HOMOLOGICAL LOCALIZATION OF π -MODULES*

W.G. DWYER

Yale University, Department of Mathematics, Box 2155, Yale Station, New Haven, Conn. 06520, U.S.A.

Communicated by G. Heller Received 19 February 1976

1. Introduction

A.K. Bousfield recently characterized the topological spaces which are determined up to homotopy by their integral homology type [6]. As part of this characterization he introduced and studied, for any group π , a homology localization functor E on the category of π -modules. In theory, for any π -module M the localization E(M) can be constructed either as a transfinite direct limit [6: 8.4, 11.5] or as a transfinite inverse limit [7, §8]; there are also some concrete formulas known for E(M) in special cases ([5: 2.7, 2.10, 2.11], [10, Theorem 4]). In practice, however, the exact nature of the functor E and of its relationship to more familiar homological constructions has remained unclear. The present paper is an attempt to remedy this, with a view toward topological applications in [13] and [14].

Recall that a map $f: M \to M'$ of π -modules is said to be an HZ-map if the induced homomorphism $H_i(\pi; M) \to H_i(\pi; M')$ is an isomorphism for i = 0 and an epimorphism for i = 1. A π -module N is said to be HZ-local or Bousfield if every HZ-map $M \to M'$ induces a one-one correspondence $\operatorname{Hom}_{\pi}(M', N) \to \operatorname{Hom}_{\pi}(M, N)$. Bousfield has shown [6, 5.4] that for any group π there exists a functor E on the category of π -modules such that

(i) for all M, E(M) is Bousfield, and .

(ii) there is a natural HZ-map $M \rightarrow E(M)$.

This E is called the HZ-localization functor; it is additive, right exact, and has many other properties ([6, \$8], [7, \$\$7-9]).

The plan of this paper is as follows. Section 2 gives a fairly complete description of E under the single assumption that π is a finitely presented group. Section 3 studies the question of when E is naturally equivalent to the zero'th left derived functor of the familiar lower central series completion functor (2.2); this is the case for many interesting groups (3.1, 3.8), but not for all finitely presented groups (3.6). Finally, Section 4 uses the results of Section 3 and a duality construction to produce exceptionally simple formulas for E in some instructive special cases (4.9).

^{*} This research was in part supported by the National Science Foundation.

Throughout the paper, π denotes a given group, $R = \mathbb{Z}[\pi]$ its integral group ring, and $I \subseteq R$ the augmentation ideal. The terms π -module and R-module are used synonymously. With the exception of the first argument of $\operatorname{Tor}_{*}^{R}(-, -)$, all unspecified modules are left modules. The additive group of integers Z is always considered to be a trivial left or right π -module, in the sense that each element of π acts on Z as the identity map; thus $H_i(\pi; -)$ is another name for the functor $\operatorname{Tor}_i^{R}(\mathbb{Z}, -)$.

A tower $\{M_s\}_s$ of abelian groups, π -modules, etc., is a family of such objects, indexed by the non-negative integer s, together with maps $M_{s+1} \rightarrow M_s$. In most cases the maps are obvious and are not made explicit. The elementary algebraic properties of towers [8; III, §2] play a large role in this paper, as do the related properties of the in 'erse limit functor $\lim_{t \to \infty} and$ its right derived functor $\lim_{t \to \infty} ([19], [8:$ IX, §2]).

I would like to thank A.K. Bousfield, K. Brown and E. Dror for valuable ideas; to some extent Section 3 of this paper overlaps their work.

2. Finitely presented groups

The purpose of this section is to compute the HZ localization functor E on the category of π -modules if π is a *finitely presented* group, that is, if π admits a presentation with a finite number of generators and a finite number of relations. The main result is

2.1. Theorem. Suppose that π is a finitely presented group. Then for any π -module M there are natural exact sequences

and

 $0 \to \varprojlim^{1} \{ \operatorname{Tor}_{1}^{R}(R/I^{s}, I^{s} \cdot M) \}_{s} \to E(M) \to C(M) \to 0$ $0 \to \varprojlim^{R} \{ \operatorname{Tor}_{1}^{R}(R/I^{s}, I^{s} \cdot M) \}_{s} \to \varprojlim^{R} \{ I^{s} \otimes_{R} (I^{s} \cdot M) \}_{s}$ $\to M \to E(M) \to \varprojlim^{1} \{ I^{s} \otimes_{R} (I^{s} \cdot M) \}_{s} \to 0.$

2.2. Remark. The lower central series completion $\lim_{I} \{M/I^* \cdot M\}_s$ of M is denoted by C(M). The first exact sequence of 2.1 shows that E(M) is isomorphic to C(M) if and only if $\lim_{I \to 1} \{\operatorname{Tor}_1^R(R/I^s, I^s \cdot M)\}_s$ vanishes. The second is interesting insofar as it sheds light on the kernel of the HZ-localization map $M \to E(M)$.

2.3. Remark. The proof of 2.1 contains an explicit formula for E(M).

There is one lemma.

2.4. Lemma. For any group π and π -module M there is a natural pro-exact sequence

 $0 \to \{\operatorname{Tor}_{I}^{R}(R/I^{s}, I^{s} \cdot M)\}_{s} \to \{I^{s} \otimes_{R} (I^{s} \cdot M)\}_{s} \to \{I^{s} \cdot M\}_{s} \to 0.$

Moreover, the middle tower in this sequence is superperfect, in the sense that the towers $\{H_i(\pi; I^s \otimes_R (I^s \cdot M))\}_s$ (i = 0, 1) are both pro-trivial.

2.5. Remark. The proof of 2.4 appears below. It is well-known that $I \otimes_R (I \cdot M)$ is a superperfect π -module if π is a *perfect* group; in fact, $I \otimes_R (I \cdot M)$ is the *universal* central extension of the perfect π -module $I \cdot M$ [12, 6.2]. The point of 2.4 is that even if π is not perfect (so that $I^2 \neq I$) a similar construction can be made at the expense of passing to towers.

Proof of 2.1. Let W_s denote $I^s \otimes_R (I^s \cdot M)$, and let $p_s \colon W_s \to W_{s-1}$ be the structure maps of the tower $\{W_s\}_s$. Multiplication gives maps $q_s \colon W_s \to M$ which are compatible with the maps $W_s \to W_{s-1}$ and fit into exact sequences

$$(2.6) \qquad W_s \xrightarrow{q_s} M \to M/I^{2s} \cdot M \to 0.$$

Let W denote the infinite product $\prod_{x \neq 0} W_x$. Define a map $\partial': W \to M$ by

 $\partial'(w_0, w_1, \ldots, w_s, \ldots) = q_0(w_0)$

and a map $\partial'': W \to W$ by

$$\partial''(w_0, w_1, \ldots, w_s, \ldots) = (w_0 - p_1 w_1, w_1 - p_2 w_2, \ldots, w_s - p_{s+1} w_{s+1}, \ldots).$$

(Clearly ker $\partial'' = \lim_{t \to 0} \{W_s\}$, and coker $\partial'' = \lim_{t \to 0} \{W_s\}_{s}$.) Let $\partial: W \to M \oplus W$ be the direct sum of ∂' and ∂'' .

Let X denote $coker(\partial)$. We claim that

- (a) X is a Bousfield π -module, and
- (b) the composite of the inclusion $M \rightarrow M \oplus W$ and the projection

 $M \oplus W \rightarrow X$ is an HZ-map.

Statements (a) and (b) together imply that X is naturally isomorphic to the HZ-localization E(M) of M.

To see (a), note that the "chain complex" C given by

 $\partial: W \to M \oplus W$

is the inverse limit of a tower $\{C_s\}$ of chain complex epimorphisms. Here C, is

$$\partial_s : \prod_{i \leq s} W_i \to M \oplus \left(\prod_{i \leq s-1} W_i \right)$$

where $\partial_s = \partial'_s + \partial''_s$, with

$$\partial'_{s}(w_{0}, w_{1}, \ldots, w_{s}) = q_{0}(w_{0})$$

and

 $\partial_{s}''(w_{0}, w_{1}, \ldots, w_{s}) = (w_{0} - p_{1}w_{1}, w_{1} - p_{2}w_{2}, \ldots, w_{s-1} - p_{s}w_{s}).$

Thus by [19] there is a short exact sequence

$$0 \to \lim^{1} \{h_1 \mathbf{C}_s\}_s \to X \to \lim \{h_0 \mathbf{C}_s\}_s \to 0$$

where h_i denotes the *i*th homology group functor. By Lemma 2.4 and sequence (2.6), this exact sequence reads

$$0 \to \lim^{1} \{ \operatorname{Tor}_{1}^{R}(R/I^{s}, I^{s} \cdot M) \}_{s} \to X \to C(M) \to 0.$$

Since $M/I^s \cdot M$ and $\operatorname{Tor}_{I}^{R}(R/I^s, I^s \cdot M)$ are nilpotent π -modules, it follows easily from [6: 8.5, 8.7, 8.9] that X is Bousfield.

Let Y denote image $(\partial: W \to M \oplus W)$. The long exact homology sequence of

$$0 \to Y \dashrightarrow M \oplus W \to X \to 0$$

shows that in order to prove (b) it is enough to show that the composite $Y \rightarrow M \oplus W \rightarrow W$ (where the second map is projection) is an HZ-map.

Consider the commutative triangle

$$H_0(\pi, W) \xrightarrow{} H_0(\pi; W)$$

$$H_0(\pi; Y)$$

where the top map is induced by ∂'' . The hypothesis on π implies that $H_0(\pi; -)$ commutes with arbitrary direct products [9] so that the kernel and cokernel of the top map are isomorphic to $\lim_{t \to 0} \{H_0(\pi; W_s)\}_s$, i = 0, 1, respectively. By 2.4 both of these groups vanish, so the top map is an isomorphism. Since the map $H_0(\pi; W) \rightarrow H_0(\pi; Y)$ is clearly epimorphic, this implies that the map $H_0(\pi; Y) \rightarrow H_0(\pi; W)$ is also an isomorphism. A similar argument, using the fact that $H_1(\pi; -)$ commutes with arbitrary direct products and the vanishing of $\lim_{t \to 0} \{H_1(\pi; W_s)\}_s$, shows that the map $H_1(\pi; Y) \rightarrow H_2(\pi; W)$ must be epimorphic.

The second exact sequence of 2.1 arises as the long exact homology sequence of the chain complex short exact sequence

$$\begin{array}{cccc} 0 \to 0 \to & W \to & W \to 0 \\ \downarrow & & \downarrow_{\partial} & & \downarrow_{\partial''} \\ 0 \to M \to M \oplus W \to & W \to 0. \end{array}$$

Proof of 2.4. It is clear that the tower $\{R/I^* \otimes_R (I^* \cdot M)\}_s$ is pro-trivial, so that if the short exact sequence

$$0 \to \{I^s\}_s \to R \to \{R/I^s\}_s \to 0$$

is tensored on the right with $\{I^* \cdot M\}_{s}$, what results is the pro-exact sequence of the lemma. Tensoring the short exact sequence

$$0 \to I \to R \to \mathbb{Z} \to 0$$

on the right with $\{I^* \otimes_R (I^* \cdot M)\}_s$ shows that the second half of the lemma is

138

equivalent to the statement that the multiplication map $\{I \otimes_R I^s \otimes_R (I^s \cdot M)\}_s \rightarrow \{I^s \otimes_R (I^s \cdot M)\}_s$ is a pro-isomorphism.

The pro-exact sequence

 $0 \to \{\operatorname{Tor}_{1}^{R}(\mathbb{Z}, I^{s})\}_{s} \to \{I \otimes_{R} I^{s}\}_{s} \to \{I^{s}\}_{s} \to 0$

results from tensoring the second exact sequence above on the right with $\{I^s\}_s$ and noting that $\{Z \otimes_R I^s\}_s$ is pro-trivial. Tensoring further on the right with $\{I^s \cdot M\}_s$ gives

 $\{\operatorname{Tor}_{I}^{R}(R, I^{s}) \otimes_{R} (I^{s} \cdot M)\}_{s} \to \{I \otimes_{R} I^{s} \otimes_{R} I^{s} \cdot M)\}_{s} \to \{I^{s} \otimes_{R} (I^{s} \cdot M)\}_{s} \to 0.$

The tower $\{\operatorname{Tor}_{1}^{R}(\mathbb{Z}, I^{s})\}\$, is a tower of nilpotent right π -modules, since $\operatorname{Tor}_{1}^{R}(\mathbb{Z}, I^{s})$ is isomorphic as a right π -module to $\operatorname{Tor}_{2}^{R}(\mathbb{Z}, R/I^{s})$. Since $\{I^{s} \cdot M\}\$, is a *perfect* tower of π -modules, that is, $\{\mathbb{Z} \otimes_{R} (I^{s} \cdot M)\}\$, is pro-trivial, it follows from direct sum and long exact sequence arguments together with induction on the nilpotency class of N that $\{N \otimes_{R} (I^{s} \cdot M)\}\$, is pro-trivial for any nilpotent right π -module N. Thus $\{\operatorname{Tor}_{1}^{R}(\mathbb{Z}, I^{s}) \otimes_{R} (I^{s} \cdot M)\}\$, is pro-trivial, since this tower is the diagonal of a double tower $\{\operatorname{Tor}_{1}^{R}(\mathbb{Z}, I^{s}) \otimes_{R} (I^{t} \cdot M)\}\$, with pro-trivial columns. This completes the proof.

3. Lower central series completion

Recall that the lower central series completion C(M) of a π -module M (2.2) is defined as the inverse limit $\lim_{t \to 0} \{M/I^s \cdot M\}_s$. This section looks at the problem of deciding when the HZ-localization functor E for π -modules is naturally equivalent to the zero'th left derived functor C_0 of C [11: V, §5]. The goal is to understand when the functor E admits a classical description and to determine when the results of Section 4 can be brought to bear on the problem of computing E in a simple way.

If M is any π -module, the natural HZ-map $M \to E(M)$ induces an isomorphism $C(M) \approx C(E(M) \ [7: 8.7, 9.1]$ whose inverse, composed with the obvious map $E(M) \to C(E(M))$, gives a natural map $E(M) \to C(M)$. Since there is a natural transformation $C_0 \to C$ which is universal with respect to natural transformations of right exact functors into C, this natural transformation $E \to C$ lifts to a unique natural transformation $E \to C_0$.

3.1. Theorem (cf. [10: Theorem 4]). If π is a finitely generated pre-nilpotent group, the natural transformation $E \rightarrow C_0$ is a natural equivalence.

3.2. Remark. The lower central series subgroups $\Gamma_s(\pi)$ of π are defined inductively by

$$\Gamma_{1}(\pi) = \pi$$

$$\Gamma_{s+1}(\pi) = [\pi, \Gamma_{s}(\pi)] \qquad s \ge 1.$$

The group π is said to be *pre-nilpotent* [10: 2.3] if there is some integer N such that $\Gamma_{N+1}(\pi) = \Gamma_N(\pi)$. This is equivalent to requiring that there be a normal subgroup $\Gamma(\pi)$ of π such that

(i) $[\pi, \Gamma(\pi)] = \Gamma(\pi)$, and

(ii) $\pi/\Gamma(\pi)$ is a nilpotent group.

All abelian groups and more generally nilpotent groups are pre-nilpotent, as are all perfect groups and all finite groups.

3.3. Remark. The finite generation condition in 3.1 can be replaced by the assumption that

(i) $H_1(\pi;\mathbb{Z})$ is a finitely generated abelian group, and

(ii) $H_1(\Gamma(\pi);\mathbb{Z})$ is a finitely generated $\pi/\Gamma(\pi)$ -module.

Example 10.6 of [7] shows that some such assumption is necessary.

For finitely presented groups there is a generalization of 3.1 which admits a converse. Let $\Phi_s(\pi)$ $(s \ge 2)$ denote the kernel of the natural map $H_2(\pi; \mathbb{Z}) \rightarrow H_2(\pi/\Gamma_{s-1}(\pi); \mathbb{Z})$. The natural inclusions $\Phi_{s+1}(\pi) \rightarrow \Phi_s(\pi)$ give rise to a tower $\{\Phi_s(\pi)\}_s$ of abelian groups. In the same way the natural surjections $\pi/\Gamma_{s+1}(\pi) \rightarrow \pi/\Gamma_s(\pi)$ give rise to towers $\{H_i(\pi/\Gamma_s(\pi); \mathbb{Z})\}_s$ $(i \ge 0)$.

3.4. Theorem. If π is a finitely presented group, the natural transformation $E \rightarrow C_0$ is a natural equivalence if and only if

(i) $\lim_{t \to 0} {\Phi_s(\pi)}_s = 0$, and

(ii) $\lim_{t\to\infty} \{H_3(\pi/\Gamma_s(\pi); \mathbb{Z})\}_s = 0.$

There is an interesting topological variant of 3.4. In the statement, π^{\uparrow} stands for the lower central series completion $\lim_{t \to \infty} (\pi/\Gamma_s(\pi))_s$ of the group π , and \mathbb{Z}_{∞} denotes the Bousfield-Kan integral nilpotent completion functor [8].

3.5. Theorem. If π is a finitely presented group, the natural transformation $E \to C_0$ is a natural equivalence if and only if the canonical epimorphism $\pi_1(\mathbb{Z}_{\infty}(K(\pi, 1))) \to \pi^{\wedge}$ is an isomorphism.

3.6. Example. Suppose that σ is an infinite cyclic group generated by α , and that M is a free abelian group on two generators x_1, x_2 . Let σ act on M by $\alpha \cdot x_i = -x_i$ (i = 1, 2) and let π be the semi-direct product of σ with M. It is clear that π is a finitely presented group. An explicit calculation shows that $\lim_{t \to 0} {\{\Phi_s(\pi)\}_s}$ does not vanish, so by 3.4 the natural transformation $E \to C_0$ of functors on the category of π -modules is not a natural equivalence. In line with 3.5, it is not hard to show that there is an exact sequence

$$1 \to \mathbb{Z} \to \mathbb{Z}_2^{\wedge} \to \pi_1 \mathbb{Z}_{\infty} K(\pi, 1) \to \pi^{\wedge} \to 1$$

where \mathbb{Z}_2^{\wedge} denotes the 2-adic integers and the map $\mathbb{Z} \to \mathbb{Z}_2^{\wedge}$ is 2-adic completion.

The basis for 3.1, 3.4 and 3.5 is

140

3.7. Proposition.

(a) For any group π , the natural transformation $E \to C_0$ is a natural equivalence if and only if the obvious map $F \to C(F)$ is an HZ-map for all free π -modules F.

(b) If π is finitely generated the conditions of (a) hold if and only if $H_1(\pi; C(F))$ vanishes for all free π -modules F

(c) If π is finitely presented, the conditions of (a) hold if and only if $\lim_{t \to \infty} \{H_2(\pi; R/I^s)\}_s = 0$.

3.8. Example. Bousfield has pointed out [7, 10.2] that $\lim_{x \to \infty} \{H_2(\pi; R/I^s)\}_s$ vanishes if π is a finitely presented group such that $H_2(\pi; \mathbb{Z})$ is finite. Thus for such a group, in particular, for a finitely generated free group, E is naturally equivalent to C_0 .

The remainder of this section is taken up with proofs.

Recall that a tower $\{M_s\}_s$ is said to be *stable* or *Mittag-Leffler* if for each $s \ge 0$ there is a $k \ge 0$ such that image $(M_{s+j} \rightarrow M_s)$ equals image $(M_{s+k} \rightarrow M_s)$ for all $j \ge k$. It is easy to see that $\lim_{s \to \infty} \{M_s\}_s$ vanishes if $\{M_s\}_s$ is Mittag-Leffler; the converse, in general, does not hold. However

3.9. Lemma. If $\{M_s\}_s$ is a tower of finitely generated abelian groups, then either

- (i) $\{M_s\}_s$ is Mittag-Leffler and $\lim_{t \to \infty} \{M_s\}_s = 0$, or
- (ii) $\lim_{s \to \infty} \{M_s\}_s$ is uncountable.

This appears in [17].

Proof of 3.7. (a) Since both E and C_0 are right exact functors, the natural transformation $E \to C_0$ is a natural equivalence if and only if it induces an isomorphism $E(F) \to C_0(F) (= C(F))$ for any free π -module F. Choose some free F. The module C(F) is Bousfield, since it is an inverse limit of nilpotent π -modules [6: 8.5, 8.9]; thus the map $E(F) \to C(F)$ is an isomorphism if and only if it is an HZ-map. Since the natural map $F \to E(F)$ is an HZ-map, the map $E(F) \to C(F)$ is an HZ-map.

(b) If π is finitely generated then I is finitely generated as a (right) R-module, so that techniques of [19] give a short exact sequence

$$0 \rightarrow \lim^{1} \{H_{1}(\pi; F/I^{s} \cdot F)\}_{s} \rightarrow H_{0}(\pi; C(F)) \rightarrow \lim_{s} \{H_{0}(\pi; F/I^{s} \cdot F)\}_{s} \rightarrow 0$$

for any π -module F. If F is free, the tower $\{H_1(\pi; F/I^s \cdot F)\}_s = \{I^s \cdot F/I^{s+1} \cdot F\}_s$ is pro-trivial, and the tower $\{H_0(\pi; F/I^s \cdot F)\}_s$ is isomorphic to the constant tower $H_0(\pi; F)$. This proves (b).

(c) If π is finitely presented then I is finitely presented as a (right) R-module, so that techniques of [19] give another short exact sequence

$$0 \rightarrow \lim^{1} \{H_{2}(\pi; F/I^{s} \cdot F)\}_{s} \rightarrow H_{1}(\pi; C(F)) \rightarrow \lim_{t \to \infty} \{H_{1}(\pi; F/I^{s} \cdot F)\}_{s} \rightarrow 0$$

for any π -module F. If F is free, the tower $\{H_1(\pi; F/I^s \cdot F)\}_s = \{I^s \cdot F/I^{s+1} \cdot F\}_s$ is pro-trivial as before; this implies that the map $F \to C(F)$ is an HZ-map if and only if $\lim^1 \{H_2(\pi; F/I^s \cdot F)\}_s$ vanishes.

Suppose that $\lim_{l\to\infty} \{H_2(\pi; R/I^*)\}\$, vanishes. An induction on s shows that $H_2(\pi; R/I^*)$ ($s \ge 0$) is a finitely generated abelian group, so that 3.9 implies that the tower $\{H_2(\pi; R/I^*)\}\$, is Mittag-Leffler. Since direct sums of a Mittag-Leffler tower with itself remain Mittag-Leffler, it follows that the tower $\{H_2(\pi; F/I^* \cdot F)\}\$, is Mittag-Leffler for any free π -module F. This proves (c).

3.10. Lemma. Let ν be a finitely generated nilpotent group and let $J \subseteq \mathbb{Z}[\nu]$ be the augmentation idea. Then if i > 0 the tower $\{H_i(\nu; \mathbb{Z}[\nu]/J^s)\}$, is pro-trivial.

Proof. If i > 0, the tower $\{H_i(\nu; \mathbb{Z}[\nu]/J^s)\}_s$ is isomorphic to the tower $\{H_{i-1}(\nu; J^s)\}_s$. Since $\{H_0(\nu; J^s)\}_s = \{J^s/J^{s+1}\}_s$ is pro-trivial, the lemma follows from [15, Theorem 2] and the fact that $\mathbb{Z}[\nu]$ is Noetherian [15; (5)].

Proof of 3.1. Let F be a free π -module. According to 3.7, it is enough to show that $H_1(\pi; C(F)) = 0$. Let Γ be $\Gamma(\pi)$, and let ν be the finite generated nilpotent group π/Γ . The proof will consist in showing that $E_{0,1}^2 = E_{1,0}^2 = 0$ in the Lyndon-Hochschild-Serre spectral sequence

$$E_{i,j}^2 = H_i(\nu; H_j(\Gamma; C(F))) \Longrightarrow H_{i+j}(\pi; C(F)).$$

Let $J \subseteq \mathbb{Z}[\nu]$ be the augmentation ideal. It is well-known [10: Lemma 2] that Γ acts trivially on each of the nilpotent π -modules $F/I^s \cdot F$, so that the modules $F/I^s \cdot F$ and C(F) are in fact given as modules over ν . Let F' be the free ν -module $H_0(\Gamma; F)$. It follows easily that for each s there is a canonical ν -module isomorphism

$$F/I^{3} \cdot F \approx F'/J^{3} \cdot F'$$

and thus, as a ν -module, C(F) is isomorphic to $\lim_{\nu \to \infty} (F'/J^* \cdot F')_*$. Since $\mathbb{Z}[\nu]$ is Noetherian, techniques of [19] give a short exact sequence

$$0 \rightarrow \varprojlim^{1} \{H_{2}(\nu; F'/J^{s} \cdot F')\}_{s} \rightarrow H_{1}(\nu; C(F))$$

$$\rightarrow \varprojlim \{H_{1}(\nu; F'/J^{s} \cdot F')\}_{s} \rightarrow 0.$$

Since direct sums of a pro-trivial tower with itself remain pro-trivial, Lemma 3.10 shows that $H_1(\nu; C(F)) = E_{1,0}^2$ vanishes.

It remains to show that $E_{0,1}^2 = H_0(\nu; H_1(\Gamma; C(F)))$ vanishes. Since Γ acts trivially on C(F), $E_{0,1}^2$ is isomorphic to $M \otimes_{\mathbb{Z}[\nu]} C(F)$, where for brevity M denotes $H_1(\Gamma; \mathbb{Z})$ considered as a right ν -module via the canonical anti-automorphism of $\mathbb{Z}[\nu]$. Since $H_1(\Gamma; \mathbb{Z})$ is finitely generated over $\mathbb{Z}[\nu]$ [10 Lemma 3] and $\mathbb{Z}[\nu]$ is Noetherian, there is a short exact sequence [19]

$$0 \to \lim_{t \to 0} {^{z[\nu]}(M, F'/J^{s} \cdot F')}_{s}$$

$$\to M \otimes_{z[\nu]} C(F) \to \lim_{t \to 0} {M \otimes_{z[\nu]} F'/J^{s} \cdot F'}_{s} \to 0.$$

Thus it is certainly enough to show that $\operatorname{Tor}_{i}^{\mathbb{Z}[\nu]}(M, N) = 0$ for any $i \ge 0$ and any nilpotent ν -module N. Using induction on the nilpotent class of N together with simple co-limit and long exact sequence arguments, it is possible to reduce this to the case in which N is the trivial ν -module Z. However, $\operatorname{Tor}_{i}^{\mathbb{Z}[\nu]}(M, \mathbb{Z})$ is isomorphic to $H_{i}(\nu; H_{1}(\Gamma, \mathbb{Z}))$. Since $[\pi, \Gamma] = \Gamma$, the zero'th homology group $H_{0}(\nu; H_{1}(\Gamma; \mathbb{Z}))$ vanishes, so the proof can be completed by using [15: Theorem 1].

3.11. Lemma. Suppose that π is a finitely generated group and that $\{M_s\}_{s\geq 0}$ is a tower of Bousfield π -modules. Then $\lim_{t \to 0} \{M_s\}_s$ vanishes if and only if $\lim_{t \to 0} \{H_0(\pi; M_s)\}_s$ does.

Proof. Let W denote the infinite product $\prod_{s \ge 0} M_s$, and let $\partial: W \to W$ be the map given by

$$\partial(m_0, m_1, \ldots, m_s, \ldots) = (m_0 - p_1(m_1), \ldots, m_s - p_{s+1}(m_{s+1}), \ldots)$$

where the maps $p_{s+1}: M_{s+1} \to M_s$ are the tower maps. Then W is a Bousfield π -module [6: 8.5] and coker (∂) is isomorphic to $\lim_{t \to 0} {}^1 \{M_s\}_s$. Since π is finitely generated the functor $H_0(\pi; -)$ commutes with arbitrary products (cf. [9], [19]), so that coker $(H_0(\pi; \partial))$ is isomorphic to $\lim_{t \to 0} {}^1 \{H_e(\pi; M_s)\}_s$. The lemma follows from the fact that in general a map $M \to N$ of Bousfield π -modules is an epimorphism if and only if the induced map $H_0(\pi; M) \to H_0(\pi; N)$ is an epimorphism [7: 7.8].

Proof of 3.4. The proof will show that if π is finitely presented conditions (i) and (ii) of 3.4 are equivalent to the vanishing of $\lim_{I \to T} \{H_0(\pi; \operatorname{Tor}_2^R(R/I^s, \mathbb{Z}))\}_s$. The theorem then follows from 3.11, 3.7(c), and the observation that tower $\{\operatorname{Tor}_2^R(R/I^s; \mathbb{Z})\}_s$ is isomorphic to $\{\operatorname{Tor}_2^R(\mathbb{Z}, R/I^s)\}_s = \{H_2(\pi, R/I^s)\}_s$ via the canonical anti-automorphism of $R = \mathbb{Z}[\pi]$.

For each $s \ge 1$ let ν_s be the finitely generated nilpotent group $\pi/\Gamma_s(\pi)$. It is well-known that the π -module structure on R/I^s factors through a natural ν_s -module structure [10, Lemma 2]; in fact, as a ν_s -module R/I^s is naturally isomorphic to $\mathbb{Z}[\nu_s]/(J_s)^s$, where $J_s \subseteq \mathbb{Z}[\nu_s]$ is the augmentation ideal. The action of ν_s on R/I^s induces an action of ν_s on $\operatorname{Tor}_i^R(R/I^s, M)$ for any π -module M and $i \ge 0$.

The main ingredient in the proof of 3.4 is a certain first quadrant spectral sequence tower of homological type:

$$\{E_s^2(i,j)=H_i(\nu_s;\operatorname{Tor}_i^R(R/I^s,M))\}_s \implies H_{i+j}(\pi;M).$$

The symbolism means that for a given π -module M the spectral sequence tower converges to a limit which is pro-isomorphic, in each dimension $n \ge 0$, to the constant tower $H_n(\pi; M)$. This is a standard composition-of-functors spectral

sequence tower corresponding to the natural pro-isomorphism between the constant tower $H_0(\pi; M)$ and $\{H_0(\nu_s; R/I^* \otimes_R M)\}_s$. To set up the spectral sequence tower in the usual way it is necessary to check that $\{H_i(\nu_s; R/I^* \otimes_R F)\}_s$ is pro-trivial whenever i > 0 and F is a free π -module. This follows from the fact that $\{H_i(\nu_s; R/I^* \otimes_R F)\}_s$ is the direct sum of a number of copies of the diagonal of a double tower $\{H_i(\nu_s; \mathbb{Z}[\nu_s]/(J_s)^i)\}_{s,t}$ whose columns, by 3.10 are all pro-trivial.

In the above spectral sequence, let M be the trivial π -module \mathbb{Z} . The tower $\{\operatorname{Tor}_{1}^{R}(R/I^{s},\mathbb{Z})\}_{s} = \{I^{s}/I^{s+1}\}_{s}$ is pro-trivial, so the towers $\{E_{s}^{2}(i,1)\}_{s}$ $(i \ge 0)$ are also pro-trivial. In addition, $\{E_{s}^{2}(i,0)\}_{s}$ $(i \ge 0)$ is isomorphic to $\{H_{p}(\nu_{s};\mathbb{Z})\}_{s}$ and $\{E_{s}^{2}(2,0)\}_{s}$ is isomorphic to $\{H_{0}(\pi;\operatorname{Tor}_{2}^{R}(R/I^{s},\mathbb{Z}))\}_{s}$, which shows that in low dimensions the spectral sequence tower degenerates into the long pro-exact sequence

$$H_3(\pi; \mathbb{Z}) - \{H_3(\nu_s; \mathbb{Z})\}_s \rightarrow \{H_0(\pi; \operatorname{Tor}_2^{\mathbb{R}}(\mathbb{R}/I^s, \mathbb{Z}))\}_s$$
$$\rightarrow H_2(\pi; \mathbb{Z}) \rightarrow \{H_2(\nu_s; \mathbb{Z})\}_s \rightarrow 0.$$

Let $\Psi_s(\pi)$ denote coker $(H_3(\pi; \mathbb{Z}) \rightarrow H_3(\nu_s; \mathbb{Z}))$. The short pro-exact sequence

$$0 \to \{\Psi_s(\pi)\}_s \to \{H_0(\pi; \operatorname{Tor}_2^R(R/I^s, \mathbb{Z}))\}_s \to \{\Phi_s(\pi)\}_s \to 0$$

gives rise to a long exact sequence

$$0 \to \varprojlim \{\Psi_s(\pi)\}_s \to \varprojlim \{H_0(\pi; \operatorname{Tor}_2^R(R/I^s, \mathbb{Z}))\}_s$$
$$\to \varprojlim \{\Phi_s(\pi)\}_s \to \varprojlim^1 \{\Psi_s(\pi)\}_s$$
$$\to \varprojlim^1 \{H_0(\pi; \operatorname{Tor}_2^R(R/I^s, \mathbb{Z}))\}_s \to \liminf^1 \{\Phi_s(\pi)\}_s \to 0\}$$

Thus $\lim_{t \to \infty} \{H_0(\pi; \operatorname{Tor}_2^R(R/I^s, \mathbb{Z}))\}_s$ vanishes if and only if $\lim_{t \to \infty} \{\Phi_s(\pi)\}_s$, vanishes and $\lim_{t \to \infty} \{\Phi_s(\pi)\}_s$ maps onto $\lim_{t \to \infty} \{\Psi_s(\pi)\}_s$. However, since ν_s is a finitely generated nilpotent group $\Psi_s(\pi)$ is a finitely generated abelian group, so, by 3.9, if the subgroup $\lim_{t \to \infty} \{\Phi_s(\pi)\}_s$ of $H_2(\pi, \mathbb{Z})$ maps onto $\lim_{t \to \infty} \{\Psi_s(\pi)\}_s$, this latter group must vanish. The proof is finished by the observation that the pro-exact sequence

$$H_3(\pi,\mathbb{Z}) \to \{H_3(\nu_s;\mathbb{Z})\}_s \to \{\Psi_s(\pi)\}_s \to 0$$

gives use to an exact sequence

$$0 = \lim_{t \to 0} H_3(\pi; \mathbb{Z}) \to \lim_{t \to 0} \{H_3(\nu_s; \mathbb{Z})\}_s \to \lim_{t \to 0} \{\Psi_s(\pi)\}_s \to 0.$$

Proof of 3.5. This follows from 3.7(c), [16, 3.1] and [8: IX, §3]. The existence of a canonical epimorphism $\pi_1 \mathbb{Z}_{\infty}(K(\pi, 1)) \rightarrow \pi^{\wedge}$ comes from the fact that the tower $\{\pi_1 \mathbb{Z}, (K(\pi, 1))\}$, is naturally pro-isomorphic to $\{\pi/\Gamma, (\pi)\}$, [8: pp. 30, 125, 251]. Note that the spectral sequence which figured in the proof of 3.4 is essentially the Serre spectral sequence of the fibration tower

$$\{\widecheck{\mathbb{Z}}_{s}K(\pi,1)\}_{s} \rightarrow \{\mathbb{Z}_{s}K(\pi,1)\} \rightarrow \{K(\pi_{1}\mathbb{Z}_{s}K(\pi,1),1)\}_{s},$$

where tilde denotes universal cover.

4. Groups of type (FP)

A group π is said to be of type (FP) if the trivial π -module Z has a resolution of finite length made up of finitely generated projective R-modules. This section provides a way to compute the left derived functors C_i ($i \ge 0$) of the lower central series completion functor C (2.2) on the category of modules over a group of type (FP). In favorable cases (4.8) this method gives a simple homological formula for the functors C_i . If C_0 happens to coincide with the HZ-localization functor E (3.1, 3.4, 3.8), the zero-dimensional part of this formula is a simple expression for E itself.

A brief sketch of the method may help to clarify the peculiarities of the modules involved. The starting point is to write the modules $M/I^* \cdot M$ which appear in the definition of C(M) as $\operatorname{Tor}_0^R(R/I^*, M)$. This notation makes clear that the formation of $M/I^* \cdot M$ depends on the left R-module structure of M and the right R-module structure of R/I^* . This right R-module structure of R/I^* can be dualized in a more or less standard way to get left R-modules, in terms of which $\operatorname{Tor}_*^R(R/I^*, M)$ can be expressed using $\operatorname{Ext}_R^*(-, M)$. The dualization process transforms the inverse system $\{R/I^*\}_*$ into a direct system of dual modules; it turns out that the derived functors of C can be computed by first taking a direct limit of these dual modules and then applying $\operatorname{Ext}_R^*(-, M)$. The extra left R-module structure on each R/I^* is reflected in a right R-module structure on the dual modules; this passes to the direct limit and induces the usual left R-module structure on $C_*(M)$ when $\operatorname{Ext}_R^*(-, M)$ is applied.

Given the group π , let $K_i(\pi)$ $(j \ge 0)$ be the direct limit $\lim_{n \to \infty} \operatorname{Ext}_R^i(R/I^s, R)$, where Ext is taken in the sense of right R-modules, and the maps in the direct system are induced by the usual epimorphisms $R/I^s \to R/I^{s-1}$. Each $K_i(\pi)$ has commuting left and right π -module structures: the left action of π is induced by the usual left action of π on R, and the right action of π by the usual left action of π on each R/I^s . It is not hard to see that if the trivial left or right π -module Z possess a projective resolution of finite length over R

 $0 \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to \mathbb{Z} \to 0,$

for instance, if π is of type (FP), then $K_j(\pi)$ vanishes for j > n + 1.

The basic result of this section is

4.1. Theorem. If π is of type (FP), then for any π -module M there is a strongly convergent second quadrant spectral sequence of homological type:

$$E_{i,j}^2 = \operatorname{Ext}_R^{-i}(K_j(\pi), M) \Longrightarrow C_{i+j}(M).$$

4.2. Remark. The Ext's which form the E^2 -term of this spectral sequence are of course computed in the sense of left *R*-modules. However, the extra right action of *R* on $K_i(\pi)$ furnishes the groups $\operatorname{Ext}_{R}^{-i}(K_i(\pi), M)$ with a left *R*-module structure

which commutes with the differentials and, on passage to E^{∞} , corresponds to the usual left action of R on $C_*(M)$.

4.3. Remark. The above spectral sequence exists as long as π is of type (FP), that is, as long as the trivial π -module Z admits a (possibly infinite) resolution by finitely generated projective R-modules. However, the spectral sequence does not necessarily converge under this weaker hypothesis, even if only a finite number of the modules $K_i(\pi)$ are non-zero. An example of such failure to converge can be obtained by letting π be a non-trivial finite perfect group.

The group π is said to be a duality group [3,0.3] of dimension n if

(i) π is of type (FP) (cf. [9]),

(4.4) (ii) $H^{k}(\pi; R) = 0, k \neq n$,

(iii) $H^{n}(\pi; \mathbb{R})$ is torsion free.

Condition (ii) and (iii) are equivalent to

(ii)' $\operatorname{Ext}_{R}^{k}(\mathbb{Z}, R) = 0, \ k \neq n,$

(iii)' $\operatorname{Ext}_{R}^{n}(\mathbb{Z}, \mathbb{R}) = D$ is torsion-free,

where Z is the trivial R-module and the Ext's are taken in the sense of right R-modules. The abelian group D with left π -action induced by the extra left action of π on R is called the *dualizing module* for π . (This differs slightly but inessentially from the usual definition of dualizing module [3, 1.2].) Many examples of duality groups are given in [3] and [4].

If π is a duality group the modules $K_i(\pi)$ are especially accessible, in view of

4.5. Proposition. Suppose that π is a duality group of dimension n, with dualizing module D. Then $K_i(\pi)$ vanishes for $j \neq n, n + 1$, and there are natural isomorphisms

$$K_n(\pi) \approx D \otimes_{\mathbb{Z}} \varinjlim_{s} \operatorname{Hom}_{\mathbb{Z}}(R/I^s, \mathbb{Z})$$
$$K_{n+1}(\pi) \approx D \otimes_{\mathbb{Z}} \varinjlim_{s} \operatorname{Ext}_{\mathbb{Z}}(R/I^s, \mathbb{Z}).$$

4.6. Remarks. Under the indicated isomorphism, the right action of π on $K_n(\pi)$ is induced by the left action of π on each R/I^s , while the left action of π on $K_n(\pi)$ is a diagonal action induced by the left action of π on D and the right action of π on each R/I^s . A corresponding statement holds for $K_{n+1}(\pi)$.

4.7. Remark. A result similar to 4.5 holds without the restriction 4.4(iii)' that D be torsion-free. In this more general setting the formula for $K_n(\pi)$ is replaced by a short exact sequence

$$0 \to \varinjlim_{s} D \otimes_{z} \operatorname{Hom}_{z}(R/I^{s}, \mathbb{Z}) \to K_{n}(\pi) \to \varinjlim_{s} \operatorname{Tor}^{z}(D, \operatorname{Ext}_{z}(R/I^{s}, \mathbb{Z})) \to 0.$$

The formula for $K_{n+1}(\pi)$ remains unchanged.

It follows from 4.5 that for a duality group π the spectral sequence of 4.1 collapses into a long exact sequence. There is even further collapse if the lower

central series quotient $\pi/\Gamma_s(\pi)$ (3.2) of π are torsion-free. In this case the abelian groups R/I^s are torsion-free [1, 1.3], so (4.13) $K_{n+1}(\pi)$ vanishes.

4.8. Corollary. Suppose that π is a duality group of dimension n with torsion-free lower central series quotients. Let D be the dualizing module for π . Then for any π -module M there are natural isomorphisms,

$$C_j(M) \approx \operatorname{Ext}_R^{n-j} \left(D \otimes_{\mathbb{Z}} \varinjlim_{s} \operatorname{Hom}_{\mathbb{Z}}(R/I^s, \mathbb{Z}), M \right), \quad j \ge 0.$$

The formulas of 4.5 and 4.8 simplify if the dualizing module D is additively isomorphic to an infinite cyclic group, that is, if π is a *Poincaré duality group* [2].

4.9. Example. Suppose that π is a finitely generated torsion-free nilpotent group. By [2, 3.1.2] π is an (oriented) Poincaré duality group (that is, a Poincaré duality group which acts trivially on its dualizing module). Thus if π also has torsion-free lower central series quotients, there are natural isomorphisms (3.1, 4.8)

$$E(M) \approx C_0(M) \approx \operatorname{Ext}_R^n\left(\lim_{\to s} \operatorname{Hom}_Z(R/I^s, \mathbb{Z}), M\right)$$

for any π -module *M*, where *n* is the duality dimension of π . For instance, if π is an infinite cyclic group generated by α there is a natural isomorphism

 $E(M) \approx \operatorname{Ext}^{1}_{R}(K, M)$

where K is additively isomorphic to the free abelian group on a countable number of generators x_0, x_1, x_2, \ldots and has identical left and right π -actions given by

 $\alpha \cdot x_0 = x_0 \cdot \alpha = x_0$ $\alpha \cdot x_i = x_i \cdot \alpha = x_i - x_{i-1} \quad (i > 0),$

that is

 $(1-\alpha)\cdot x_i=x_{i-1} \qquad (i>0).$

It will be convenient to have some simple leminas to refer to in the proofs of 4.1 and 4.5.

Let M be a right R-module. A projective resolution

$$\rightarrow P_{n+1} \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

of M is said to have length $\leq n$ if P_i vanishes for i > n. The resolution is said to be finite if it has length $\leq n$ for some n and each P_i is a finitely generated projective right R-module.

Let

$$0 \to M' \to M \to M'' \to 0$$

be a short exact sequence of right R-module.

4.10. Lemma. If M and M' have finite projective resolutions of length $\leq n$, then M" has a finite projective resolution of length $\leq n + 1$.

In fact, the resolution of M'' can be chosen to be the mapping cone [18, p. 46] of a suitable map between resolutions of M' and M.

4.11. Lemma [11: V, 2.2]. Let F' and F" be projective resolutions of M' and M" respectively. Then there is a resolution F of M which fits into a short exact sequence

 $0 \to \mathbf{F}' \to \mathbf{F} \to \mathbf{F}'' \to 0$

148

covering the original short exact sequence of modules.

Note that if the differentials are discounted \mathbf{F} is isomorphic to the direct sum of \mathbf{F}'' and \mathbf{F}' .

4.12. Lemma. Let M be a left π -module. Define a right action of π on $R \otimes M = R \otimes_{\mathbb{Z}} M$ by

 $(r \otimes m) \cdot \alpha = (r \cdot \alpha) \otimes (\alpha^{-1} \cdot m)$ $r \in R, m \in M, \alpha \in \pi.$

Then $\operatorname{Tor}_{0}^{R}(R \otimes M, \mathbb{Z})$ vanishes unless i = 0, and the left action of π on R makes $\operatorname{Tor}_{0}^{R}(R \otimes M, \mathbb{Z})$ into a left π -module which is naturally isomorphic to M.

4.13. Lemma. If π is a group of type (FP) the π -modules I^s/I^{s+1} and R/I^s ($s \le 1$) are finitely generated as abelian groups.

In fact, the conclusion of 4.13 holds if and only if $H_1(\pi; \mathbb{Z}) = I/I^2$ is finitely generated. This is seen by induction on *s*, using the multiplication surjections $(I/I^2) \otimes (I^{s-1}/I^s) \rightarrow I^s/I^{s+1}$.

Proof of 4.1. Since π is of type (FP), the trivial left or right π -module Z possesses a finite projective resolution over R of length, say, $\leq n$. It follows from 4.13 and 4.10 that the trivial right π -modules I^s/I^{s+1} ($s \geq 1$) possess finite projective resolutions over R of length $\leq n + 1$.

By 4.11, it is possible to construct inductively resolutions \mathbf{F}_s of the right *R*-modules R/I^s ($s \ge 1$) such that

(4.14) (i) F_s is a finite projective resolution of length ≤ n + 1 and
(ii) there are surjective maps F_s → F_{s-1} which cover the usual surjections R/I^s → R/I^{s-1}.

Let **F** denote the cochain complex $\lim_{x \to R} (\mathbf{F}_s, R)$, where Hom is of necessity taken in the sense of right *R*-modules and the maps in the direct systems are induced by those of 4.14(ii). The left action of *R* on itself makes **F** into a cochain complex of left *R*-modules; since direct limits are exact, the *i*th cohomology group of **F** ($i \ge 0$) is naturally isomorphic to $K_i(\pi)$.

For any left R-module M, let $W_i(M)$ $(i \le 0)$ be the i^{th} homology group of the chain complex Hom_R (F, M). It is not hard to see that the abelian groups $W_i(M)$ are actually left R-modules in a natural way. In fact, left multiplication by any element r of R induces right R-module endomorphisms $\mu(r)_s : R/I^s \to R/I^s$. Using 4.14(ii) these can be lifted to resolution maps $\lambda(r)^s : F_s \to F_s$ which form a coherent family, in the sense that the diagrams

$$\begin{array}{c} \mathbf{F}_{s} \longrightarrow \mathbf{F}_{s-1} \\ \lambda(r)_{s} \downarrow \qquad \qquad \downarrow \lambda(r)_{s-1} \\ \mathbf{F}_{s} \longrightarrow \mathbf{F}_{s-1} \end{array}$$

all commute. Moreover, any two such coherent families of resolution endomorphisms corresponding to the same element of R are coherently chain homotopic. This coherent left action of R, up to chain homotopy, on the resolutions F, induces a right action of R, up to cochain homotopy, on the cochain complex F, and therefore an actual left action of R on the homology groups $W_i(M)$.

The dual $\operatorname{Hom}_{R}(P, R)$ of a finitely generated projective right *R*-module *P* is finitely generated projective left *R*-module. Together with 4.24(ii) this implies that **F** is a cochain complex of projective left *R*-modules. Thus a short exact sequence

$$0 \to M' \to M \to M'' \to 0$$

of left *R*-modules gives rise to a short exact sequence

$$0 \rightarrow \operatorname{Hom}_{R}(\mathbf{F}, M') \rightarrow \operatorname{Hom}_{R}(\mathbf{F}, M) \rightarrow \operatorname{Hom}_{R}(\mathbf{F}, M'') \rightarrow 0$$

of chain complexes, and hence to a long exact homology sequence

$$(4.15) \longrightarrow W_i(M') \to W_i(M) \to W_i(M'') \to W_{i-1}(M') \to \cdots \to W_0(M'') \to \mathbb{C}.$$

If P is a finitely generated projective right R-module and M is a left R-module the natural map

 $P \otimes_R M \rightarrow \operatorname{Hom}_R (\operatorname{Hom}_R (P, R), M)$

is an isomorphism. Consequently, for any left R-module M there are natural isomorphisms

The techniques of [19] thus imply that there are natural short exact sequences

 $0 \to \lim_{i \to 1} {\operatorname{Tor}_{i+1}^R(R/I^s, M)}_s \to W_i(M) \to \lim_{i \to 1} {\operatorname{Tor}_i^R(R/I^s, M)}_s \to 0.$

In particular, there is a natural map $W_0(M) \rightarrow C(M)$; if M is free, this map is an

isomorphism and the modules $W_i(M)$ vanish for i > 0. In view of 4.15, this shows that W_i is naturally equivalent to the i^{th} left derived functor C_i of C.

Since **F** is a cochain complex of projective modules, the desired spectral sequence is just the hypercohomology spectral sequence of [11: XVII, §2]. This converges strongly for the trivial reason that **F** vanishes above dimension n + 1.

Proof of 4.5. For the purposes of this proof $\text{Ext}_R^*(-, -)$ will always denote Ext in the sense of right R-modules.

The proof depends on the fact that for any right π -module M there is a natural first quadrant composition-of-functors spectral sequence of cohomological type

$$E_{i,i}^{2} = \operatorname{Ext}_{R}^{i}(\mathbb{Z}, \operatorname{Ext}_{Z}^{i}(M, R)) \Longrightarrow \operatorname{Ext}_{R}^{i+i}(M, R).$$

Here the action of π on Hom_z(M, R) is given by

$$(f \cdot \alpha)(x) = (f(x \cdot \alpha^{-1})) \cdot \alpha \qquad f \in \operatorname{Hom}_{z}(M, R)$$
$$x \in M, \alpha \in \pi$$

and there is a corresponding description of the action of R on $\operatorname{Ext}_{z}^{1}(M, R)$.

If M is R/I^s , the E^2 -term of this spectral sequence can be computed in two steps. First of all, R/I^s and R are, respectively, finitely generated (4.13) and free as abelian groups, so that there are natural isomorphisms

$$\operatorname{Ext}_{z}^{i}(R/I^{s}, R) \approx R \otimes_{z} \operatorname{Ext}_{z}^{i}(R/I^{s}, \mathbb{Z}), \quad j = 0, 1$$

which can be made into isomorphisms of right R-modules by putting the proper module structure on the right hand sides.

Secondly, the fact that π is a duality group of dimension *n* implies that for any right π -module *M* there are natural isomorphisms

(4.16)
$$\operatorname{Ext}_{R}^{i}(\mathbb{Z}, M) \approx \operatorname{Tor}_{n-i}^{R}(D \otimes_{\mathbb{Z}} M, \mathbb{Z})$$

where Z, as an argument of Tor^R (-, -), denotes the trivial left *R*-module and the right action of π on $D \otimes_z M$ is given by

$$(d \otimes m) \cdot \alpha = (\alpha^{-1} d) \otimes (m \cdot \alpha), \qquad \alpha \in \pi, d \in D, m \in M.$$

Consequently, there are natural isomorphisms

$$E_{i,j}^{2} \approx \operatorname{Ext}_{R}^{i}(\mathbb{Z}, \operatorname{Ext}_{Z}^{j}(R/I^{s}, R)) \approx \operatorname{Tor}_{n-i}^{R}(R \otimes_{Z} D \otimes_{Z} \operatorname{Ext}_{Z}^{j}(R/I^{s}, Z), Z).$$

The proof is finished by applying 4.12 and taking a direct limit over s.

The claim in remark 4.7 can be proved by showing that if D is not torsion-free the isomorphisms 4.16 are replaced by isomorphisms

$$\operatorname{Ext}_{R}^{i}(\mathbb{Z}, M) \approx \operatorname{Tor}_{n-i}^{R}(M, D).$$

References

- [1] F. Bachmann and L. Grünenfelder, Über Lie-Ringe von Gruppen und ihre universellen Enveloppen, Comment. Math. Helvet. 47 (1972) 332-340.
- [2] R. Bieri, Gruppen mit Poincaré-Dualität, Comment. Math. Helvet. 47 (1972) 373-396.
- [3] R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincaré duality, Inventiones Math. 20 (1973) 103-124.
- [4] R. Bieri and B. Eckmann, Amalagamated free products of groups and homological duality, Comment. Math. Helvet 49 (1974) 460-478.
- [5] A.K. Bousfield, Homological localizations of spaces, groups, and π-modules; Localization in Group Theory and Homotopy Theory, Lecture Notes in Math. no. 418 (Springer, New York, 1974) 22-30.
- [6] A.K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133-150.
- [7] A.K. Bousfield, Homological localization towers for groups and π -modules, Amer. Math. Soc. Memoirs 186 (1977).
- [8] A.K. Bousfield and D.M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. no. 304 (Springer, New York, 1972).
- [9] K.S. Brown, Homological criteria for finiteness, Comment. Math. Helvet. 50 (1975) 129-135.
- [10] K.S. Brown and E. Dror, The Artin-Rees property and homology, Israel J. Math. 22 (1975) 93-109.
- [11] H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press, Princeton, 1956).
- [12] E. Dror. M.I.T. Thesis (1971).
- [13] E. Dror and W.G. Dwyer, A stable range for homology localization, to appear in Illinois J. Math.
- [14] E. Dror and W.G. Dwyer, Homology circles, to appear.
- [15] W.G. Dwyer, Vanishing homology over nilpotent groups, Proc. Amer. Math. Soc. 49 (1975) 8-12.
- [16] W.G. Dwyer, Exotic convergence of the Eilenberg-Moore spectral sequence, Ill. J. Math. 19 (1975) 607-617.
- [17] B. Gray, Spaces of the same n-type for all n, Topology 5 (1966) 241-243.
- [18] S. MacLane, Homology (Springer, New York, 1967).
- [19] J. Roos, Sur les foncteurs dérivés de lim, C. R. Acad. Sci. Paris 252 (1961) 3702-3704.