’’ or ‘‘couplons’’. This archi-

tecture is essential for normal calcium-induced calcium

release and excitation-contraction coupling in the heart (4).

Most of the couplons in the TATS are formed with transverse

tubules, most properly called ‘‘T-tubules’’, that are either at

the level of the Z-lines or very near to it and that belong to

the transversely oriented regions of the TATS. In addition,

some of the couplons are with axial tubules, but the proportion
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of axial junctions, their size, and the number of RyRs that they

contain, have never been determined.

The cSR is a RyR-studded sac, ~100 nm in diameter, con-

taining calsequestrin and storing calcium (5,6). It extends

from network SR into the myoplasm, close to the Z-line,

but it does not have an adjacent T-tubule or Cav1.2. This is

a prominent feature in cells lacking a TATS, such as avian

cells and atrial cells in the mammalian heart, as well as papil-

lary muscle containing T-tubules (7). A quantitative exami-

nation of the extent that RyRs occur on the cSR, and on

the other organelles to which it is adjacent, has not been

reported for ventricular muscle.

In addition to these locations, RyRs have also been

reported in mitochondria (8) and in the free (network) SR

surrounding the myofibrils opposite the A-band (9). The

number of RyRs in mitochondria is unclear, but it has been

suggested that RyRs in the free SR may be fairly abundant

and might explain the 15–20% of calcium sparks that arise

in the A-band, well away from the Z-line and the junctional

RyRs (9,10).

Little attention has been paid to the existence of RyRs on

axial junctions, even though axial tubules are a well-known

feature of adult rat cardiomyocytes (11). A quick examination

of rat ventricular myocytes reveals that axial junctions may

contain a relatively large proportion of the total number of

RyRs, and we hypothesize that most of the axial tubules

form junctions with the adjacent SR. To investigate this ques-

tion, we used a combination of fluorescence microscopy,

transmission electron microscopy, and electron tomography.

The results demonstrate that the majority of axial tubules

form junctions with the SR and that they share all of the struc-

tural features of couplons on the plasmalemma and the
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transversely oriented T-tubules. Axial junctions routinely

extend well into the A-band and are occasionally large enough

to span an entire sarcomere. Tomographic analysis confirms

their structure and reveals an unexpectedly complex

morphology of the T-tubule. Axial junctions are surprisingly

numerous, and we estimate that they contain as much as 19%

of a ventricular myocyte’s RyRs. Immunofluorescent labeling

shows that RyRs in axial junctions are adjacent to Cav1.2 and

could therefore contribute to excitation-contraction coupling.

METHODS

All chemicals were purchased from Sigma-Aldrich (Oakville, Canada),

unless otherwise stated. Animal handling was done in accordance with the

guidelines of the Canadian Council on Animal Care.

Tissue processing for electron microscopy

Animals were sacrificed with a peritoneal injection of 2 mL of 1000 units of

Hepalean (Organon Canada, Mississauga, Canada) and 2.5 mL of sodium

pentobarbital (80 mg/100 g; MTC Pharmaceuticals, Cambridge, Canada).

The hearts were perfused for 10 min with physiological saline solution,

followed by a fixative containing 4% paraformaldehyde, 2.1% glutaralde-

hyde, and 4 mM CaCl2 in a 0.1 M cacodylate buffer (pH 7.4; Canemco &

Marivac, Lakefield, Canada), for 10 min. The left ventricle was cut into small

blocks and the sample immersed in fixative for ~2 h. To speed up the process,

blocks were cyclically microwaved (2 min on, 2 min off, 2 min on) in

a vacuum using a Pelco 3450 laboratory microwave (Ted Pela Inc., Redding,

CA), at power 5 (12). Blocks were rinsed and microwaved twice in 0.1 M

cacodylate buffer for 40 s at power 1, then postfixed with 1% OsO4 solution

(EMS, Hatfield, PA) in the same buffer at power 1, then cyclically micro-

waved twice. This step removed the cytoplasmic matrix from the fractured

cells at the cracked surface (13). En-bloc staining of samples was done with

2% aqueous uranyl acetate (Ted Pela), cyclically microwaved twice at

power 1, and then rinsed three times with distilled water. They were then

dehydrated in increasing concentrations of ethanol (50–100% in steps of

10%; microwave 1 min at each dilution on power 3) and embedded in a

mixture of Epon and Spur’s resin. From each block, 2-mm-thick sections

were cut with a glass or diamond knife mounted on a Leica Ultracut T (Leica

Microsystems, Richmond Hill, Canada) and then stained with toluidine-blue.

Suitable sections containing surviving myocardial tissues in a longitudinal

orientation were selected for study. Ultra-thin sections (80 nm) were cut

consecutively from the same block; these were mounted on 0.25% w/v For-

mvar-coated 200 mesh copper grid (EMS) and double-stained with 2% uranyl

acetate for 12 min and Reynold’s lead citrate for ~6 min. Sections were inves-

tigated using a transmission electron microscope (Hitachi H7600, Hitachi

High Technologies America, Schaumburg, IL).

Preparing sections for single-axis tomography

From blocks with regions of well-preserved sarcoplasmic reticula and

a tubular system, serial semi-thick (120–130 nm) sections were cut using

Leica Ultracut T with a Diatome Ultra 35� diamond knife (Diatome, Hatfield,

PA) and collected on 0.5% w/v Formvar carbon-coated slot grids. Poststain-

ing with 2% uranyl acetate for 25 min was followed by Sato’s lead citrate for

10–12 min (14). After poststaining, grids were coated with 7.5 nm colloidal

gold particles (BBInternational, Cardiff, UK) for 10 min (15) and then

Formvar–coated to enhance sample stability in a high-voltage electron beam.

Image acquisition and tomography

Grids were placed in a rotating, high-tilt stage and observed in the Tecnai G2

Sphera (FEI, Eindhoven, Holland) microscope operating at 200 kV. A suitable
Biophysical Journal 96(11) 4651–4660
longitudinal junction was imaged at 19,000�with serial tilt views fromþ65�

to�65� at 1� intervals, using a camera setting of 1024� 1024 pixels, resulting

in a pixel size of 0.90 nm. The tomograms were generated using TIA software

(FEI, Eindhoven, Holland). All tilted images were aligned to a common

tilt axis using cross-correlation, and the volume was reconstructed by

a real-space back-weighted projection. Tomograms were displayed and

analyzed with 3dmod, the graphics component of the IMOD software package

(16). The transverse and axial tubules, the sarcoplasmic reticula, the RyRs,

and the calsequestrin (CSQ) were modeled manually using procedures

detailed in Donohoe et al. (17).

Fluorescence microscopy

Ventricular myocytes were isolated from the hearts of adult-male Wistar rats

weighing between 200 and 250 g. Techniques for acquiring myocytes, and

for fixation, permeabilization, and immunolabeling, as well as processing,

deconvolving, and analyzing images from a wide-field microscope, have

been published (18,19). We used an anti-RyR2 monoclonal antibody

(Affinity Bioreagents, Golden, CO) and an affinity-purified rabbit polyclonal

antibody against the pore-forming subunit of the voltage-gated calcium

channel, Cav1.2 (20). The secondary antibodies were affinity purified and

highly cross adsorbed to minimize cross reaction, and were goat anti-mouse

conjugated to Alexa 594 and goat anti-rabbit conjugated to Alexa 488

(Invitrogen, Burlington, Canada). Images were acquired using an inverted

Zeiss Axio Observer microscope equipped with a Plan Apo 63/1.4 objective

and EXFO Xcite illumination (Mississauga, Canada). All filters were from

Semrock (Rochester, NY): exciter FF01-494/20-25, dichroic FF506-Di01-

25�36, emitter FF01-536/40-25 for Alexa 488 and exciter FF01-575/25-25,

dichroic FF593-Di02-25�36, and emitter FF01-624/40-25 for Alexa 594.

RESULTS

The general features common to a junction are shown in

Fig. 1 A. The variable features are the size of the junction,

which can be determined only from serial sections or tomo-

grams, and the architecture; the SR can form a junction with

a portion of the T-tubule, as depicted, or it can encircle all

(not shown) or most of the T-tubule (Fig. 2 E). The architec-

ture changes when the junction is at the cell surface, adopting

one of the two configurations shown in the micrographs in

Fig. 1, B and C. Fig. 1 B shows a junction straddling a Z-line.

The thin SR connects the two halves of the junction, but the

electron dense material in the lumen is confined to the region

under the RyRs. Seen with equal frequency is a surface junc-

tion that is confined to only one side of the Z-line, shown in

Fig. 1 C. The center-to-center distance between the feet in

both internal and surface junctions was the same; 44.3 �
2.6 nm (mean � SE; N ¼ 217).

We also observed junctions in the interior of the myocyte

that are oriented parallel to the cell’s longitudinal axis and

perpendicular to the Z-line (Fig. 2). Axial junctions have

the morphological features of the junctions depicted in

Fig. 1, except that they are formed with the axial tubules

and they penetrate well into the A-band. The most commonly

observed are shown in Fig. 2, A and B. The former shows an

axial tubule that almost spans the sarcomere with a junction

that covers only a fraction of its length, whereas the latter

shows a shorter tubule with nearly its entire length covered

by a junction. Less common are the axial junctions depicted

in Fig. 2, C and D, in which junctions extend almost the entire



Axial Junctions 4653
length of the sarcomere. Axial junctions sometimes originate

from a junction on the Z-line and can appear as a triad; both of

these features are seen in the micrograph in Fig. 2 D. Fig. 2, E

FIGURE 1 Transmission electron micrographs of junctions in the rat

ventricle. (A) A dyad on the T-tubule: ryanodine receptors (single arrow),

SR (double arrow), mitochondrion (m), Z-line (z). Scale bar ¼ 100 nm.

(B and C) Surface junctions. Insets of the indicated regions are magnified

2.5�: endothelial cell (ec), interstitial space (is). Scale bars ¼ 500 nm.
and F, shows axial tubules that do not contain junctions. One

of these tubules originates from a junction (Fig. 2 E) whereas

the other does not (Fig. 2 F). In 45 micrographs encompassing

804 mm2, we observed 187 junctions: 148 were junctions with

the T-tubule (79%); 39 were with axial tubules (21%). The

majority of the axial tubules, 77%, formed junctions with

the SR. The center-to-center distance between ryanodine

receptors on axial junctions was 40.0 � 0.88 nm, (mean �
SE; N ¼ 94), comparable to that seen in the junctions on the

T-tubules and on the surface. The data were obtained from

six rats, and no differences were observed between the

weight- (200–250 g) and sex- (male) matched animals.

It is clear from Fig. 2 that the axial tubules and the axial

junctions have variable lengths, and that the axial junctions

do not always occupy the entire length of the axial tubule.

To analyze and quantify these relationships, we measured

the lengths of the axial tubules and the axial junctions rela-

tive to each other, and relative to the sarcomere length.

The results are presented in the frequency histograms shown

in Fig. 3, all of which are single distributions (Hartigan’s dip

test for unimodality (21); p > 0.1) that are non-Gaussian

(p < 0.01). We first measured the length of the axial tubules

relative to the sarcomere length (Fig. 3 A); sarcomere length

was 2.04 � 0.02 mm (mean � SE; N ¼ 52). The frequency

histogram presented in Fig. 3 B demonstrates that the axial

junctions occupy a significant fraction of the axial tubules.

Finally, the frequency histogram in Fig. 3 C shows that the

axial junctions are about one quarter of a sarcomere long,

although some are much longer.

In cross section, junctions with axial tubules show the

same variability in architecture as do those with T-tubules

(Fig. 4). The SR can partially or completely encircle the axial

tubule (Fig. 4 A), or it can it form a junction with one of the

flattened surfaces of the jSR (Fig. 4 B). In 19 cross sections,

we observed a mean of 8.5 RyRs per longitudinal junction:

range 2–24; median ¼ 7.

Atrial cells displayed surface junctions that are indistin-

guishable from those in the ventricle (Fig. 5 A), as well as junc-

tions with transverse axial tubules in those cells that show

a rudimentary TATS; an example of an axial junction is shown

in Fig. 5 B. All atrial cells, regardless of whether or not they

possess a rudimentary TATS, display a RyR-studded cSR

that is readily apparent on or near the Z-lines; an example is

shown in Fig. 5 C. The lumen of the SR has electron-dense

material, and the magnified inset shows individual RyRs

protruding from the membrane into the myoplasm. In contrast,

over 200 micrographs of the ventricle failed to find a compa-

rable structure. Instead, we observed sacs of SR protruding

into the myoplasm that were clearly devoid of RyRs (Fig. 5 D).

To more closely view the association between the axial

and transverse tubules, we examined a semi-thick section

of 120 nm using tomography (Fig. 6). One of the individual

slices of the tomogram is displayed in Fig. 6 A, in which the

membranes of the transverse and axial tubules, the SR, the

electron dense material within the SR, and the RyRs are
Biophysical Journal 96(11) 4651–4660
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FIGURE 2 Longitudinal sections of axial tubules and

their junctions. Insets of the indicated regions are magni-

fied 2.5�. (A and B) Axial junctions that are a fraction of

a sarcomere long. (C and D) Axial junctions that are

a sarcomere in length. (E and F) Axial tubules without

junctions. Scale bars ¼ 500 nm.
clearly visible and have been outlined in different colors

(Fig. 6 B). The outlines from all 96 planes form a complete

3D model of the data (Fig. 6 C), which can be seen in Movie

S1 in the Supporting Material. A single row of the ryanodine

receptors was clearly visible, and these, along with the SR,

are displayed in Fig. 6 D.

The axial tubule and jSR have relatively simple morpho-

logical features, unlike those features in the transverse tubule,

in which multiple and interconnected branches are difficult

to visualize. To demonstrate the structure of the tubules, we

show two planes from the tomogram, 72.8 nm apart, in

Fig. 7, A and C. Individual sections of the transverse and axial

tubules are outlined in Fig. 7, B and D, and, for clarity and ease

of reference, the different parts of the tubules are numbered 1

through 8. The same numbering system was applied to the 3D

model (Fig. 7 E), which was rotated about the Y and/or Z axes

to produce the images in Figs. 7, F and G. Over the course of

8.4 nm, the axial tubule widened dramatically from ~20 nm

(labeled No. 1) to ~180 nm (labeled No. 8). As demonstrated
Biophysical Journal 96(11) 4651–4660
in Fig. 6 C, the change in morphological features of the axial

tubule was unrelated to the presence of the junction. Tubule 2

is connected to the axial tubule at the point indicated by the

arrow in Fig. 7 E. Tubule 3 is connected to tubule 4 and to

the axial tubule, as shown in Fig. 7, B, E, and G. Transverse

tubules numbered 4, 5, 6, and 7 connect at the point indicated

by the asterisk in Fig. 7, F and G; at this point the tubule is an

oval 14 nm wide (Fig. 7 F) and 115 nm long (Fig. 7 G). These

four tubules converge and twist, forming an ‘X’ whose bottom

half is rotated ~90 degrees. This can also be seen in Fig. 7, B
and D, in which a line drawn between the center of tubules 4

and 5 in Fig. 7 B would be roughly perpendicular to a line

drawn between the centers of tubules 6 and 7 in Fig. 7 D.

Tubule 6 has the smallest diameter and is only 26 nm wide

at its narrowest point.

Lastly, we used dual-label immunofluorescence to deter-

mine if axial RyRs are adjacent to Cav1.2 (18,19). A single

plane extracted from the 3D image of a cell labeled with anti-

bodies specific for RyRs (red) and for the pore-forming
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a subunit of Cav1.2 (green) is displayed in Fig. 8 A (i)
(colocalized voxels are white). As expected, both proteins

are distributed along the Z-lines, a segment of which is

highlighted and magnified in Fig. 8 A (ii). Some of the fluores-

cence is oriented perpendicular to the Z-lines, on axial junc-

tions. We isolated a total of 70 axial and 70 transverse

segments from the images: 10 of each from 7 cells isolated

from 4 rats. Two of the axial junctions isolated from the cell

in this image are highlighted, and single-image planes are

displayed in the insets. Fig. 8 A (iii) shows a junction

extending almost the entire distance between adjacent Z-lines,

whereas Fig. 8 A (iv) shows a smaller junction that extends

only part-way into the sarcomere.

The length of the axial junctions, expressed as a fraction of

the sarcomere length, was described by a single distribution

(Hartigan’s dip test, p > 0.1) that was non-Gaussian (p <

FIGURE 3 Frequency histograms. All bins are one twentieth of a sarco-

mere long. (A) The length of each axial tubule expressed as a fraction of the

length of the sarcomere. N ¼ 52. Mean ¼ 0.56, median ¼ 0.44, mode ¼
0.26, SD¼ 0.31. (B) The length of each axial junction expressed as a fraction

of the length of its axial tubule. N¼ 40. Mean¼ 0.66, median¼ 0.73, mode¼
1.00, SD¼ 0.30. (C) The length of each axial junction expressed as a fraction

of the length of the sarcomere. N¼ 40. Mean¼ 0.30, median¼ 0.24, mode¼
0.19, SD ¼ 0.18.
0.001) (Fig. 8 B). Although comparable to that measured

using transmission electron microscopy, the mean length

measured by fluorescence was significantly larger (Mann-

Whitney U test, p < 0.004), which is not surprising given

the different resolving powers of the two techniques.

A notable difference between the transverse and axial junc-

tions displayed in Fig. 8 A is the presence of RyRs on the

former that have no adjacent Cav1.2; these are the extra-

dyadic RyRs (Fig. 8 A, ii; arrow). This visual difference is

also apparent in the numerical analyses (Fig. 8 C). The results

show that Cav1.2 is colocalized with RyRs (black bars) to

a greater extent than that shown by RyRs with Cav1.2 (gray

FIGURE 4 Cross sections of axial tubules and their junctions. (A) The

axial tubule is nearly encircled by the junction. The inset is a 2.5� magni-

fication of the indicated region; the scale bar is 500 nm. (B) One surface

of the axial tubule forms a junction with the adjacent SR (arrow). Scale

bar ¼ 100 nm.
Biophysical Journal 96(11) 4651–4660
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FIGURE 5 Atrial RyRs and Corbular SR. (A) Rat atrium,

inset is a 3� magnification of the highlighted surface

junction. Scale bar is 500 nm. (B) Rat atrium, inset is a 3�
magnification of the highlighted axial junction. Scale bar

is 100 nm. (C) Rat atrium. Arrows point to examples of corb-

ular SR. The inset is a 2.5� magnification of the indicated

region. (D) Rat ventricle. The sacs of SR are devoid of

RyRs. The inset is a 2� magnification of the indicated

region. Scale bars are 500 nm.
bars; p< 0.001) on both axial and transverse junctions, which

is in agreement with previous observations (19,22,23). But,

there is a significantly greater amount of colocalization of
RyRs with Cav1.2 in the axial segments relative to the

transverse segments (p< 0.001), because of the lack of extra-

dyadic RyRs.
FIGURE 6 Tomography of a single longitudinal junc-

tion. Scale bar ¼ 100 nm. (A) One plane of the recon-

structed tomogram. (B) Tracings of the relevant structures

from A: SR (green), individual RyRs (red), CSQ (yellow),

transverse and axial tubules (blue). (C) The drawings from

each of the planes form the 3D model. (D) The SR and

RyRs have been isolated and rotated 70� about the Y-axis.

Biophysical Journal 96(11) 4651–4660
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FIGURE 7 Tomography of a single

longitudinal junction and the transverse

tubule to which it is connected. (A and

C) Planes 14 and 66 of the tomogram

respectively. (B and D) A and C with

the tubules numbered and highlighted

in blue. Tubules 3, 4, 5, 6, and 7 are

transverse tubules; tubules 1and 8 are

axial tubules. 3D rendering of the

numbered tubules. (E) Orientation is

the same as in A–D. Arrow points to

connection between tubules 2 and 8.

(F) E rotated 180 degrees about the Y-

axis. The asterisk marks the connection

between tubules 6 and 7. (G) E rotated

�90 degrees about the Y-axis, then

�45 degrees about the X axis. The

asterisk marks the connection between

tubules 4, 5, and 7. Tubule 6 is behind

tubule 7 and not visible in this orienta-

tion.
Biophysical Journal 96(11) 4651–4660
DISCUSSION

We have examined the distribution of RyRs in adult rat

ventricular myocytes. Our primary method was transmission

electron microscopy, because RyRs have a characteristic and

unmistakable profile in well-preserved and stained sections

and because TEM provides direct visualization of the

compartment in which the RyRs are located.

The baseline for our measurements was established by

examining junctions with T-tubules at the Z-line and junc-

tions with the surface (Fig. 1). These images displayed the

expected components in the appropriate spatial configuration.

First, the membranes of the sarcolemma and the SR were only

~10–15 nm apart. Second, the lumen of the SR was narrow

and contained electron dense material that is thought to be

largely calsequestrin. Third, the electron dense ryanodine

receptors, or feet, were clearly seen on the SR membrane,

spaced at regular intervals extending toward the T-tubule.

The variable features were the size of the junction, which

can only be determined from serial sections or tomograms,

and the architecture; the SR formed a junction with a portion

of the T-tubule (Fig. 1 A), or it could encircle most or all of the

T-tubule (Figs. 2, E and F, and 5 A. All of the axial junctions

displayed characteristics identical to those listed for junctions

on T-tubules and on the surface (Figs. 2, A–D, 4, and 6).

The arrangement of individual RyRs in a native membrane

is thought to be that of a regular lattice, with center-to-center

distances between individual RyRs of 31.5 nm, or 44.5 nm

on the diagonal (24). The distance we measured between
RyRs in junctions with the T-tubule (44.3 � 2.4 nm) and

on axial junctions (40.0 � 0.88 nm) is within this range.

On the surface, we observed a roughly equal proportion of

junctions that were doublets and singles. Comparable results

have been seen in immunofluorescence images in which

RyRs on the surface were distributed in doublets on either

side of the Z-line (25).

We did not find cSR in ventricular myocytes, although it

was readily visible in virtually all of the micrographs acquired

from the atria, as expected (6,26). The discrepancy between

our findings and those reported in the literature likely stem

from the different tissues that were examined: ventricular

versus papillary myocytes. The cSR in rat papillary muscle

has RyRs (7), as well as CSQ (5,6) and the ability to store

calcium (5). If rat ventricular myocytes have cSR, it is very

rare. These results indicate that there are structural differences

between papillary and ventricular muscles that argue against

using the former as a stand-in for the latter.

We searched extensively for RyRs in rat ventricular myo-

cytes and throughout the SR, but we were able to find them

in only three locations: junctions with T-tubules on the

Z-line, junctions on the surface that may or may not straddle

the Z-line, and axial junctions running perpendicular to the

Z-line.

Axial tubules were readily visible, and most of the profiles

seen in sections, 75%, formed an axial junction with the adja-

cent SR. It is likely that the remaining 25% also formed junc-

tions that were simply outside of the section and not visible.
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FIGURE 8 (A) Rat ventricular myocyte labeled for RyRs (red), Cav1.2

(green). Colocalized voxels are white. (i) A single plane of the data set

(278 pixels� 406 pixels� 61 planes), scale bar¼ 5 mm. (ii) 4�magnification

of the indicated transverse tubule. Image dimensions are 45 pixels � 18

pixels � 4 planes. (iii and iv) 10� magnifications of the indicated axial

tubules. Image dimensions are 9 pixels� 18 pixels� 3 planes and 9 pixels�
12 pixels � 3 planes, respectively. (B) Comparison of the length of the axial

junctions measured by fluorescence microscopy (solid bars; N¼ 70) and elec-

tron microscopy (open bars; N ¼ 40), normalized to the count in the largest

bin. For fluorescence microscopy: mean ¼ 0.39, median ¼ 0.32, mode ¼
1.0, SD ¼ 0.23. (C) The mean colocalization � SE of RyRs with Cav1.2

(gray bars) and Cav1.2 with RyRs (solid bars). Ten axial tubules and 10 trans-

verse tubules were analyzed from each of seven cells. * indicates a significant

difference between the indicated groups, p < 0.001.
Biophysical Journal 96(11) 4651–4660
The length of the axial tubules was variable, but showed

a peak at roughly one quarter of a sarcomere in length

(mode ¼ 0.26; Fig. 3 A). This was true of tubules both

with, and without, junctions (Fig. 3, A and C). The fluores-

cence images (Fig. 8) also show both short and long stretches

of axial RyRs and Cav1.2, and therefore it is unlikely that

short tubules are artifacts caused by sectioning.

Axial tubules have been observed using lipophilic

membrane dyes, such as di-8-ANEPPS, in combination

with optical microscopic techniques, but this approach

only shows the presence of a tubule and cannot reveal the

presence of a junction (11,23). Using electron microscopic

techniques, RyRs have been observed adjacent to axial

tubules (27,28). The significance of our results is in showing

that most axial tubules in the rat ventricle have junctions that

are quite extensive, sometimes running all the way from one

Z-line to the next. They are also frequent, constituting 21%

of all the junctions observed in thin sections. Given a median

length of 510 nm and 8.5 rows of RyRs, a single axial junc-

tion contains, on average, 109 RyRs. Because the T-tubule

junctions contain between 120 and 260 RyRs (2,29), we

estimate that between 9% and 19% of the cell’s complement

of RyRs are deployed in axial junctions.

Most RyRs are positioned in jSR opposite clusters of

Cav1.2 in the apposing membrane, either on the surface or

in the TATS, but we and other investigators have consistently

found that there are RyRs without adjacent Cav1.2, the extra-

dyadic RyR. This is apparent in numerical analyses of immu-

nofluorescence images that always demonstrate a significantly

greater colocalization of Cav1.2 with RyRs than vice versa

(19,22,23). An example of an extra-dyadic cluster is shown

in the image presented in Fig. 8 A (ii). In contrast, every axial

tubule looked like those displayed in Figs. 8 A (iii and iv): no

extra-dyadic RyRs were present. This visual impression

was confirmed by the numerical analysis that showed a

significantly greater colocalization of RyRs with Cav1.2 in

axial versus transverse tubules (Fig. 8 C).

Several lines of indirect evidence suggest that the axial

junctions are functional. First, its structural features are indis-

tinguishable from those of the transverse junctions. The axial

junctions have both RyRs and CSQ, the distance between the

axial tubule and the jSR membrane is only 10–15 nm, and

the axial tubule membrane anchors Cav1.2 opposite RyRs

in the jSR. Second, the structural features of the axial junc-

tions in atria are identical to those of the ventricle (Fig. 5 B),

and these atrial junctions are known to be active participants

in excitation-contraction coupling (30). Third, the presence

and frequency of RyRs on the axial junctions is sufficient

to explain some aspects of calcium dynamics. Up to 20%

of a rat ventricular myocyte’s spontaneous calcium sparks

originate from areas of the sarcomere that are too far from

the Z-line to be attributed to T-tubule junctions (9,10). The

large and relatively frequent assemblies of RyRs in the axial

junctions can easily account for this effect. In addition, it has

been difficult to account for the comparable horizontal and
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longitudinal conduction velocities of calcium waves if

RyRs are only on or near the Z-line (31). Again, our obser-

vations suggest that axial junctions could solve that problem.

It is therefore reasonable to expect that axial junctions

participate in normal excitation-contraction coupling as

well as in the production of sparks and the spread of calcium

waves.

Electron tomography provided a striking view of the trans-

verse and axial tubules, and their interconnections (Figs. 6 and

7). A video sequence of the reconstructed 3D model (Fig. 6

C), is available in the Supporting Material. The most

surprising aspects of the data are the tortured path that the

tubule follows and the small diameter, 26 nm, of some of

the tubules. Both aspects, small diameter and tortuosity,

have been noted by others using electron microscopic tech-

niques (27,32), but not those using optical microscopy,

possibly because the dyes used to label the tubules cannot

diffuse through apertures as small as those we have measured.

This would preclude the finer structures from being observed

using optical microscopes. Nevertheless, these techniques

have revealed a remarkable increase in the number of

axial tubules in conjunction with a loss of transverse tubules

in failing and chronically ischemic myocytes in the rat

(23,33–35).
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