
wopepunod amapg ;tzuopa~ aql bq pwoddns lied u! SBM qweasa~ s!q~, * 



136 W.G. Dwyet / Homological localization of It-mod&s 

Throughout the paper, rr denotes a given group, R = Z[W] its integral group 
ring, and I c R the augmentation ideal. The terms n-module and R-module are 
used synonymously. With the exception of the first argument of Tort( - , - ), all 
unspecified modules are left modules. The additive group of integers 2 is always 
considered to be a trivial left or right w-module, in the sense that each element of w 
acts on Z as the identity map; thus Hi (vr; - ) is another name for the functor 
TorR(Z, - ). 

A tower {MS}, of abelian groups, n-modules, etc., is a family of such objects, 
indexed by the non-negative integer s, together with maps MS+I + Mb. In most cases 
the maps are obv4ous and are not made explicit. The elementary algebraic 
properties of towers [8; III, 021 play a large role in this paper, as do the related 
properties of the in terse limit functor 15 8 nd its right derived functor 
IX, §2]). 

I would like to t lank A.K. Bousfield, K. Brown and E. Dror for valuable ideas; 
to some extent Sction 3 of this paper overlaps their work. 

2. Finitely presented groups 

The purpose of tF:is section is to compute the HZ localization functor E on the 
category of mlrr-modules if v is a finitely presented group, that is, if v admits a 
presentation with a finite number of generators and a finite number of relations. 
The main result is 

2.1 l Theorem. Suppose that q is a finitely 
M there are natural exact sequences 

presented group. Then for any v-module 

and 
O-+ lim*{Tor~(R/I”, I” 8 M}s 4 E(M)+ c!(M)-+o 

o-+ lim{Tor?(R/I”, I” 9 Ad)}, + lim{Is~R (Is 9 M))z 

+ k+ E(M)+ liml(Is~R (I’L)), +O, c- 

2.2. Remark. The lower central series completion l@(M/I’ l M)$ of M is denoted 
by C(M). The first exact sequence of 2.1 shows that E(M) is isomorphic to C(M) if 
and only if l.l(Tor~(R/I”, I” - M)}, vanishes. The second is interesting insofar as it 
sheds light on the kernel of the HP-localization map M + E(M). 

2.3. Remark. The proof of 2.1 contains an explicit formula for E(M). 

There is one lemma. 

For Qttj) T and n-modu!e there is a natural pro-exact 
sequence 
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Moreover, the middle tower in this sequence is superpetfect, in the sense that the towers 
{Hi (s; I’B)R (I” l M))}s (i = 0,l) are both pro-trivial. 

2s. Remark. The proof of 2.4 appears below. It is well-known that Iqp, (I l M) is 
a super-perfect m-module if ?r is a perfect group; in fact, IQ?~ (I l M) is the universal 
centmf extension of the perfect +module 1. M [12, 6.21. The point of 2.4 is that 
even if ?r is not perfect (so that f* # I) a similar construction can be made at the 
expense of passing to towers. 

Proof of 2.1. Let W, denote Is@R (I” l M), and let pS: Ws 3 Ws-, be the structure 
maps of the tower {W,},. Multiplication gives maps qS: Ws + M which are 
compatible with the maps W, -3 Ws-l and fit into exact sequences 

Let W denote the infinite product n,,, Ws. Define a map 8’: W--j M by 

ayw,, Wl, l l 0, w, l l 0) = q0(wo) 

and a map a”: W + W by 

a”(w0, Wl,. . ., ws,. . l ) = (WC p1w1, WI - p2w2, l l m, ws - ps+1ws+1, l l l )* 

(Clearly ker a” = lim{ W,), and coker 8’ = li${ WS}s.) Let a: W * MB W be the 
direct sum of 8 and 8 “. 

Let X denote coker(Q. We claim that 
(a) X is a Bousfield 7r-module, and 
(b) the composite of the inclusion M -+ M @ W and the projection 

M@W+XisanH 

Statements (a) and (b) together imply that X is naturally isomorphic to the 
-localization E(M) of M. 

To see (a), note that the “chain complex” C given by 

is the inverse limit of a tower {C,} of chain complex epimorphisms. Here C, is 

a,:n W,-Ma(& W) 
ICI 

where & = a:+ a’:, with 

and 
X(w,, Wl, l l 0, ws) = qo(wo) 

X(w0, WI, l l *v WI, Wl - p2w2, . . ., W,-r - p&Q* 
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Thus by [19] there is a short exact sequence 

041im1(hIC,), 4 X 4 

where h, denotes the irh homology group functor. By Lemma 2.4 and sequence 
(2.6). this exact sequence reads . 

04lim’{Torf(R/I’, I” l M)}, -+X+ C(M)+4. 

Since M/I’ l M and Torf(R/I’, 1’ l M) are nilpotent 7r=moduies, it follows easily 
from [6: 8.5, 8.7, 8.91 that X is Bausfield. 

Let Y denote image (a : W -+ M $ W). The long exact homology sequence of 

O-,Y-*M@ W-+X+0 

shows that in arder to prove (b) it is enough to show that the composite 
Y4MeW-s W (where the second map is projection) is an HZ-map. 

Consider the commutative triangle 

W)- e&G W) 

I /” 
Ho(w; Y) . 

where the top map is induced by d”. The hypothesis on v implies that H&r; -) 
commutes with arbitrary direct products [9] so that the kernel and cokernel of the 
top map are isomorphic to lim’ {Ho&; Ws)}s, i = 0, 1, respectively. By 2.4 both of 
these groups vanish, so % top map is an isomorphism. Since the map 
Ho(w ; W)-, Ho( T ; Y) is clearly epimorphic, this implies that the map 
H&r; Y)-+ H&T; W) is also an isomorphism. A similar argument, using the fact 
that H&r; -) commutes with arbitrary direct products and the vanishing of 
li$(H&r; Ws)}s, shows that the map H,(v; Y)+ H&r; W) must be epimorphic. 

The second exact sequence of 2.1 arises as the long exact homology sequence of 
the chain complex short exact sequence 

o-,0+ W4 

1 1 ‘a 

of 2.4. It is clear that 
the short exact sequence 

w-,0 
. apt 1 
w-0. 

the tower {R/IS& (I” l M)}s is pro-trivial, so that if 

04{IS}, 4 R -,{Rf13)s 40 

is tens0 
lemma. 

}s, what results is the pro-exact sequence of the 

on the right with {I’@R (I* l M))z shows that the second half of the lemma is 
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equivalent to the statement that the Multiplication 

{I&z I’@, (I” l M)h + (HIS (I” * M)}S is a pro-isomorphism. 
The pro-exact sequence 

map 

results from tenSOring the second exact sequence above on the right with {1s}S and 
noting that {z &I r }S is pro-trivial. Tensoring further on the right with {Is . M), 
gives 

The tower (TorP(Z, I”)lS is a tower o: nilpotent right ?r-modules, since Torr(Z, I”) 
is isomorphic as a right rr-module to To::@, R/I”). Since {I” l M}S is a perfect 
tower of ?r-modules, that is, {Z @R (I” l M)lS is pro-trivial, it follows from direct sum 
and long exact sequence arguments together with induction on the nilpotency class 
of N that {N@R (I’ l M)}, is pro-trivial for any nilpotent right 7r-module N. Thus 
{Tor?(Z, I’) (&(I’ l kf)}, is pro-trivial, since this tower is the diagonal of a double 
tower (Torp(Z, I’) @R (I’ l M)),, with pro-trivial columns. This conipletes the proof. 

3. Lower central series completion 

Recall that the lower central series completion C(M) of a n-module M (2.2) is 
defined as the inverse limit !im(M/I’ l M},. This section looks at the problem of 
deciding when the HZ-localization functor E for rr-modules is naturally equivalent 
to the zero’& left derived functor CO of C [ll: V, 551. The goal is to understand 
when the functor E admits a classical description and to determine when the results 
of Section 4 can be brought to bear on the problem of computing E in a simple way. 

If M is any ?z-module, the natural HZ-map M + E(M) induces an isomorphism 
C(M) = C(E(1W) [7: 8.7, 9.11 whose inverse, composed with the obvious map 

E(M)-, WW)), g ives a natural map E(M)+ C(M). Since there is a natural 
transformation CO-, C which is universal with respect to natural transformations of 
right exact functors into C, this natural transformation E + C lifts to a unique 
natural transformation E + CO. 

(cf. [lo: Theorem 41). If n is a finitely generated pre - nilpotent group, 

the natural transformation E + Co is a natural equivalence. 

. The lower central series subgroups f&r) of a are defined induc- 
tively by 



140 W.G Dwyelr / Homological localization of Ir-modules 

The group IT is said to be pre-nilpotent [ 10: 2.31 if there is some integer N such that 
I”‘+,(n) = rN (n). This is equivalent to requiring that there be a normal subgroup 
r(m) of 7~ such that 

(i) [n, r(r)] = I+), and 
(ii) rrjr(m) is a nilpotent group. 

Allabelian groups and more generally nilpotent groups are pre-nilpotent, as are all 
perfect groups and all finite groups. 

3.3. Remark, The finite generation condition in 3.1 can be replaced by the 
assumption that 

(i) H,(m; Z) is a finitely generated abelian group, and 
(ii) &(r( Ik); 9) k; a finitely generated ?r /f (a)-module. 

Example 10.6 of [?J shows that some such assumption is necessary. 

For finitely presnted groups there is a generalization of 3.1 which admits a 
converse. Let G&T) (s a2) denote the kernel of the natural map 
Hz(w; z)- w,(nlr ,-&r); Z). Thenatural inclusions &+,(?r)-+ e&r) give rise to a 
tower {R(w)}~ of abelian groups. In the same way the natural surjections 
v/C+1(r)--3 ~/I’,,(7r) give rise to towers (Hi(nllYs(v); Z)}, (i 2 0). 

3.4. Theorem. If T is a finitely presented group, the natural transformation E --) Co 
is a natural equivalence if and only if 

(i) li&{@&r)), = 0, and 
(ii) hi’ { H3( n/r, ( T); Z)}s = 0. 
There is an interesting topological variant of 3.4. In the statement, 6’ stands for 

the lower central series completion 12( ?r/r,( ?r)}, of the group n, and 2, denotes the 
Bousfield-&an integral nilpotent completion functor [S]. 

3.5. Theorem. If s is a finitely presented group, the natural transformation E + Co 
is a natural equivalence if and only if the canonical epimorphism 
nl(z, (K(=, I))) + +’ is an isomorphism. 

3.6. Example. Suppose that a is an infinite cyclic group generated by (Y, and that 
M is a free abelian group on two generators x1, x2. Let (1 act on M by cy l xi = - xi 
(i = 1,2) and let 7r be the semi-direct product of CT with M. It is clear that err is a 
finitely presented group. An explicit calculation shows that I@‘{ G&r)}, does not 
vanish, so by 3.4 the natural transformation E + Co of functors on the category of 
n-modules is not a natural equivalence. In line with 3.5, it is not hard to show that 
there is an exact sequence 

where denotes the 2.-adic integers and the map is 2-adic completion. 

The basis for 3.1, 3.4 and 3.5 is 
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3.7. Proposition. 
(a) For any group 7~; the natural transformation E + CO is a natural equivalence if 

and only if the obvious map F+ C(F) is an HZ-map for all free wmodu’les F. 

(b) If r is finitely generated the conditions of (a) hold if and only if Ht( w ; C(F)) 
vanishes for all free wmodules F 

(c) If w is finitely presented, the conditions of (a) hold if and only if 
lim’(H&r; R/lf)}S = 0. 

3.8. Example. Bousfield has pointed out 17, 10.21 that lI’{H&r ; R/I”)}, van- 

ishes if ?T is a finitely presented group such that H&r; Z) is finite. Thus for such a 
group, in particular, for a finitely generated free group, E is naturally equivalent 
to co. 

The remainder of this section is taken up with proofs. 
Recall that a tower {A&}, is said to be stable or Mittag-Leffler if for each s 2 0 

there is a k 2 0 such that image (M..+j + MJ equals image (M,,k + A&) for all 
j a k. It is easy to see that li&{M,}, vanishes if {A&}, is Mittag-Leffler; the 

converse, in general, does not hold. However 

3.9. Lemma. If (MS}, is a tower of finitely generated abelian groups, then either 
(i) {MS}S is Mittag-Leffler and li&{M,), = 0, or 

(ii) l@’ { MS}S is uncountable. 

This appears in [ 171. 

Proof of 3.7. (a) Since both E and Co are right exact functors, the natural 
transformation E + CO is a natural equivalence if and only if it induces an 
isomorphism E(F)* G(F)( = C(F)) f or any free Ilr-module F. Choose some free 
F. The module C(F) is Bousfield, since it is an inverse limit of nilpotent ?r-modules 
[6: 8.5, 8.91; thus the map E(F)+ C(F) is an isomorphism if and only if it is an 
HZ-map. Since the natural map F --, E(F) is an HZ-map, the map E(F)+ C(F) is 
an HZ-map if and only if the map F + C(F) is. 

(b) If w is finitely generated then I is finitely generated as a (right) R-module, so 
that techniques of [ 19) give a short exact sequence 

O-,lim’{H,(n; F/I” l F)}S + H&r; C(F))-, {Ho(r; W” l F)}s +O 

for any r-module F. If F is free, the tower {H,(T; F/IS l F)}S = (1” l F/l’+* l F}s is 

pro-trivial, and the tower ( HO(?r ; F/I” l F)}s is isomorphic to the constant tower 

H&r; F). This proves (b). 
(c) If 7r is finitely presented then 1 is finitely presented as a (right) R-module, so 

that techniques of [19] give another short exact sequence 
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for any rr-module F. If F is free, the tower (HI@ ; F/I’ l F)}, = (1’ . F/P+’ 9 F)+ is 
pro-trivial as before; this implies that the map F + C(F) is an HZ-map if and only if . 

lGt${H&r; F/X” p F)}, vanishes. 
Suppose that lim’{H(~;R/I’)}, vanishes, An induction on s shows that 

H&T; R/I’) (s SF is a finitely generated abelian group, so that 3.9 implies that 
the tower {H&r; R/I”)}, is Mittag-Leffler. Since direct sums of a Mittag-Leffler 
tower with itself remain Mittag-Leff ler, it follows that the tower {H&r; F/I’ 0 F)}$ 
is Mittag-Leffler for’ any free Irr-module F. This proves (c). 

3.10. Lemma. Lt t v be Q finitely generated nilpote,3t group and let J E Z[ v] be the 
augmentation i&m Then if i > 0 the tower {H, (v; Z[ v]/JI)}~ is pro-triuial. 

Proof. If i > 0:: the tower {Hi (v; Z[ v]/J3)}, is isomorphic to the tower 
(Hi-r(v; Js)gd. Since (MT&; J”)}S = {JS/JS+*}S is pro-trivial, the lemma follows from 
[15, Theorem 21 and the fact that Z[ v] is Noetherian [lS; (S)]. 

.Proof of 3.2. Let F be a free In-module. According to 3.7, it is enough to show that 
KitI (m; C(F)) = 0. t r be r(n), and let v be the finite generated nilpotent group 
W/K The proof will consist in showing that E& = E:.0 = 0 in the 
Lyndon-Hochschild-Serre spectral sequence 

GE Hi (vi Hj(r; C(F))) + Hi+j (72; C(F)). 

Let J c Z[ v] be the augmentation ideal. It is well-known [lo: Lemma 2] that r 
acts trivially on each of the nilpotent n-modules F/I” . F, so that the modules 
F/I’ l F and C(F) are in fact given as modules over v. Let F’ be the free v-module 
HO(r; F). It follows easily that for each s there is a canonical v-module 
isomorphism 

F/IS . F = F’/.T* l F’ 

and thus, as a v-moduIe, C(F) is isomorphic to lim(F’/J” l F’},. Since Z[v] is 
Noetherian, techniques of [19] give a short exact sequence 

O+ii’{H~(v; F’/J’ . F’)}s --) H,(v; C(F)) 

+ lim{H,(v; F’IJ’ l F’)), +O. 

Since direct sums of a pro-trivial tower with itself remain pro-trivial, Lemma 3.10 
shows that H,(v; C(F)) = E&, vanishes. 

It remains to show that E& = Ho@; H*(r; C(F))) vanishes. Since I’ acts trivially 
on C(F), E& is isomorphic to @t[vl C(F), where for brevity M denot 
considered as a right z+module via the canonical anti-automorphism of 

) is finitely generated over [v] [lC Lemma 31 and [v] is Noetherian, . 

there is a short exact sequence [19] 
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0 + l.i.i’ {Tor:iVl(M, F’/JS . p)js 

Thus it is certainly enough to show that Torf[“l (MI N) = 0 for any i 2 0 and any 
nilpotent v-module N. Using induction on the nilpotent class of N together with 
simple co-limit and long exact sequence arguments, it is possible to reduce this to 
the case in which N is the trivial v-module Z. However, To#“l(M, H) is isomorphic 
to Hi (v; H1 (r, a)). Since [n, r] = r, the zero’th homology group Ho@; Hr (r; Z)) 
vanishes, so the proof can be completed by using [lS: Theorem 11. 

3.11. Lemma. Suppose that v is a finitely generated group and that (MS )Spo is a 
tower of Bousfield n-modules. 
l&r’ {HO (v ; M, )), does. 

Then @‘{M,}, vanishes if and only if 

Proof. Let W denote the infinite product n sz=o MS, and let i): W + W be the map 
given by 

a(m,, ml,. . ., me, . . . ) = (m. - p&h), . l .) m - ps+~OK+lhe g . ) 

where the maps P,+~: MS+1 + MS are the tower maps. Then W is a Bousfield 
v-module [6: 8.51 and coker (a) is isomorphic to l.‘{M,),. Since ?r is finitely 
generated the functor Ho(w ; - ) commutes with arbitrary products (cf. [9], [19]), so 
that coker(Ho(7r; a)) is isomorphic to li&{Hr,{7r; MS)},. The lemma follows from 
the fact that in general a map M --, N of Bousfield n-modules is an epimorphism if 
and only if the induced map Ho(?r ; M) --) Ho(?r; N) is an epimorphism [7: 7.81. 

Proof of 3.4. The proof will show that if 7~ is finitely presented conditions (i) and 
(ii) of 3.4 are equivalent to the vanishing of li$ { Ho(w ; Torf (R /I”, a))},. The 
theorem then follows from 3.11, 3.7(c), and the observation that tower 
{Tor!(R/I’;Z)} s is isomorphic to {Tor?(Z, R/I”)}s = {Hz(n, R/I”)}, via the canoni- 
cal anti-aut 1 ~~orphism of R = H[w]. 

For each s 3 1 let v, be the finitely generated nilpotent group n/r, (m). It is 
well-known that the g-module structure on R/l’ factors through a natural 
v,-module structure [lo, Lemma 21; in fact, as a v,-module R/I” is naturally 
isomorphic to Z[ v,]/(Js)‘, where Js s Z[ us] is the augment&on ideal. The action of 
us on R/F induces an action of v, on TorF(R /I”, M) for any v-module M and 
j a0. 

The main ingredient in the proof of 3.4 is a certain first quadrant spectral sequence 
tower of homological type: 

{%,j) = Hi (v,;Tor~(RlI’, M))), +z+ 

he symbolism means that for a given z-module the spectral sequence tower 

converges to a limit which is pro-isomorphic, in ch dimension 30, to the 

constant tower H, (v; M). This is a stz i idard composition-of-functors spectral 
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sequence tower corresponding to the natural pro-isomorphism between the con- * 
stant tower H&r; M) and {Ho@,; R/Is~RM)},. To set up the spectral sequence 
tower in the usual way it is necessary to check that {Hi (v, ; R /I’B~ F)}s is pro-trivial 
whenever i >O and F is a free cn-module, This follows from the fact that 
{w,(% ;R/I"@RF)), is the direct sum of a number of copies of the diagonal of a 
double tower {Hi (v, ; Z[ vJ(JJ)}~~ w h ose columns, by 3.10 are all pro-trivial. 

In the above spectral sequence, let M be the trivial Irr-module Z. The tower 
{TorP(RlI’, Z)}, = {.WIs+l}s is pro-trivial, so the towers (Et& l)), (i 3 0) are also 
pro-trivial. In addition, {EE(i, O)), (i 3 0) is isomorphic to {HP (us ; Z)}s and 
e(Ez(2,0)}, is isomt3tphic to {Ho@; Tor:(R/I”, Z))},, which shows that in low 
dimensions the spectral sequence tower degenerates into the long pro-exact 
sequence 

Let !P’ (‘IT) denote coker ( H3 (w ; Z) + I$( v, ; Z)). The short pro-exact sequence 

gives rise to a long exact sequence 

+ lim{H&r;Tor2R(Rl1’, a))), _ 

+ l@‘{K (n)), 

-&‘{H0(7r;Tor,R(RII:Z))]s +ljm*{@&r)}, 40. 

Thus l&‘{H&; TorZR(R/i’, a))),, vanishes if and only if lir&{@~ (w)}, vanishes and 
l&r{ @ (w)), maps onto li${ !&(n)),. However, since v, is a finitely generated 
nilpotent group VI (w) is a finitely generated abelian group, so, by 3.9, if the 
subgroup l&{ @s (rr)}, of Hz (n, Z) maps onto l&t* (\u‘, (w )), this latter group must 
vanish. The proof is finished by the observation that the pro-exact sequence 

gives use to an exact sequence 

0 = lu& H&r; Z)-, li@{H&~~; z)}, -+ l&‘i\YI (n)}, +O. 

Proof of 3.5. This follows from 3.7(c), [M, 3.11 and [S: IX, 531. The existence of a 
canonical epimorphism nrZ,(K(7~, 1)) --, + comes from the fact that the tower 
(VIZ, t[K(v, 1))}s is naturally pro-isomorphic to (~r/rJ (w)}, [8: pp. 30, 125, 2511. 
Note that the spectral sequence which figured in the proof of 3.4 is essentially the 
Serre spectral sequence of the fibration tower 

where tilde denotes universal cover. 
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4. Groups of type (FP) 

A group w is said to be of type (FP) if the trivial ?r-module H has a resolution of ~ 

finite length made up of finitely generated projective R-modules. This section 
provides a way to compute the left derived functors Ci (i 2 0) of the lower central 
series completion functor C (2.2) on the category of modules over a group of type 
(FP). In favorable cases (4.8) this method gives a simple homological formula for 
the funct&s Ci. If Co happens to coincide with the HZ-localization functor E (3.1, 
3.4, 329, the zero-dimensional part of this formula is a simple expression for l? 
itself. 

A brief sketch of the method may help to clarify the peculiarities of the modules 
involved. The starting point is to write the modules M/1’ l M which appear in the 
definition of C(M) as Tort(R/I’, M). This notation makes clear that the formation 
of M/I” l M depends on the left R-module structure of M and the right R-module 
structure of R/IS. This right R-module structure of R /Is can be dualized in a more 
or less standard way to get left R-modules, in terms of which Torf(R/I’, M) can be 
expressed using Extfi( - , M). The dualization process transforms the inverse 
system {R/I’}, into a direct system of dual modules; it turns out that the derived 
functors of C can be computed by first taking a direct limit of these dual modules 
and then applying ExtX( - , Ad). The extra left R-module structure on each R/I” is 
reflected in a right R-module structure on the dual modules; this passes to the 
direct limit and induces the usual left R-module structure on C,(M) when 
ExtX( - “r M) is applied. 

Given the group 7~, let K” (7~) (j 2 0) be the direct limit lim, Ex&(R /I’, R ), where 
Ext is taken in the sense of right R-modules, and the magin the direct system are 
induced by the usual epimorphisms R/I” -+ R ,W-‘. Each K,(v) has commuting left 
and right s-module structures: the left action of w is induced by the usual lefi 
action of w on R, and the right action of n by the usual left action of rr on each 
R/I”. It is not hard to see that if the trivial left or right m-module Z possess a 
projective resolution of finite length over R 

for instance, if 7~ is of type (FP), then Kj(w) vanishes for i > n + 1. 
The basic result of this section is 

4.1. Theorem. If w is of type (FP), then fur any n-module M there is a strongly 
convergent second quadrant spectral sequence of homological type : 

Etj= Ext-d(Kj (r), M) + Ci+j(M). 

The Ext’s which for of this spectral sequence are of 

course computed in the sense of left owever, the extra right action of 

R on K,(v) furnishes the groups Extki(Kj(v), M) with a left R-module structure 
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which commutes with the differentials and, on passage to E”, corresponds to the 
usual left action of R on C,(M). 

4.3. Remark. The above spectral; sequence exists as long as w is of type (@), that 
is, as long as the trivial rr-module Z admits a (possibly infinite) resolution by finitely 
generated projective R-modules. However, the spectral sequence does not neces- 
sarily converge under this weaker hypothesis, even if only a finite number of the 
modules Ki (w) are non-zero. An example of such failure to converge can be 
obtained by letting v be a non-trivial finite perfect group, 

The group w is said to be a duality group [3,0.3] of dimension n if 
(i) w is of t;?pe (FP) (cf. [9]), 

(4.4) (ii) W(V;R)=Q, k# n, 
(iii) H” (w; R \ is torsion free. 

Condition (ii) and (ii) are equivalent to 
(ii)’ Extk(Z, R) = 0, k# n, 
(iii)’ Extz(Z, R) = D is torsion-free, 

where Z is the trivqal R-module and the Ext’s are taken in the sense of right 
R-modules. The abelian group D with left --action induced by the extra left action 
of 7r on R is called the dulzlizing module for W. (This differs slightly but 
inessentially from the usual definition of dualizing module [3,1.2].) Many examples 
of duality groups are given in [3] and [4]. 

If w is a duality group the modules Kj (r) are especially accessible, in view of 

4.5. Proposition. Suppose that 7t is a duality group of dimension n, with dualizing 
module D. Then Kj (n) vanishes for j# n, n + 1, and there are natural isomorphisms 

K,(?r)=D~zlimHomz(R/Is,H) 
sr 

K,,+,(n)=D~,l&Extm(R/Is,Z). 
S 

4.6. Remarks. Under the indicated isomorphism, the right action of w on K,(n) 
is induced by the left action of w on each R/I’, while the left action of w on K,,(n) 
is a diagonal action induced by the left action of w on D and the right action of w 
on each R/I”. A corresponding statement holds for K,+@). 

4.7. Remark. A result similar to 4.5 holds without the restriction 4.4(iii)’ that D 
be torsion-free. In this more general setting the formula for K,(n) is replaced by a 
short exact sequence 

O+ 1% D&Homz(R/Is, Z)+ K&T)-+ l.Torz(D,Extz(RII”, Z))+O. 
S s 

The formula for K,,+,(W) remains unchanged. 

It follows from 4.5 that for a duality group 7~ the spectral sequence of 4.1 
collapses into a long exact sequence. There is even further collapse if the lower 
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central series quotient W/I&) (3.2) of w are torsion-free. In this cease the abelian 
groups R/I” are torsion-free [l, 1.31, so (4.13) K,,&r) vanishes. 

4.8. Corollary. Suppose that w is a duality group of’ dime&on n with torsion-free 
lower central series quotients. Let D be the dualizing module for W. Then for any 
?r-module M there are natural isomorphisms, 

Cl (M) = Ext:-’ D~,l~Homz(RIIs,Z),M , j a0. 
s > 

The formulas of 4.5 and 4.8 simplify if the dualizing module D is additively 
isomorphic to an infinite cyclic group, that is, if n is a Poincare’ duality group [2]. 

4.9. Example. Suppose that n is a finitely generated torsion-free nilpotent group. 
By [2, 3.1.21 v is an (oriented) Poincare duality group (that is, a Poincare duality 
group which acts trivially on its dualizing module). Thus if w also has torsion-free 
lower central series quotients, there are natural isomorphisms (3.1~ 4.8) 

E(M)= CO(M)=Ext~~l~Homz(R/I’,Z),M) 
s 

for any 
infinite 

n-module M, where n is the duality dimension of W. For instance, if w is an 
cyclic group generated by a there is a natural isomorphism 

E(M) = Extk(K, M) 

where K is additively isomorphic to the free abelian group on a countable number 
of generators x0, xl, x2,. . . and has identical kft and right r-actions given by 

a ’ x0 =xo’a =x0 

a 9 Xs = Xi l c)i = Xi - Xi-1 (i > Q 

that is 
(1 - a) ’ Xi = Xi-1 (i >O). 

It will be convenient to have some simple lemmas to refer to in the proofs of 4.1 
and 4.5. 

Let M be a right R-module. A projective resolution 

of M is said to have length G n if Pi vanishes for i > n. The resolution is said to be 
finite if it has length G n for some n and each I’i is E finitely generated projective 
right R -module. 

Let 

be a short exact sequence of right R -module. 
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4.10., Lemma, :If &&and JP have finite projective resolutions of length G n, then Mu 
has a finite projective resolution of length G n + 1. 

In fact, the resolution of AC’ can be chosen to be the mapping cone [18, p. 46) of a 
suitable map between’ resolutions of M’ and M. 

4.11. Lemma [11: V, 2.23. Let F’ and F” be projective resolutions of M’ and AP 
respectively. Then there is a resolution F of M which fits into a short exact sequence 

O+F’+1F’+F”+O 

covering the original sfiort exact sequence of modules. 

Note that if the diffe!. entials are discounted F is isomorphic to the direct sum of F” 
and iF’. 

4.12. Lemma. Let Ai be a left ?r-module. Define a right action of II on R @M = 
ReM by 

Then TorR( R @ M, 2) vanishes unless i = 0, and the left action of w on R makes 
TorF(R @ M, Z) into a ieft ?r-module which is naturally isomorphic to M. 

4.13. Lemma. If m is a group of type (FP) the n-modules Is/is+’ and R/I’ (s s 1) 
are finitely generated as abelian groups. 

. In fact, the conc*usion of 4.13 holds if and only if Hl(lr; 2) = I/I* is finitely 
generated. This is seen by induction on s, using the multiplication surjections 
(I/1*) Qp (Is-‘/xs)+ Is/Is+‘. 

Proof of 4.1. Since w is of type (FP), the trivial left or right Irr-module 2 possesses 
a finite projective resolution over R of length, say, G n. It follows from 4.13 and 
4.10 that the trivial right Ir-modules Is/l’+’ (s zz 1) possess finite projective 
resolutions over R of length G n + 1. 

By 4.11, it is possible to construct inductively resolutions F, of the right 
R-modules R/Is (s 9 1) such that 

(4.14) (i) F, is a finite projective resolution of length G n + 1 and 
(ii) there are surjective maps F, -+ F s_l which cover the usual surjections 

R/I” --) R/I’-‘. 

&et F tienote the cochain complex lims HomR (F,, R), where Horn is of necessity 
taken in the sense of right R-modules and the maps in the direct systems are 
induced by those of 4.14(ii). The left action of R on itself makes F into a cochain 
complex of left R-modules; b‘ .W direct limits are exact, the ith cohomology group 
of F (i a 0) is naturally isomorphic to K&r). 
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For any kft R-module A#, let Wi(M) (i s 0) be the Ph homology group of the 
chain complex HomR (‘F9 M). It is not hard to see that the abelian groups Wi (M) 
are actually left R-modules in a natural way. In fact, left multiplication by any 
element I of R induces right R-m@ dule endomorphisms p(t),: R/I’ --, R/I”. 
u 4.~qii) thes;e can be lift to resolution maps A (#: FS + F, which form a 
cohenrrtt family, in the sense that the diagrams 

all commute. Moreover, any two such coherent families of resolution endomorph- 
isms corresponding to the same element of R are coherently chain homotopic. 
This coherent left action of R, up to chain homotopy, on the resolutions F, induces 
a right action of R, up to cochain hornotopy, on the cochain complex I”, and 
therefore an actual left action of R on the homology groups Wi(M). 

The dual HomR (P, R) of a finitely generated projective right R-module P is 
finitely generated projective left R-module. Together with 4.24(C) this implies that 
F is a cochain complex of projective left R-modules. Thus a short exact sequence 

O+M’+M+M”+O 

of left R-modules gives rise to a short exact sequence 

of chain complexes, and hence to a long exact homology sequence 

(4.15) --+ Wi(M’)+ Wi(M)* Wi(M”)+ Wi-l(M’)+ l l l + W(M”)+C* 

If P is a finitely generated projective right R-module and M is a left R-module 
the natural map 

PQD~ M + HomR (HomR (P, R), M) 

is an isomorphism. Consequently, for any left R-module A4 there are natural 
isomorphisms 

HomR (F, M) = HomR (14 HomR (F,, R), M) 

= 12,{Homi (HomR (F,, R), M)}s 

The techniques of 1191 thus imply that there are natural short exact sequences 

O-+ lrm’(Tor~, (R/I”, M)}s + Wi(M)* l@{Tor~(R/I’, 

In particular, ;Tlkre is a natural map W*(M) --p C(M); if M is free, this map is an 
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isomorphism and the modules Wt (M) vanish for i > 0. In view of 4.15, this shows 
that Wi is naturally equivalent to the ith left derived functor Ci of C. 

Since F is a cochain complex of projective modules, the desired spectral sequence 
is just the hypercohomology spectral_ sequence of [ll: XVII, 823. This converges 
strongly for the trivial reason that F vanishes above dimension 12 + 1. 

Proof of 4.5. For the purposes of this proof ExtX ( - , - ) will always denote Ex: in 
the sense of @zf R-modules. 

The proof depends on the fact that for any right rr-module M there is a natural 
first quadrant composition-of-functors spectral sequence of cohomological type 

E%j= Ext; (a, Ext$(M, R)) + Ext:j(M, R). 

Here the action of 7~ on 

Cf*a)W=(f(x 

Horn* (M, R ) is given by 

’ a! -‘)) l a f E Hom(M R) 

xEM,aEw 

and there is a corresponding description of the action of R on Ext: (M, R ). 
If M is R /I’, the E*-term of this spectral sequence can be computed in two steps. 

First of all, R/Is and R are, respectively, finitely generated (4.13) and free as 
abelian groups, so that there are natural isomorphisms 

Ext! (R/I’, R) = R ~2 Ext’r (R/I”, a), j=O,l 

which can be made into isomorphisms of right R-modules by putting the proper 
module structure on the right hand sides. 

Secondly, the fact that rr is a duality group of dimension n implies that for any 
right w;module M there are natural isomorphisms 

(4.16) ExtL(Z, M) ~2: Tor,R-i(D QD~ M, E) 

where H, as an argument of TorR (- , - ), denotes the trivial left R-module and the 
right action of r on D@, M is given by 

(&3W- = (a-’ d) 8 (m 9 a), a E n; d E D, m E M. 

Consequently, there are natural isomorphisms 

Eij= Extk(Z,Exti,(R/I”, R))a TOr,R_i(R~IDC~zExtl(R/IS, Z),Z). 

The proof is finished by applying 4.12 and taking a direct limit over s. 

The claim in remark 4.7 can be proved by showing that if D is not torsion-free 
the isomorphisms 4.16 rre replaced by isomorphisms 

Extk(Z, M) a Tor,R-i(M, D). 
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