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1. Intreduction

A.K. Bousfield recently characterized the topological spaces v.hich are deter-
mined up to homotopy by their integral homology type [6]. As part of this
characterization he introduced and studied, for any group =, a homology localiza-
tion functor E on the category of 7-modules. In theory, for any 77-module M the
localization E (M) can be constructed either as a transfinite direct limit [6: 8.4, 11.5}
or as a transfinite inverse limit [7, § 8]; there are also some concrete formulas known
for E(M) in special cases ([5: 2.7, 2.10, 2.11], [10, Theorem 4]). In practice,
however, the exact naiure of the functor E and of its relationship to more familiar
homological constructions has remained unclear. The present paper is aa attempt
to remedy this, with a view toward topological applications in [13] and [14].

Recall that a map f: M — M’ of w-modules is said to be an HZ-map if the
induced homomorphism H; (=; M)— H,(7; M') is an isomorphism for i =0 and
an epimorphism for i=1. A @-module N is said to be HZ-local or
Bousfield if every HZ-map M — M’ induces a one-one correspondence
Hom, (M', N)— Hom, (M, N). Bousfield has shown [6, 5.4] that for any group =
there exists a functor E on the category of w-modules such that

(i) for all M, E(M) is Bousfield, and .

(ii) there is a natural HZ-map M — E(M).

This E is called the HZ-localization functor; it is additive, right exact, and has
many other properties ([6, §8], [7, §§7-9]).

The plan of this paper is as follows. Section 2 gives a fairly complete description
of E under the single assumption that = is a finitely presented group. Section 3
studies the question of when E is naturally equivaleni to the zero’th left derived
functor of the familiar lower central series completion functor (2.2); this is the case
for many interesting groups (3.1, 3.8), but not for all finitely presented groups (3.6).
Finally, Section 4 uses the results of Section 3 and a duality construction to produce
exceptionally simple formulas for E in so.ne instructive special cases 4.9).

* This research was in part supported by the Nationa! Science Foundation.
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136 G WG Dwyer | Homological localization of 7-modules

Throughout the paper, 7 denotes a given group, R = Z[#] its integral group
ring, and I C R the augmentation ideal. The terms w-module and R-module are
used synonymously. With the exception of the first argument of Torg(—, —), all
unspecified modules are left modules. The additive group of integers Z is always
considered to be a trivial left or right ar-module, in the sense that each element of 7
acts on Z as the identity map; thus H, (7; —) is another name for the functor
Torl(Z, —).

A tower {M,}, of abelian groups, w-modules, etc., is a family of such objects,
indexed by the non-negative integer s, together with maps M..,— M.,. In most cases
the maps are obvious and are not made explicit. The elementary algebraic
properties of towers [8; III, §2] play a large role in this paper, as do the related
properties of the in serse limit functor lim 2nd its right derived functor hm (19}, [8:
IX, §2)).

I would like to taank A.K. Bousfield, K. Brown and E. Dror for valuable ideas;
to some extent S¢-ction 3 of this paper overlaps their work.

2. Finitely presented groups

The purpose of this section is to compute the HZ localization functor E on the
category of w-modules if 7 is a finitely presented group, that is, if # admits a
presentation with a finite number of generators and a finite number of relations.
The main result is

2.1. Theorem. Suppose that 7 is a finitely presented group. Then for any w-module
M there are natural exact sequences

0—> lim'{Torf (R/I', I' - M}, > E(M)— C(M)—0
and
O—->llm{Tor (R/I%, I - M)}, —»lnm{I’@R (I’ - M)},

—-M—-EM)— 1(1_13_1 {IF'er (I° * M)}, 0.
2.2. Remark. The lower central series completion lj__t__n{M /I’ - M}, of M is denoted
by C(M). The first exact sequence of 2.1 shows that E (M) is isomorphic to C(M) if

and only if hm {Tort(R/I’, I’ - M)}, vanishes. The second is interesting insofar as it
sheds hght on the kernel of the HZ-localization map M — E(M).

2.3. Remark. The proof of 2.1 contains an explicit formula for E(M).

There is one lemma.

2.4. Lemma. For any group w and w-module M there is a natural pro-exact
sequence
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0—>{Tor{ (R/I°, I* - M)}, = {I’®= (I' - M)}, = {I* - M}, > 0.

Moreover, the middle tower in this sequence is superperfect, in the sense that the towers
{H:(m;I'®x (I' - M))}, (i =0,1) are both pro-trivial.

2.5. Remark. The proof of 2.4 appears below. It is well-known that I®g (I - M) is
a superperfect r-module if 7 is a perfect group; in fact, I®x (I - M) is the universal
central extension of the perfect w-module I - M [12, 6.2]. The point of 2.4 is that
even if 7 is not perfect (so that I° # I) a similar construction can be made at the
expense of passing to towers.

Proof of 2.1. Let W, denote I'®& (I° - M), and let p,: W, — W,_, be the structure
maps of the tower {W.},. Multiplication gives maps q.: W,— M which are
compatible with the maps W, — W,_, and fit into exact sequences

(26) W.—>M—M/I*-M—0.

Let W denote the infinite product II,., W,. Define a map 9": W — M by
3'(Wo, Wiy .y Wy ... ) = qo(Wo)
and a map 9": W— W by
3"(Wo, Wiy Wy, ... )= (Wo— P1Wi, Wi — P2Way .. oy Wy — Do Wiin, - .2 ).

(Clearly ker 9" = lim{W,}, and coker 9" = !_il_n'{W,},.) Let 9: W—> M@ W be the
direct sum of 3’ and 9”.

Let X denote coker(d). We claim that

(a) X is a Bousfield -module, and

(b) the composite of the inclusion M — M @ W and the projection

M@ W — X is an HZ-map.

Statements (a) and (b) together imply that X is naturally isomorphic to the
H2Z-localization E(M) of M.
To see (a), note that the *‘chain comiple:” C given by

IW-MaW

is the inverse limit of a tower {C,} of chain complex epimorphisms. Here C, is

8,:1-1 W.—»M@( Hl W)

1%5s 157 Aad
where 9, = 3.+ 9%, with

0;(w0a wl, sy W,) = (Io(wo)
and
3"(Wo, Wiy .., W) = (Wo— PiWi, Wy — DPaWa, . .., Weo — DiW,).
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Thus by [19] there is a short exact sequence
0—lim'{h,C.}. = X — lim{h,C.}, >0

where h; denotes,the i homology group functor. By Lemma 2.4 and sequence
(2.6), this exact sequence reads

0> lil_'l_l‘ {Torf(R/I I* - M)}, = X —> C(M)—0.

Sincé M/I* - M and Torf(R/I*, I’ - M) are nilpotent 7-modules, it follows easily
from {6: 8.5, 8.7. 8.9] that X is Bousfield.
Let Y denote image (9: W— M@ W). The long exact homology sequence of

0->Y->MaeW~->X—0

shows that in order to prove (b) it is enough to show that the composite
Y—> Mg W-> W (where the second map is projection) is an HZ-map.
Consider the commutative triangle

Hy(w, W)——> Hy(m; W)

where the top map is induced by 3". The hypothesis on 7 implies that Ho(7; —)
commutes with arbitrary direct products [9] so that the kernel and cokernel of the
top map are isomorphic to l(i_t_n‘ {Ho(m; W,)},, i =0,1, respectively. By 2.4 both of
these groups vanish, so the top map is an isomorphism. Since the map
Ho(mw; W)= Ho(m;Y) is clearly epimorphic, this implies that the map
Ho(m; Y)— Ho(w; W) is also an isomorphism. A similar argument, using the fact
that H,(w; —) commutes with arbitrary direct products and the vanishing of
l‘i_g_nl {H\(w; W,)},, shows that the map Hi(7; Y)— H:(7; W) must be epimorphic.

The second exact sequence of 2.1 arises as the long exact homology sequence of
the chain complex short exact sequence

00— W—- W-0
1 la '16"

0->M->MagW-—-> W—0.

Proof of 2.4. It is clear that the tower {R/I*®z (I° - M)}, is pro-trivial, so thatif
the short exact sequence

0—{I'}, > R—>{R/I'},~>0

is tensored on the right with {I° - M},, what results is the pro-exact sequence of the
lemma. Tensoring the short exact sequence

0—-»I-»R->Z-0 .
on the right with {I*®& (I' - M)}, shows that the second half of the lemma is
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equivalent to the  statement that the  multiplication map
{IerI’'®& (I' - M)}, = {I’®& (I* - M)}, is a pro-isomorphism.
The pro-exact sequence
0 {Tori(Z, ')}, » {I®r I’} = {'}, >0
results from tensoring the second exact sequence above on the right with {I*}, and
noting that {Z®x '}, is pro-trivial. Tensoring further on the right with {I* - M},
gives

{Torf(R,I') @& (I' - M)}, > {I @& I* ®r I’ - M)}, = {I'®= (I' - M)}, —0.

The tower {Tor{(Z, I°)}, is a tower ot nilpotent right r-modules, since Torf(Z, I*)
is isomorphic as a right w-module to To:(Z, R/I*). Since {I’ - M}, is a perfect
tower of -modules, that is, {Z @& (I* - M)}, is pro-trivial, it follows from direct sum
and long exact sequence arguments together with induction on the nilpotency class
of N that {N®r (I* - M)}, is pro-trivial for any nilpotent right w-module N. Thus
{Tor(Z, I*)®= (I° - M)}, is pro-trivial, since this tower is the diagonal of a double

tower {Torf(Z, I*) ®= (I' - M)}, with pro-trivial columns. This conipletes the proof.

3. Lower central series completion

Recall that the lower central series completion C(M) of a w-module M (2.2) is
defined as the inverse limit l(_iP_l{M /I° - M},. This section looks at the problem of
deciding when the HZ-localization functor E for 7-modules is naturally equivalent
to the zero’th left derived functor C, of C {11: V, §5]. The goal is to understand
when the functor E admits a classical description and to determine when the results
of Section 4 can be brought to bear on the problem of computing E in a simple way.

If M is any 7-module, the natural HZ-map M — E(M) induces an isomorphism
C(M)= C(E(M) [7: 8.7, 9.1] whose inverse, composed with the obvious map
E(M)— C(E(M)), gives a natural map E(M)— C(M). Since there is & natural
transformation C,— C which is universal with respect to natural transformations of
right exact functors into C, this natural transformation E — C lifts to a unique
natural transformation E — C.

3.1. Theorem (cf. [10: Theorem 4]). If 7 is a finitely generated pre-nilpotent group,
the natural transformation E — C, is a natural equivalence.

3.2. Remark. The lower central series subgroups I'.(7) of 7 are defined induc-
tively by
I'(m)=m
Fooi(m) = [m, I (7)) s=1.
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The group = is said to be pre-nilpotent [10: 2.3) if there is some integer N such that
I'n+(7) = I'v(w). This is equivalent to requiring that there be a normal subgroup
I'(w) of = such that

- @) [m I(7)]=I'(7), and

(i) ([ () is a nilpotent group. :
All abelian groups and more generally nilpoteni groups are pre- nilpotent, as are all
perfect groups and all finite groups.

3.3. Remark. The finite generation condition in 3.1 can be replaced by the
assumption that

(i) H\(m;Z) is a finitely generated abelian group, and

(ii)) Hi(I'(#); Z) t: a finitely generated = /I'(w)-module.
Example 10.6 of [7] shows that some such assumption is necessary.

For finitely presented groups there is a generalization of 3.1 which admits a
converse. Let @,(m) (s=2) denote the kernel of the natural map
Hy(m;Z)— Hy{w/",-(7); Z). The natural inclusions @..,(m)— ®.(7) give rise to a
tower {®@,(7)}, of abelian groups. In the same way the natural surjections
7w /l.(7w)— w/T(w) give rise to towers {H;(w/I.(7); Z)}, (i =0).

3.4. Theorem. If = is a finitely presented group, the natural transformation E — C,
is a natural equivalence if and only if

() lim'{®.(m)}, =0, and

@ii) im'{Hy(7/I(7); Z)}, = 0.

There is an interesting topological variant of 3.4. In the statement, 7" stands for
the lower central series completion lim (7 /I'. ()} of the group , and Z- denotes the
Bousfield-Kan integral nilpotent completion functor [8).

3.5. Theorem. If m is a finitely presented group, the natural transformation E — C;
is a natural equivalence if and only if the canonical epimorphism
7(Z.(K(m,1)))— =" is an isomorphism.

3.6. Example. Suppose that o is an infinite cyclic group generated by «, and that
M is a free abelian group on two generators x,, x.. Let o act on M by a - x, = - Xi
(i=1,2) and let 7 be the semi-direct product of o with M. It is clear that o is a
finitely presented group. An explicit calculation shows that hm {®.(7)}, does not
vanish, so by 3.4 the natural transformation E — C, of functors on the category of
w-modules is not a natural equivalence. In line with 3.5, it is not hard to show that
there is an exact sequence

1-Z-2}-» mZ.K(m1l)»>n"—1
where Z; denotes the 2-adic integers and the map Z— Z; is 2-adic completion.

The basis for 3.1, 3.4 and 3.5 is
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3.7. Proposition.
(a) For any group w, the natural transformation E — C, is a natural equivalence if
and only if the obvious map F— C(F) is an HZ-map for all free w-modules F.
(b) If mis finitely generated the conditions of (a) hold if and only if H\(m; C(F))
vanishes for all free w-modules F

(©) If = is finitely presented, the conditions of (a) hold if and only if
li_n_l'{Hz(w; R/I)}, =0.

3.8. Example. Bousfield has pointed out {7, 10.2] that l(i_rlx‘ {H,)(m; R/I*)}, van-
ishes if 7 is a finitely presented group such that H,(#; Z) is finite. Thus for such a

group, in particular, for a finitely generated free group, E is naturally equivalent
to Co.

The remainder of this section is taken up with proofs.

Recall that a tower {M,}, is said to be stable or Mittag—Leffler if for each s =0
there is a k =0 such that image (M..; — M,) equals image (M,., — M,) for all
j=k. It is easy to see that lim'{M.}, vanishes if {M,}, is Mittag-Leffler; the
converse, in general, does not hold. However

3.9. Lemma. If {M.}, is a tower of finitely generated abelian groups, then either
() {M.}, is Mittag-Leffler and lim'{M.}, =0, or
(i) lim'{M.}, is uncountable.

This appears in [17].

Proof of 3.7. (a) Since both E and C, are right exact functors, the natural
transformation E — C, is a natural equivalence if and only if it induces an
isomorphism E (F)— Co(F)(= C(F)) for any free 7-module F. Choose some free
F. The module C(F) is Bousfield, since it is an inverse limit of nilpotent 7-modules
[6: 8.5, 8.9]; thus the map E(F)— C(F) is an isomorphism if and only if it is an
HZ-map. Since the natural map F — E(F) is an HZ-map, the map E(F)— C(F) is
an HZ-map if and only if the map F— C(F) is.

(b) If 7 is finitely generated then I is finitely generated as a (right) R-module, so
that techniques of [19] give a short exact sequence

0—>lim'{H,(sr; F/I* - F)}, = Ho(m; C(F))— lim{Ho(; F/I" - F)},—0

for any -module F. If F is free, the tower {H\(m; F/I* - F)}, ={I* - F/I'*'- F}, is
pro-trivial, and the tower {Ho(w; F/I° - F)}, is isomorphic to the constant tower
Hy(w; F). This proves (b). '

(c) If  is finitely presented then [ is finitely presented as a (right) R-module, so
that techniques of [19] give another short exact sequence

0> lim' {Ha(m; F/I* - F)}, > Hi(7 ; C(F))— im{H,(; F/I* - F)}, >0
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for any #-module F. If F is free, the tower {Hy(w; F/I* - F)}, ={I* - F/I'*' - F}, is
pro-trivial as before; this implies that the map F — C(F) isan Hz-map if and only if
lim'(Hx(w; F/I' - F)}, vanishes.

Suppose that hm {Hz(vr, R/I*)}, vamshes An mductlon on s shows that
H,(m;RII’) (s 20) is a finitely generated abelian group, so that 3.9 implies that
the tower {Hx(w; R/I")}, is Mittag-Leffler. Since direct sums of a Mittag-Leffler
tower with itself remain Mittag-Leffler, it follows that the tower {H,(#; F/I* - F)},
is Mittag-Leffler for any free 7-module F. This proves (c).

3.10. Lemma. Lct v be a finitely generated nilpotent group and let J C Z{v] be the
augmentation ideci Then if i >0 the tower {H,(v;Z[v}/J*)}, is pro-trivial.

Proof. If i>0. the tower {Hi(v;Z[v]/J*)}. is isomorphic to the tower
{H,-(v; J*)}.. Since {Ho(v; J*)}, = {J*/J**"}, is pro-trivial, the lemma follows from
[15, Theorem 2] and the fact that Z[v] is Noetherian [15; (5)].

Proof of 3.1. Let F be a free w-module. According to 3.7, it is enough to show that
Hi(m; C(F))=0. Let I" be I'(7), and let v be the finite generated nilpotent group
m/I. The proof will consist in showing that Ej,=E},=0 in the
Lyndon-Hochschild-Serre spectral sequence

Eij= H,(v; H(T'; C(F))) => Hi.;(m; C(F)).

Let J C Z[v] be the augmentation ideal. It is well-known [10: Lemma 2] that I’
acts trivially on each of the nilpotent 7-modules F/I° - F, so that the modules
F/I’ - F and C(F) are in fact given as modules over ». Let F' be the free v-module
Hy(T;F). It follows easily that for each s there is a canonical v-module
isomorphism

F/I'-F=F'lJ* - F'

and thus, as a v-module, C(F) is isomorphic to l(i_g_n(F'/J’ + F'},. Since Z[v] is
Noetherian, techniques of [19] give a short exact sequence

0— lim' {H(v; F'/J* - F)}. > Hi(v; C(F))
— lim{H,(v; F'1J* - F')}, >0.

Since direct sums of a pro-trivial tower with itself remain pro-trivial, Lemma 3.10
shows that H,(v; C(F)) = E}, vanishes.

It remains to show that E}, = Hy(v; H,(I'; C(F))) vanishes. Since I' acts trivially
on C(F), E}., is isomorphic to M®y,) C(F), where for brevity M denotes H,(I"; Z)
considered as a right »-module via the canonical anti-automorphism of Z[v]. Since
H.(I';2) is finitely generated over Z[»] [IC Lemma 3] and Z[v] is Noetherian, -
there is a short exact sequence [19]
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0 lim'{Tor{"\(M, F'/J* - F")},
= M®z,) C(F)— im{M®u., F'/J* - F'}, > 0.

Thus it is certainly enough to skow that Tor{™ (M, N)=0 for any i =0 and any
nilpotent »-module N. Using induction on the nilpotent class of N together with
simple co-limit and long exact sequence arguments, it is possible to reduce this to
the case in which N is the trivial v-module Z. However, Tor!*!(M, Z) is isomorphic
to H, (v; H,(I, Z)). Since [, I'} = I, the zero’th homology group Ho(v; H,(I";Z))
vanishes, so the proof can be completed by using [15: Theorem 1].

3.11. Lemma. Suppose that 7 is a finitely generated group and that {M.},., is a
tower of Bousfield mw-modules. Then hm'{M,}, vanishes if and only if
li(__r_n'{Ho('lr; M,)}, does.

Proof. Let W denote the infinite product Il,.., M,, and let 3: W — W be the map
given by

a(mo, Mmy,...,M, ... ) = (mo" p.(m,), B (" p,+|(m,+|), .. )

where the maps p...: M,.,,— M, are the tower maps. Then W is a Bousfield
w-module [6: 8.5] and coker (9) is isomorphic to lim'{M.}.. Since = is finitely
generated the functor Ho(7; — ) commutes with arbitrary products (cf. [9], [19]), so
that coker (Ho(7; 9)) is isomorphic to lim'{H;{w; M,)},. The lemma follows from
the fact that in general a map M — N of Bousfield 7-modules is an epimorphism if
and only if the induced map Ho(7; M)— Hy(#; N) is an epimorphism [7: 7.8].

Proof of 3.4. The proof will show that if 7 is finitely presented conditions (i) and
(ii) of 3.4 are equivalent to the vanishing of lim'{Ho(#;Tors(R/I’,Z))},. The
theorem then follows from 3.11, 3.7(c), and the observation that tower
{Tor§ (R/I*; Z)}, is isomorphic to {Torf (Z, R/I*)}, = {H:(m, R/I*)}, via the canoni-
cal anti-aut~ norphism of R = Z[~].

For each s =1 let », be the finitely generated nilpotent group # /I (). It is
well-known that the m-module structure on R/I° factors through a natural
v.-module structure [10, Lemma 2]; in fact, as a v,-module R/I* is naturally
isomorphic to Z[»,)/(J.), where J. C Z[v,] is the augmentation ideal. The action of
v, on R/I® induces an action of v, on Torf(R/I’, M) for any w-module M and
j =0.

] The main ingredient in the proof of 3.4 is a certain first quadrant spectral sequence
tower of homological type:

{Ei(i,j)= H: (v.; Tor}(R/I', M)} => Hi.;(7; M).

The symbolism means that for a given 7-module M the spectral sequence tower
converges to a limit which is pro-isomorphic, in each dimension n =0, to the
constant tower H,(m;M). This is a stz.:dard composition-of-functors spectral
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sequence tower corrcsponding to the natural pro-isomorphism between the con-
stant tower Ho(m; M) and {Ho(v.; R/I*®x M)}.. To set up the spectral sequence
tower in the usual way it is necessary to check that {H, (v,; R/I°®r F)}, is pro-trivial
 whenever i >0 and F is a free m-module. This follows from the fact that
- {H; (v.; R/I’®r F)}s is the direct sum of a number of copies of the diagonal of a
double tower {H, (v.; Z[v.]/(J:)')}., whose columns, by 3.10 are all pro-trivial.

In the above spectral sequence, let M be the trivial 7-module Z. The tower
{Torf(R/I*, Z)}s = {I*/I**"}, is pro-trivial, so the towers {E2(i, 1)}, (i =0) are also
pro-trivial. In addition, {E3(i,0)}, (i =0) is isomorphic to {H,(v.;Z)}, and
{EZ(2,0)}, is isomorphic to {Ho(m;Tors(R/I%,Z))},, which shows that in low
dimensions the spectral sequence tower degenerates into the long pro-exact
sequence

Hi(m;Z) - {Hi(v,; 2)}, = {Ho(7; Tord (R/I*, 2))},
— Hy(7;2)— {H.(»,; 2)}, - 0.
Let ¥.(7) denote coker (Hs(w; Z)— H,(v.; Z)). The short pro-exact sequence
0—{¥, (7)}, = {Ho(m; Torz (R/I*, Z))}, = {D. (w)}, =0

gives rise to a long exact sequence

0— lim{¥, ()} = im{Ho(7; Torz (R/I", 2))}
i lil_ﬂ{‘b, (7):— li(__ml{'l’s (m)}s
— l(i_gl {Ho(m; Tor; (R/I*, 2))}, — l(i_ll\l{¢s (m)}s —0.
Thus lim* {H,(7; Tor3' (R/I", Z))}, vanishes if and only if lim'{®, (7)}. vanishes and
lim{®. ()}, maps onto lim'{¥,(m)}. However, since v, is a finitely generated
‘nilpotent group ¥, (w) is a finitely generated abelian group, so, by 3.9, if the

subgroup lim{¢®. (w)}. of H:(m,Z) maps onto lim'{¥, ()}, this latter group must
vanish. The proof is finished by the observation that the pro-exact sequence

Hy(m,Z)— {Hs(v.; Z)}, = {¥, (w)}, >0
gives use to an exact sequence

0= l(i_g1 Hy(m;2)—> l(i_r__n‘ {Ha(v; 2)}, = lim'{ ¥, (7)}, = 0.

Proof of 3.5. This follows from 3.7(c), [16, 3.1] and [8: IX, §3). The existence of a
canonical epimorphism ,Z.(K(m,1))— 7" comes from the fact that the tower
{mZ,{K(m, 1))}, is naturally pro-isomorphic to {=/I (w)}, [8: pp. 30, 125, 251].
Note that the spectral sequence which figured in the proof of 3.4 is essentially the
Serre spectral sequence of the fibration tower

{z.K(m, 1)}, = {2.K (7, 1)} = {K(mZK (m, 1), 1)},

where tilde denotes universal cover.
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4. Groups of type (FP)

A group = is said to be of type (FP) if the trivial w-module Z has a resolution of
finite length made up of finitely generated projective R-modules. This section
provides a way to compute the left derived functors C; (i =0) of the lower central
series completion functor C (2.2) on the category of modules over a group of type
(FP). In favorable cases (4.8) this method gives a simple homological formula for
the functors C. If C, happens to coincide with the HZ-localization functor E (3.1,
3.4, 3.8), the zero-dimensional part of this formula is a simple expression for E
itself.

A brief sketch of the method may help to clarify the peculiarities of the modules
involved. The starting point is to write the modules M/I* - M which appear in the
definition of C(M) as Torg (R/I°, M). This notation makes clear that the formation
of M/I’ - M depends on the left R-module structure of M and the right R-module
structure of R/I*. This right R-module structure of R/I° can be dualized in a more
or less standard way to get left R-moduies, in terms of which Torj (R/I*, M) can be
expressed using Exti(—,M). The dualization process transforms the inverse
system {R/I‘}, into a direct system of dual modules; it turns out that the derived
functors of C can be computed by first taking a direct limit of these dual modules
and then applying Extk(—, M). Tke extra left R-module structure on each R/I” is
reflected in a right R-module structure on the dual modules; this passes to the
direct limit and induces the usual left R-module structure on C,(M) when
Exti(—, M) is applied.

Given the group m, let K, () (j = 0) be the direct limit lim, Extk(R/I°, R), where
Ext is taken in the sense of right R-modules, and the maps in the direct system are
induced by the usual epimorphisms R/I* — R/I*"'. Each K;(7) has commuting left
and right 7-module structures: the left action of 7 is induced by the usual lefi
action of 7 on R, and the right action of 7 by the usual left action of 7 on each
R/I’. Tt is not hard to see that if the trivial left or right 7-module Z possess a
projective resolution of finite length over R

0—-»P,—»P,_ - —>P—>P—>2—-0,
for instance, if 7 is of type (FP), then K;(+) vanishes for j>n +1.

The basic result of this section is

4.1. Theorem. If 7 is of type (FP), then for any w-module M there is a strongly
convergent second quadrant spectral sequence of homological type:

2 = Extz (K (), M) => C..i(M).

4.2. Remark. The Ext’s which form the E*-term of this spectral sequence are of
course computed in the sense of left R-modules. However, the extra right action of
R on K;(w) furnishes the groups Extx'(K;(w), M) with a left R-module structure
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which cOmm‘utés with the differentials and, on passage to E”, corresponds to the
usual left action of R on C,(M).

4.3. Remark. The above spectrai sequence exists as long as  is of type (FP), that
is, as long as the trivial 7-module Z admits a (possibly infinite) resolution by finitely
generated projective R-modules. However, the spectral sequence does not neces-
sarily converge under this weaker hypothesis, even if oniy a finite number of the
.modules K;(7) are non-zero. An example of such failure to converge can be
obtained by letting 7 be a non-trivial finite perfect group.
The group = is said to be a duality group [3,0.3] of dimension n if
(i) = is of tvpe (FP) (cf. [9)),
(44) (i) H*(m;R)=0, k# n,
(iii) H" (7; R) is torsion free.
Condition (ii) and (i'i) are equivalent to
(i) Extx(Z, R)=0, k#n,
(iii)’ Extr(Z, R) = D is torsion-free,
where Z is the trivial R-module and the Ext’s are taken in the sense of right
R-modules. The abelian group D with left 7-action induced by the extra left action
of # on R is called the dualizing module for w. (This differs slightly but
inessentially from the usual definition of dualizing module [3, 1.2].) Many examples
of duality groups are given in [3] and [4].
If 7 is a duality group the modules K; (7) are especially accessible, in view of

4.5. Proposition. Suppose that = is a duality group of dimension n, with dualizing
module D. Then K () vanishes for j# n, n + 1, and there are natural isomorphisms

K, (7m)= D®; lim Hom, (R/I", 2)

K. (7m)=~ D@:limExt: (R/I", Z).
4.6. Remarks. Under the indicated isomorphism, the right action of 7 on K,(#)
is induced by the left action of 7 on each R/I*, while the left action of 7 on K, ()

is a diagonal action induced by the left action of = on D and the right action of 7
on each R/I’. A corresponding statement holds for K,.:(w).

4.7. Remark. A result similar to 4.5 holds without the restriction 4.4(iii)’ that D

be torsion-free. In this more general setting the formula for K, () is replaced by a
short exact sequence

0—lim D®:Hom; (R/I",Z)— K,(m)—> lim Tor*(D, Ext(R/I*, Z)) > 0.

The formula for K,.,(#) remains unchanged.

It follows from 4.5 that for a duality group = the spectral sequence of 4.1
collapses into a long exact sequence. There is even further collapse if the lower
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central series quotient 7 /I';(7) (3.2) of 7 are torsion-free. In this case the abelian
groups R/I* are torsion-free [1, 1.3}, so (4.13) K, ..(w) vanishes.

4.8. Corollary. Suppose that 7 is a duality group of dimersion n with torsion-free
lower central series quotients. Let D be the dualizing module for n. Then for any
w-module M there are natural isomorphisms,

CI(M)zExt;"(Dg,li_n;Homz(R/I’, Z).,M), j=0.

The formulas of 4.5 and 4.8 simplify if the dualizing module D is additively
isomorphic to ar. infinite cyclic group, that is, if 7 is a Poincaré duality group [2].

4.9. Example. Suppose that 7 is a finitely generated torsion-free nilpotent group.
By [2, 3.1.2] 7 is an (oriented) Poincaré duality group (that is, a Poincaré duality
group which acts trivially on its dualizing module). Thus if 7 also has torsion-free
lower central series quotients, there are natural isomorphisms (3.1, 4.8)

E(M)= Cy(M) = Extg (ly_x; Hom.(R/I", Z), M)
for any 7w-module M, where n is the duality dimension of #. For instance, if 7 is an
infinite cyclic group generzted by a there is a natural isomorphism
E(M)=Ext:(K, M)

where K is additively isomorphic to the free abelian group on a countable number
of generators xo, X1, X2, ... and has identical I=ft and right w-actions given by

A Xo=Xo"Q = Xo -

QA Xi=X*0=X— Xi—1 (i>0),
that is
(l—a)'xi = Xi-1 (i >0).
It will be convenient to have some siinple leminas to refer to in the proofs of 4.1

and 4.5.
Let M be a right R-module. A projective resolution

—-P g P - P —->P,->M-0

of M is said to have length < n if P; vanishes for i > n. The resolution is said to be
finite if it has length < n for some n and each P is z finitely generated projective
right R-module.

Let

0->M—->M->M"-0

be a short exact sequence of right R-modul-.
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- 4.10. Lemma. IfMand M have ﬁmte projective resolutions of length < n, then M"
has a finite pro;ectwe resolution of length <n+1.

In fact, the resolutlon of M" can be chosen to be the maupmg cone [18, p. 46] ofa
_‘smtable map between resolutlons of M’ and M.

4. ll. Lemma [11 V 2. 2] Let F' and F" be projective resolutions of M' and M"
respectively. Then there is a resolution F of M which fits into a short exact sequence

0>F—>F->F -0
covering the original sitort exact sequence of modules.

Note that if the diffe: entials are discounted F is isomorphic to the direct sum of F”
and F'.

4.12. Lemma. Let M be a left w-module. Define a right action of m on R@M =
R@z M by

regm)-a= (r-a)e(a™-m) reRmeMNacEm

Then Tor(R ® M, Z) vanishes unless i =0, and the left action of 7w on R makes
Tors (R ® M, Z) into a left w-module which is naturally isomorpkic to M.

4.13. Lemma. If 7 is a group of type (FP) the w-modules I*'/I**' and R/I* (s <1)
are finitely generated as abelian groups.

In fact, the conclusion of 4.13 holds if and only if Hy(w;Z)=I/I? is finitely

| generated. This is seen by induction on s, using the multiplication surjections
(I/Iz)®(IS_I/IS)'-)Is/Is+l.

Proof of 4.1. Since = is of type (FP), the trivial left or right w-module Z possesses
a finite projective resolution over R of length, say, < n. It follows from 4.13 and
4.10 that the trivial right #-modules I°/I**' (s =1) possess finite projective
resolutions over R of length <n +1.

By 4.11, it is possible to construct inductively resolutions F, of the right
R-modules R/I° (s = 1) such that

(4.14) (i) F. is a finite projective resolution of length <n+1 and
(ii) there are surjective maps F, — F,_, which cover the usual surjections
R/I'-> R/’

Let F denote the cochain complex lim. Homg (F;, R), where Hom is of necessity
taken in the sensc of right R-modules and the maps in the direct systems are
induced by those of 4.14(ii). The left action of R on itself makes F into a cochain
complex of left R-modules; . .ice direct limits are exact, the i™ cohomology group
of F (i =0) is naturally isomorphic to K;(w).
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For any left R-module M, let W,;(M) (i <0) be the i homology group of the
chain complex Homg (F, M). It is not hard to see that the abelian groups W;(M)
are actually left R-modules in a natural way. In fact, left multiplication by any
element r of R induces right R-m:dule endomorphisms u(r),: R/I‘— R/I".
Using 4.14(ji) these can be lifted to resolution maps A(r)*: F, = F, which form a
coherent family, in the sense that the diagrams

F,s —— Fs-l
ACL | LAt

F: —_— Fs-l

all commute. Moreover, any two such coherent fz milies of resolution endomorph-
isms corresponding to the same element of R are coherently chain homotopic.
This coherent left action of R, up to chain homotopy, on the resolutions F, induces
a right action of R, up to cochain homnotopy, cn the cochain complex F, and
therefore an actual left action of R on the homclogy groups W;(M).

The dual Homz (P, R) of a finitely generated projective right R-module P is
finitely generated projective left R-module. Together with 4.24(ii) this implies that
F is a cochain complex of projective left R-modules. Thus a short exact sequence

0O M->M->M"->0

of left R-modules gives rise to a short exact sequence
0— Homg (F, M’')— Homg (F, M)—> Homg (F,M")—0

of chain complexes, and hence to a long exact homology sequence
4.15) ->WM)-»W,(M)-» WM)>W_(M)>---— W(M")—=C.

If P is a finitely generated projective right R-module and M is a left R-module
the natural map

P®r M — Homgr (Homg (P, R), M)

is an isomorphism. Consequently, for any left R-module M there are natural
isomorphisms

Hom (F, M) = Homs (h_lg Hom (F., R), M)
=~ lim {Homp (Home (F,, R), M )}
= 12_‘_‘_1 Fs ®R M-

The techniques of [19] thus imply that there are natural short exact sequences
0— Lm'{Tor(R/I*, M)}, — W,(M)— lim{Tor(R/I°, M)}, — 0.

In particular, there is a natural map Wo(M)— C(M); if M is free, this map is an
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isomorphism and the modules W,(M) vanish for i >0. In view of 4.15, this shows
that W; is naturally equivalent to the i™ left derived functor C; of C.

Since F is a cochain complex of projective modules, the desired spectral sequence
is just the hypercohomology spectral sequence of [11: XVII, §2]. This converges
strongly for the trivial reason that F vanishes above dimension n + 1.

Proof of 4.5. For the purposes of this proof Ext%(—, — ) will always denote Ext in
the sense of right R-modules.

The proof depends on the fact that for any right 7-module M there is a natural
first quadrant composition-of-functors spectral sequence of cohomological type

E?,= Extk (Z, Exti (M, R)) => Ext{’/(M, R).

Here the action of  on Homz(M, R) is given by
(fra)x)=(f(x-a™)-a fEHom(M,R)
xEMa€En

and there is a corresponding description of the action of R on Ext;(M, R).

If M is R/I*, the E*-term of this spectral sequence can be computed in two steps.
First of all, R/I* and R are, respectively, finitely generated (4.13) and free as
abelian groups, so that there are natural isomorphisms

Ext;(R/I',R)= R@:Ext;(R/I',Z), j=0,1
which can be made into isomorphisms of right R-modules by putting the proper
module structure on the right hand sides.

Secondly, the fact that #r is a duality group of dimension n implies that for any
right 7-module M there are natural isomorphisms

(4.16)  Extx(Z,M)=Tory- (D ®: M, Z)
~ where Z, as an argument of Tor® (-, -), denotes the trivial left R-module and the
right action of 7 on D®: M is given by

dom)-a=(a'd)a(m - a), a€EmdeED meEM.

Consequently, there are natural isomorphisms

E’;j~Extr(Z,Ext; (R/I°, R)) = Torr(R®: Dg: Exty (R/I*, 2), Z).

The proof is finished by applying 4.12 and taking a direct limit over s.

The claim in remark 4.7 can be proved by showing that if D is not torsion-free
the isomorphisms 4.16 «re replaced by isomorphisms

Extk(Z, M) =~ Tork_.(M, D).
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