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A linear multistep numerical integration scheme for solving sys-
tems of ordinary differential equations with oscillatory solutions
D. J. Evans and S. O. Fatunla (*)

ABSTRACT

In [1], a set of convergent and stable two-point formulae for obtaining the numerical solution of
ordinary differential equations having oscillatory solutions was formulated. The derivation of
these formulae was based on a non-polynomial interpolant which required the prior analytic
evaluation of the higher order derivatives of the system before proceeding to the solution.

In this paper, we present a linear multistep scheme of order four which circumvents this (often
tedious) initial preparation. The necessary starting values for the integration scheme are generated
by an adaptation of the variable order Gragg-Bulirsch-Stoer algorithm as formulated in [2].

1. INTRODUCTION Newton-Raphson iteration procedure. Good initial
estimates of the parameters for this iterative procedure

Linear multistep integration formulae to obtain the can be obtained and the proposed scheme yields an
numerical solution of an initial value problem of the adaptive convergent and zero-stable integration formula
form for oscillatory problems.
y'=f(x,y), y(a)=n, (1.1)
based on non-polynomial interpolants have been pro- 2. PRELIMINARIES
posed by Lambert & Shaw [4], and Shaw [5]. It can
be shown that these are particularly well suited to We shall consider the initial value problem (1.1) over a
solving initial value problems whose solutions contain closed and finite interval 1 : [a < x < b] with the as-
singularities. sumption that the function f = f (x, y) satisfies the con-
Asin [1], our numerical integration procedure will be ditions of the existence theorem as in Henrici (1962).
based on the representation of the solution to prob- An integer N is chosen to define a uniform mesh-size
lem (1.1) on a certain sub-interval by either the inter- h given as
polating function

L h=b=-2 | (2.1)
F(x)= T ax"+bsin(Nx+A) (1.2) N

r=0 and a sequence of mesh points is then defined as

or

L {xt:xt=a+ th, t=0,1,...,N}. (2.2)

- r :

Fy(x) = rEO ax + bysinh (Nex + Ay, (1.3) If we define the sequence of sub-intervals as
where L, the order of the polynomial part of the inter- {liix < x<xp g5 t=0,1,..., N-1}, (2.3)
polating function is a non-negative integer; b; and the interval I : [a < x < b can be expressed as
{a,, r=0,1,..., L} are real undetermined coefficients, then the interval I : [a < x Jca P
whilst N, and A, are real oscillatory parameters which N-1 2.4)
need to be evaluated at each step of the integration L= tL=JO L (2.

procedure. Rather than obtain the higher derivatives
of f = f(x, y) analytically as in [1] (which could at
times be very cumbersome), we shall obtain the oscil-
latory parameters Ny and A, by solving a pair of non-

linear trigonometric (or hyperbolic) equations by a with the variable order Gragg-Bulirsch-Stoer algorithm
as discussed in [2].

We shall denote by k, the step-number of the multi-
step integration formula and any necessary additional
starting values (i.e., y1,y2, ..., yk_1) are obtained

(*) D. J. Evans, Department of Computer Studies, Loughborough University of Technology,
Leicestershire, England.
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Let us assume that the numerical solutions

Yo Yt+1s
at the points x,, x; ; 1,

+» ¥t +k -1 have been obtained respectively
.+ Xy 4 k 1 and the numer-
ical solution y, | | at the points x=x, , | is sought.
Let

k-1
I*:i:JO I, 0<t<N-k, (2.5)
denote the union of the sub-intervals I, I;  1,--., Te 4 k1

defined by equations (2.2) and (2.3).

Over the interval I*, the solution to the initial value
problem (1.1) is represented by the interpolating
function (1.2).

3. DETERMINATION OF THE OSCILLATORY
PARAMETERS Nt AND At

Let f, +j denote the value of the function f=f(x, y) at

the point (x= Xe4jp Y= ¢ +3)- In an attempt to elimi-
nate the undetermmed coe%ﬁcxents in equation {1.2),
the following constraints are imposed on the inter-
polant (1.2} :

(a) the interpolating function should pass through

the points
{xt+j'yt+j’ i=0,1,...,k} ie,
Felt gy = Yeqjo L ko (3.1)

(b) the first derivative of the interpolant must also
satisfy the differential equation (1.1} at those
points specified in equation (3.1), that is

ciFt {x}

dx X=X

=f

t+j 3 j=0, 1, ..-,k.

t+]

Y= V4 (3.2)

Equations (3.1) and (3.2} respectively imply that the
relationships

L ;
izEO i t+]+b sin (Nyxy 5+ A=Yy 455

; i=0,1,....k (3.3)
an
iEO 1alx. +b (Nycos(N x t4jt J)= ft+j ;
. j=0,1,....k, (3.4)
old.

As the polynomial part of the equation (3.4) is of
degree at most L -1, the application of the Lth for-
ward difference operator denoted by aL to both sides
of the equation (3.4) will annihilate the polynomial
part. This gives the relationships,

bNA cos (N, x +A) ALf

t*t+]

The last equation implies that
L
a ft +j

b,= ,j=0,1,..., k-1.

N.a cos(N +A,)

tXe4j (3.5)

In partxcular, by setting j=0, 1, 2, in equation (3.5},
the undetermined coefficient b, can be obtained
either as

ALft
b= - , (3.6)
N, a%cos (N, x, +A()
L
It ?
b, = t+1 , (3.7)
N,alcos(Nx ,, + Ay
or
alf
b= —— t+2 (3.8)
N a"cos(Nyx,  o+A()

By pairing up the equations (3.6) to (3.8}, we can
obtain the following equations

L
Ry (N, A,) =aFcos(Npx, + A) alf, 4

- Y cos(N,x, , 1+ Al f =0, (3.9)
Ry (N, A =ALcos(Ntxt +1+AY) ALftJrz

-alcos(Nx, o + A, jalf, 1=0, (3.10)
and finally,
Ry (N, A= aVcos (Nyx, o+ A 8Lt

- abeos(N x, + A aTf, ,=0. (3.11)

Any suitable pairs of the equations (3.9) to (3.11) can
be solved for the parameters N; and A,.

We shall now give a detailed discussion of the deter-
mination of the parameters Ny and A by using equa-
tions (3.9) and (3.10) for the case when the polyno-
mial part of the interpolant (1.2) is of degree one (i.e.
L=1). We use the Newton iteration scheme to solve
the relevant equations.

Equation (3.9) now becomes,

Ry(Nu A = (fr o~ fq) [cos(Nix, g +Ay)
- cos(Nx, + A - (f, 1 - f)[cos(Nx, 5+ Ay)

-cos(Nx, 1+A)]=0, (3.12)

whilst equation (3.10) yields,
Ry (NpAy)=(f 43

-cos(Nyx, 1 +AY]-(f o -fp g)[cos(Nixy 3+ Ay)
(3.13)

-fip)lcos(Nex, o+ Ay

-cos(Nyx, 0 +A)]=0.

Journal of Computational and Applied Mathematics, volume 3, no 4, 1977.

236



With the aim of obtaining the approximate roots N
and A of the functions Ry (N, A;) and Ry(N,, A, )
we denote the partial derivatives of Rl(Nt’ At) and
Ry(N,, A,) with respect to the parameters N, and A

as follows,
g CRlNeA) o 2R (NG AY
LN aN, TN aN,
3R (N, A) 3Ry (N, A)
Ria Y V. R2.A YV
t t t t (3.14)

By replacing the higher order derivatives of f(x, y) by
their equivalent forward differences, i.e.,

£ (xg, yo) ~ L ;5

2 (U

s-r+1° (3.15)

the initial estimates NEO] s AE)O] at x are obtained from

[1] by either the equations,

4 1/2
1_|_2% Yo
Ny = > (3.16)
Yo
and
3 -
ATy
A%O]z cot_1 [0]—2 —NE)O] Xg s (3.17)
N0 A Yo
or by the following equations,
1/2
[o1_[_2%Y
VR e , (3.18)
and
4
01_,-1]__270 [0]
AO = tan [0] 3 N0 X (3.19)

At the ith iteration of the Newton Raphson scheme,
the new estimates N£1+1], AEHI] of the oscillatory
parameters N:, A: are given by

[i+1]_ \fil [i]
Nt = Nt + <‘SNt ,

A[l+1] A[l] 5A[1]

[ 5l are givon by
where the correction terms 8N; 6A are given by
[i] (i (i] [i]
SN -1 Raa ~Raln| | B3
5l il i (i
t R1, A R | R (3.21)

and ] denotes the determinant of the Jacobian of the

functions Ry(N,, A,) and Ry(N,, A ) at N, = NEI] ,
A =l

We denote the termmal va.lues obtained by the iterative
Newton method as N and A and are given by

N = lim nii
l—beo t

and

A = lim A[I]
1—» oo t

4. DERIVATIVE OF THE INTEGRATION FORMULAE

To derive the required integration formulae, it is now
necessary to eliminate the remaining undetermined
coefficients {a;, r=0,1,..., L} in the interpolating
function (1.2). We shall achieve this objective with
the view of obtaining a consistent and zero-stable (and
hence convergent) linear multistep scheme.

We introduce a function z, ; defined by :

- b, sin (N7x, ,; + A%), (4.1)

ZeriT Yesi t+

whose derivative zt+

=ft+i_Nt btcos(N

with respect to x is given by :

Zeyi Xppit A (4.2)
The application of the equations (4.1) and (4.2} in
equation (1.2) yields the results,

L

i
24" iEO a4 Xt4j (4.3)
and
, L
Ze4j= iEO fagxi (4.4)

We now introduce the consistency parameters
{aj, ﬁj; j=0,1,..., k} such that @g, BO are not both

zero and as we are only interested in an explicit integra-
tion scheme, ﬁk is allowed to vanish.

Forj=0, 1, ..., k; equation (4.3) is multiplied by o
and equation (4 4) is multiplied by -hﬁJ We now add
columnwise to obtain the result

k

Eajztﬂ t4j= 1§0a[EaJ t4] ﬂlzﬁxtﬂ]

b5
Zohi
(4.5)

Since we are interested in an Adam’s type formula, we
assign the following values to the consistency parameters:

ao=0, a1=—1, ap=+1; and

a=0 for j=2,3,.. kL (4.6)
This choice of parameters gives

Jléo o= 0 (4.7)
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which is the first consistency condition for a general
linear multistep scheme.
The application of equation (4.6) in equation (4.5)
gives

> b pa
=0 Sift+iT 2, Bizes s

L k-1
[zax 1h2 Bixe,

11 PR+ ]

+ (4.8)

Now it can be shown that there is no loss of generality
in assigning the following values,

x,=0 and h=1, (4.9)

after allowing the coefficients of a; to vanish in equa-

tion (4.8) (fori=1, 2, ..., L). This gives the result,

k k- 1

z Ja-lz J‘ 13_0 (4.10)
j=o07 1 j=0

By choosing,

L=k-3, (4.11)

the equation (4.10) will give a set of k-3 equations in
k unknowns BO, Bl, ""6k—1 and thus allowing three

degrees of freedom.

If we now choose L =1 and hence k =4 and set

i=2, 3, 4, in equation (4.10) we obtain the following
values for 51, .6’2, and ﬁ3, i.e.,

By= 1875,
By=-1.125,
By= 2.625, (4.12)

and hence for ﬁo the result -0.375.

The above procedure makes equation (4.8) 2 linear
multistep formula and by allowing the coefficient of
aq to vanish and then apply equations (4.3) and (4.4),
we obtain the integration formula as

k-1

hE B.f

k
2 a.
550 “TVeHi TR 0 e

k . * *
=jE a-[yt+j - b, sin (Ntxt+j + ALl

_hz 3 [fes; - N{b, cos (N} Xepj ADL.
(4.13)
Fmally, from equations (4.8), the undetermined coef-
ficient b, is
b = fre3-fia2
t
N: [cos (N:xt+3 + A:} - €O$ (N:‘xt

+27% ADI

(4.14)
and by using equation (4.14) in equation (4.13) and
re-arranging terms, we obtain the final integration
formula as :

k-1 k-1
yt+k"‘2 AT hE ﬁft:+j

+ ft+3_ft
¥ *
N’:{cos (Ntxt+3+At) -cos (N x, o +A)]

k-1
Z o H_J-I-A) N, *h 2 ,(3<:os(Nt t+J<!-A)}

| k
lﬂ @; sm(N

(4.15)

The consistency and zero-stability of equation (4.15)
was established in [3].

The parameters N:, At are used as the initial estimates
over the next interval I; | 1 of the integration procedure,
ie.,

NEC-:]I =

and

alol _ - AT, N-k.

t+1°

In the eventuality that the Jacobian of the functions
Ry (N, Ay) and Ry (N, A,) is singular, 2 new pair of
equations could be chosen from equations (3.9) to
{3.11). However, if all possible choices of the pairs
yield unsatisfactory results, we can switch to the
alternative interpolant (1.3). This technique is fully
discussed in [4].

t=0,1,..., (4.16)

5. APPLICATIONS AND NUMERICAL RESULTS

Example 5.1

We first consider the initial value problem of Schweitzer
(1974) given as :

B yl' -1 1 ¥q sin x
= +
y2' 1 -2 ¥ 2(cos x-sin x)
with initial values (5.1)
n] o
Y2(0) 1

over the interval 0 € x < 7 whose theoretical solution

in the specified range is given by,
[ y1(x)] [ sin x

€OsS X

yo(x)

The numerical solution was obtained with a uniform

mesh-size of h = T_ . The initial estimates of the oscil-

20

latory parameters are obtained as
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Table 5.1a.

. No. of Oscillatory parameters | Computed |[Truncation
T1metStep Newton Abscissae d soﬁn. Error
Iterations 7
* *
*t NEo1 Ato1 Ye,1 10T 1
0 6 0.00000000{ 1.0000019 | 0.00000003 { 0.00000000] 0.00000
1 2 0.15707963] 1.0000053 0.00000003 | 0.15643446] 0.04219
2 2 0.31415926 | 0,9999848 | 0.00000130 | 0.30901699] 0.09763
3 2 0.47123889 1.0000195 +0.00000393 | 0.45399050] 0.03936
4 2 0.62831852] 0.9999779 | 0.00000785 | 0.58778524| 0.02126
5 2 0.78539815] 1.0000246 -0.00001432 | 0.70710678] 0.03520
6 2 0.94247778| 0.9999699 | 0.00002432 | 0,80901698] 0.04340
7 2 1.09955741] 1.0000356 -0.00003888 | 0.89100653} 0.05248
8 2 1.25663704| 0.9999592 | 0.00005722 | 0.95105650} 0.06660
9 2 1.41371667| 1.0000398 [-0.00006932 | 0.98768835] 0.07632
10 2 1.57079630| 0.9999651 | 0.00007132 | 0.99999998| 0.09684
11 2 1.72787593| 1.0000469 -0.00010703 | 0.98768837} 0.10978
12 2 1.88495556] 0.9999144 | 0.00021732 | 0.95105650f 0.11948
13 2 2.04303519] 1.0001499 |-0.00041286 | 0.89100655| Q.25810
14 2 2.19911482] 0.9997400 | 0.00075868 | 0.80901700| 0.11045
15 3 2.35619445| 1.0004633 |F0.00140147 | 0.70710683| 0.14257
16 3 2.51327408| 0.9991316 | 0.00269235 | 0.58778521| 0.48340
17 - 2.67035371 - - 0.45399064| 0.69677
18 - 2.82743334 - - 0.30901689| 1.13746
19 - 2.98451297 - - 0.15643467] 1.13681
20 - 3.14159265 - - 0.00000000] 1.96611
Table 5.1b.
Time Step § No. of Oscillatory parameters | Computed Truncation
t Newton Abscissae soln. Error
Iterations 7
* *
X N2 A2 Ye,2 10.T,,1,2
0 4 0.00000000| 0.99999y6 |1.5707963 | 1.00000000| 0.00000
1 2 0.15707963| 0.9999962 |1.5707984 | 0.98768834] 0.09396
2 2 0.31415926} 1.0000151 }1.5707818 | 0.95105651| 0.08331
3 2 0.47123889| 0.9999735 |1.5708279 | 0.89100652| 0.07095
4 2 0.62831852| 1.0000408 [1.5707412 | 0.80901700| 0.01963
S 2 0.78539815]| 0.9999343 |1.5708924 | 0.70710678| 0.06018
6 2 0.94247778| 1.0001147 |1.5706209 | 0.58778527| 0.05531
7 2 1.09955741| 0.,9997664 |1.5711613 | 0.45399050] 0.10031
8 2 1.25663704| 1.0008089 |1.5695258 | 0.30901703] 0.12626
9 2 1.41371667] 1.0007450 }1.5696261 | 0.15643447] 0.19219
10 3 1.57079630| 0.9997980 {1.5711155 | 0.00000005] 0.23836
11 2 1.72787593] 1.0001824 §1.5705043 {-0.15643446( 0.19378
12 2 1.88495556| 0,9997519 |1.5712085 |-0.30901698] 0.11378
13 3 2.04203519] 0.0003081 | 1.5702510 {-0.43599052] 0.38254
14 3 2.19911482| 0.9996277 }1.5715125 {-0.58778516] 0.38153
15 3 2.35619445] 1,0004596 {1.5698189 [-0.70710686] 0.62036
16 3 2.51327408] 0.9994182 | 1.5721769 |-0.80901686] 0.62575
17 - 2.67035371 - - -0.89100667| 0.88692
18 - 2.82743334 - - -0.95105628| 1.11933
19 - 2.98451297 - - -0.98768865} 1.61092
o) - 3.14159265 - - -1.00000000] 2.10282
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Table 5.2a.

Time Step | No. of Abscissae | Oscillatory parameters | Computed Truncation
t Newton Soln. Error
Iterations 6
Xt Nt At Yt,1 10°-Teh 1
0 4 7.38905610 | 0.4356458 | -1.5280714 | 1.00000000 0.00000
1 6 7.48905610 1 0.4119962 | -1.3370577 { 1.04132752 0.00418
2 9 7.58905610 | 0.3998252 | -1.2359248 | 1.08028669 0.00527
3 9 7.68905610 | 0.3700663 | -0.9810982 ] 1.11689773 0.00623
4 13 7.78905610 | 0.3517235 | -0.8190168 | 1.15118325 0.06750
5 16 7.88905610 | 0.3426462 | -0.7366731 | 1.18317107 0.00196
6 8 7.98905610 | 0.3113717 | -0.4442881; 1.21289184 0.03444
7 15 8.08905610 | 0.2944521 | -0.2809082 | 1.24037929 0.58150
8 3 8.18905610 ] 0,2883406 | -0.2205216 | 1.26566957 0.04245
9 9 8.28905610 | 0.2531217 0.1379613 | 1.28880209 0.03104
10 4 8.38905610 | 0.2371443 0.3060069 | 1.30981705 0.01801
11 11 8.48905610 | 0.2341942 0.3376040 | 1.32875693 0.11055
12 8 8.58905610 | 0.1905928 0.8182852 | 1.34566660 0.00710
13 - 8.68905610 - - 1.36059045 0.03971
14 - 8.78905610 - - 1.37357500 0.19191
15 - 8.88905610 - - 1.38466850 0.02773
16 - 8.98905510 - - 1.39391758 0.10814
Initial oscillatory parameters =NL') = 0.45730571, Al° = -1 68002638,
Table 5.2b.
Time Step | No. of Abscissae | Oscillatory parameters | Computed Truncation
t Newton Soln. Error
Iterations * 6
Xt NE 2 Af,2 Y¢ .2 10°.Ti 1,2
0 6 7.38905610 | 1.5760359 |-11.2858253 |0.42516833 0.00000
1 5 7.48505610 | 1.3724154 | -9.8070483 | 0.40140655 0.00329
2 5 7.58905610 | 1.2262821 | -8.7393236 | 0.37781517 0.00329
3 5 7.68905610 | 1,1109863 | -7.8907389 | 0.35443893 0.00329
4 5 7.78905610 | 1.0175952 | -7.1975520 }0.33131763 0.36287
5 4 7.88905610 | 0.9436730 | -6.6435050 | 0.30848809 0.26902
6 4 7.98905610 | 0.8771144 | -6.1393280 | 0.28598162 0.21651
7 4 8.08905610 | 0.8182216 | -5.6876621 |0.26382606 0.55344
8 4 8.18905610 { 0.7721938 | -5.3301387 [ 0.24204741 0.41530
9 4 8.28905610 | 0.7261200 | -4.9671397 | 0.22066680 0.34360
10 4 8.38905610 | 0.6827084 | -4.6200680 | 0.19970275 0.68269
1 10 8.48905610 | 0.6514154 | -4.3655428 {0.17917270 0.50778
12 4 8.58905610 | 0.6159374 | -4.0726420 | 0.15908980 0.42887
13 - 8.68905610 - - 0.13946534 0.77925
14 - 8.78905610 - - 0.12031009 0.56714
15 - 8.88905610 - - 0.10163100 0.48782
16 - 8.98905610 - - 0.08343378 0.85443

Initial oscillatory parameters =

N[O] = 1.96633719, A

0,2

(0 . _14.04732875
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(o] _
Npj= 141197420

[0] _
Ag]= 011112352

and
[0] _

NO,Z = 0.99505019
[0] _

AO,Z- 1.68870386

Details of the numerical results are given in tables
{5.1a) and 5.1b).

Example 5.2

We also consider the example of Amdursky and Ziv
(1974). The initial value problem is given by the
equations,

Y1 0 1 1yq
T , (5.2
vy | |84 ~um) |y, )

where § is a real constant. The general solution to this
system of differential equations is

y1(x) = Csin (B log x) + D cos (8 log x),

y2(x) = B[C cos (B log x) ~ D sin (8 log x)] /x,

for x > 0, where C and D are arbitrary constants. The
numerical solution to problem (5.2} was obtained in
the interval e2 < x < 9, where e = 2.7182818 with

a uniform mesh-size of h = 0.1 for the values C=D=1
and f§ = . This gives the initial conditions as

Yl(ez) =1,
and
2 m
(?)=-2—.
yz e2

Details of the numerical results are given in tables
(5.2a) and {5.2b).
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