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The sweetpotato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is one of the most important pests
of sweet potatoes in the world. With free trade between the United States and the U.S.-controlled
Mariana Islands, C. formicarius has spread along with this commodity. Because of the cryptic nature of
the larvae and nocturnal activity of the adults, and the cancellation of long-residual pesticides, this pest
has become increasingly difficult to control. Therefore, the present study sought to explore and to com-
pare the effectiveness of Metarhizium brunneum F52 (90 ml a.i./ha), Beauveria bassiana GHA (40 ml a.i./
ha), spinosad (90 g a.i./ha), azadirachtin (1484 ml a.i./ha), B. bassiana + M. brunneum (20 ml a.i./ha + 45 ml
a.i./ha), B. bassiana + azadirachtin (20 ml a.i./ha + 742 ml a.i./ha), B. bassiana + spinosad (20 ml a.i./
ha + 45 ml a.i./ha), M. brunneum + azadirachtin (45 ml a.i./ha + 742 ml a.i./ha) and M. brunneum +
spinosad (45 ml a.i./ha + 45 grams a.i./ha) in controlling this pest in both the laboratory and the field.
The treatment with B. bassiana + M. brunneum was the most effective in reducing tuber damage by
C. formicarius, producing the highest yields. The most adult cadavers were found in plots treated with
the combination of two fungi. This combined fungal formulation appears to be appropriate for the
practical control of C. formicarius on sweet potatoes.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The sweetpotato weevil, Cylas formicarius (F.) (Coleoptera:
Brentidae), is the most destructive insect affecting tropical and
subtropical production of sweet potato (Ipomoea batatas (L.)
Lam., Convolvulaceae) (Chalfant et al., 1990), attacking sweet pota-
toes both in the field and in storage (Sherman and Tamashiro,
1954). The production of terpene in the stored roots in response
to tunneling by C. formicarius larvae imparts a bad odor, a bitter
taste and leaves the sweet potatoes ranging from unpalatable to
inedible (Ray and Ravi, 2005; Uritani et al., 1975). The infestation
normally spreads from old sweet potato gardens, through the cut-
tings used for planting (Sutherland, 1986). The weevil population is
greatest at the start of the dry season as high temperatures crack
the surface of the soil, thereby exposing the tubers (Talekar,
1982). Larvae generally cannot move through the soil but can
easily enter into the soil cracks to reach the tubers (Cockerham
et al., 1954).

In addition to I. batatas, the major host plant of C. formicarius
(Chalfant et al., 1990), at least 49 other members of the Convolvul-
aceae have been recorded as hosts for C. formicarius, which has
been recorded feeding on seven genera in six tribes within this
plant family (Austin et al., 1991). In Guam and other Micronesian
Islands, the Aiea Morning Glory, Ipomoea triloba L. (Convolvula-
ceae), is widespread and serves as an alternative host for C. formi-
carius (Reddy et al., 2012b). Because of the cryptic nature of the
larvae and the nocturnal activity of the C. formicarius adults, it is
becoming difficult to control this pest using chemicals. Addition-
ally, the life history of C. formicarius make the pest easiest to con-
trol with long residual pesticides that are now out of favor and
often unavailable. Recently, Leng and Reddy (2012) reported sev-
eral low-risk insecticides such as spinosad and azadirachtin to be
effective against C. formicarius in a laboratory study, but their effec-
tiveness was not tested in the field. Our previous studies dealing
with pheromone-baited traps have also shown promise for moni-
toring this pest (Reddy et al., 2012a), and mass trapping techniques
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have been shown to reduce damage caused by C. formicarius
(Reddy et al., 2014). Sweet potatoes are mainly grown on the island
of Rota and exported to other neighboring islands. Since there are
no quarantine restrictions to the movements of sweet potatoes
among the Mariana Islands (Guam and Northern Mariana Islands
of Saipan, Rota and Saipan), C. formicarius is spreading to new
areas.

The larvae and adults of C. formicarius are susceptible to many
natural enemies such as parasitoids, predators, and pathogens
(Jansson, 1991). In particular, the fungal pathogens Beauveria bas-
siana and Metarhizium brunneum (a taxon in the Metarhizium ani-
sopliae species complex) (Ascomycota: Hypocreales) have
commonly been observed to attack C. formicarius (Jansson, 1991)
and other Cylas species (Ondiaka et al., 2008). Entomopathogenic
fungi such as those from the M. anisopliae and B. bassiana species
complexes are currently being used to control agricultural and for-
est pests worldwide (Butt et al., 2001). These fungi are registered in
the USA, as well as in many other countries, as biopesticides
(Kabaluk et al., 2010). Such microbial biopesticides are sustainable
in IPM programs because of their active relationship with insects.
In some cases, compatible products may be combined with
entomopathogenic fungi to increase control, to decrease the
amount of insecticides required, and to minimize the risks of envi-
ronmental pollution and pest resistance (Quintela and McCoy,
1998). Nonetheless, the efficacy of some fungi as a biological con-
trol agents can be reduced by unfavorable temperature and humid-
ity (Yasuda et al., 1997). However, the hot and humid conditions of
sweet potato fields in Guam and other Micronesian Islands are
favorable for the use of B. bassiana and M. anisopliae.

In this study, various fungal entomopathogens were tested indi-
vidually and in combination along with several effective, low risk
insecticides such as azadirachtin and spinosad (Leng and Reddy,
2012), for their laboratory and field efficacy against C. formicarius.
2. Materials and methods

2.1. Insect rearing

Pheromone lures consisting of rubber septa loaded with Z3-
dodecenyl-E2-butenoate, sealed in an impermeable bag for ship-
ping and storage, were obtained from Chem Tica Internacional
S.A. (San José, Costa Rica). Pherocon unitraps (Trécé Incorporated,
Adair, Oklahoma, USA) baited with these lures were used to trap
adult C. formicarius in sweet potato fields in Latte Heights (Guam,
USA) during 2010. The trapped adults were taken to the laboratory,
placed in batches in collapsible cages (12 � 10 � 10 cm), fed leaves
and pieces of the sweet potato, and maintained at 22 ± 2 �C, 70–
80% relative humidity and a 16:8 h L:D photoperiod. Approxi-
mately 5–6 generations were completed before using the offspring
for experiments. For all experiments, 3–4 week old adults were
obtained from these laboratory colonies (Gadi and Reddy, 2014).
Table 1
Material and rate of application in each treatment. Spray volume 94 L/ha.

Treatment Material

C Control (water spray)
T1 Metarhizium brunneum F52 emulsifiable concentrate (Met 52 EC)
T2 Beauveria bassiana GHA emulsifiable concentrate (BotaniGard ES)
T3 spinosad (Conserve SC�)
T4 azadirachtin/Aza-Direct�

T5 B. bassiana + M. brunneum
T6 B. bassiana + azadirachtin
T7 B. bassiana + spinosad
T8 M. brunneum + azadirachtin
T9 M. brunneum + spinosad
2.2. Fungi and other chemicals

Conidia of B. bassiana strain GHA were supplied as an unformu-
lated technical grade powder by Laverlam International (Butte,
Montana, USA). The conidial titer was 1.6 � 1011 conidia/g and via-
bility was 98%, based on conidial germination in the laboratory on
potato dextrose yeast extract agar after incubation for 18 h at
27 �C. Cultures of M. brunneum F52 (a commercialized isolate pre-
viously identified as M. anisopliae) were obtained from Novozymes
Biologicals Inc. (Salem, Virginia, USA). Conidial powders were
stored dry at 4–5 �C until formulation and use. The chemicals used
in the present study – azadirachtin (Aza-Direct) and spinosad –
were obtained as shown in Table 1.

2.3. Laboratory tests

Laboratory tests were carried out from 12 September to 15
October 2013 with the hypothesis that the chemicals we tested,
when topically applied, would exhibit contact toxicity to C. formi-
carius adults (Table 1). For each replicate, 10 adults were trans-
ferred to a disk of Whatman No. 1 filter paper (9 cm diam,
Whatman� quantitative filter paper, ashless, Sigma–Aldrich, St.
Louis, Missouri, USA) in a 9 cm disposable Petri dish.

Each dish received a 10-g piece of sweet potato and two 7 cm
sweet potato branches with leaves (4–8) as food for the insects. Five
replicate (prepared at separate times using different cultures and
batches of insects) Petri dishes of 10 adults were sprayed (House-
hold Sprayer, Do It Best Corp., Ft. Wayne, Indiana, USA) with
0.5 mL of its assigned treatment (Leng and Reddy, 2012). Two con-
trol treatments were maintained; in one, the dishes were sprayed
with 0.5 mL of tap water, and in the other, no treatment was applied.
Following applications, dishes were maintained under laboratory
conditions (previously described), and adult mortality was assessed
at 24, 48, 72–96, 120–144, and 168–192 h after treatment.

2.4. Field experiments

Identical trials were conducted at the University of Guam Agri-
cultural Experiment Stations at Yigo (N13�31.9300 E144�52.3510) in
northern Guam and at the Inarajan Experiment Station
(N13�61.9630 E144�45.3530) in southern Guam from October 01,
2013 to January 30, 2014.

2.4.1. Plot design and treatment procedures
Treatment plots measuring 6 � 6 m were arranged in a random-

ized block design and separated from other plots by 1 m buffer
zones to prevent any treatment effect. Sweet potato cuttings of
the variety IB 195 (Kuma 2) known to be highly susceptible to C.
formicarius damage (Nandawani and Tudela, 2010) were trans-
planted into rows 80 cm apart with 30 cm between plants within
each row. Each treatment was replicated three times, for a total
of 33 individual plots. Each plot consisted of 12 rows of 15 sweet
Rate (active ingredient) Source

– –
90 ml/ha Novozymes Biologicals (Salem, VA).
40 ml/ha Laverlam International Corporation, Butte, MT
90 g/ha Dow Agro Science LLC, Indianapolis, IN
1484 ml/ha Gowan Company, Yuma, AZ
20 ml/ha + 45 ml /ha As stated above
20 ml/ha + 742 ml/ha As stated above
20 ml/ha + 45 g/ha As stated above
45 ml/ha + 742 ml/ha As stated above
45 ml/ha + 45 g/ha As stated above



Fig. 1. The effects of nine treatments in a laboratory study (T1: M. brunneum, T2: B.
bassiana, T3: spinosad, T4: azadirachtin, T5: B. bassiana + M. brunneum, T6: B.
bassiana + azadirachtin, T7: B. bassiana + spinosad, T8: M. brunneum + azadirachtin,
T9: M. brunneum + spinosad) on adjusted mortality of the sweetpotato weevil, Cylas
formicarius under laboratory conditions.
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potato plantings, for a total of 180 plants per plot. Fertilizer in the
form of N, P, K, and S was applied at the actual time of planting
according to published recommendations (Nandawani and
Tudela, 2010).

Since plants require thirty days to form tubers, at which time C.
formicarius infestation starts, the first treatment applications
(Table 1) were made on October 1, 2013.

2.4.2. Observation
A pretreatment count of C. formicarius damage was taken on

September 30, 2013, and subsequent counts were made on October
14, November 4 and 18, and December 02 and 16. The damage to
roots (tubers) in each plot was evaluated by randomly selecting
eight roots from each treatment plot and counting the number of
feeding holes. The yield of sweet potato as measured by tuber
weight was recorded for each plot. Damage levels and yields from
the treatment and control plots were compared, relative to con-
trols, to evaluate the effectiveness of entomopathogens and low
risk insecticides in reducing damage from C. formicarius.

2.4.3. Number of cadavers
Adult weevils were collected from each plot in randomly

selected 1 m2 quadrats (Reddy, 2011) searched the surface of the
ground at the same time intervals as mentioned above. Sampled
insects were then incubated in the laboratory for up to two weeks
and observed for mortality. Any adults failing to move when
probed with a dissecting needle were recorded as dead and
removed from the boxes. These dead adults were surface-sterilized
and incubated separately in Petri dishes containing moist filter
paper. The cadavers were inspected for the presence of fungal
mycelium (mycosis) after 7–14 days.

2.5. Statistical analyses

All mortality in each treatment was transformed to adjusted
mortality (AM) according to the control (water spray). The AM
was calculated as the following equation:

AM ¼ Mortalitytreatment �Mortalitycontrol

1�Mortalitycontrol

where Mortalitytreatment was the mortality of adult (C. formicarius) in
each treatment while Mortalitytreatment was the mortality of adults
in the control treatment.

The data of AM were log-transformed to meet the normal distri-
bution requirement, with homogeneous variance among different
treatments. Then, repeated measures ANOVA was used to examine
the effects of different treatments (T1: M. brunneum, T2: B. bassi-
ana, T3: spinosad, T4: azadirachtin, T5: B. bassiana + M. brunneum,
T6: B. bassiana + azadirachtin, T7: B. bassiana + spinosad, T8: M.
brunneum + azadirachtin, T9: M. brunneum + spinosad) on the
adjusted mortality of adult sweetpotato weevils C. formicarius.

To estimate degree of damage caused by C. formicarius in differ-
ent treatments, damage reduction rates (DRR) were established.
First, holes/tuber was used to indicate the damage degree (DD).
Then, the DRR of C. formicarius was calculated as the following
equation:

DRR ¼ DDtreatment � DDcontrol

1� DDcontrol

where DDtreatment was the holes/tuber caused by C. formicarius in
each treatment while DDtreatment was the holes/tuber caused by C.
formicarius in the control treatment (water spray).

Repeated measures ANOVA was also used to examine the
effects of different treatments on DRR. In addition, the numbers
of cadavers in each plot, evaluated by counting in randomly
selected 1 m2 quadrats in each plot, were examined to detect dif-
ferences at different sampling dates with repeated measures
ANOVA. Multiple Comparison method (LSD) was then used to test
the differences in yield of different treatments.

All analyses were conducted using SAS version 9.3 (SAS
Institute, 2011).
3. Results

3.1. Laboratory tests

Adult mortality tests (Fig. 1, presented as adjusted percentage
mortality) found that all treatments caused significant adult mor-
tality compared to the water control treatment (F9,441 = 10.37,
P = 0.001; Fig. 1). Spinosad, B. bassiana + spinosad, and M. brunneum
+ spinosad each caused 100% mortality at 48 h post-treatment.
Azadirachtin, B. bassiana + M. brunneum, B. bassiana + azadirachtin,
and M. brunneum + azadirachtin caused 100% mortality but not
until 72–144 h after the treatment. Treatments with either M.
brunneum or B. bassiana alone required 168–192 h post-treatment
to reach 100% mortality.

3.2. Field studies

3.2.1. Effect of treatments on reduction in percent damage
All the biorational and low risk chemical treatments signifi-

cantly (both Yigo and Inarajan sites; see Fig. 2; Table 2) reduced
the level of tuber damage by C. formicarius. However, the treatment
with B. bassiana + M. brunneum was significantly superior (Yigo,
F8,153 = 8.62, P = 0.001; Inarajan, F8,153 = 15.62, P = 0.001) to all
other treatments as it eliminated all damage to sweet potato
tubers, something no other treatment achieved.

3.2.2. Number of cadavers recorded in the treatment plots
The treatment with B. bassiana + M. brunneum produced an

average of 42.7 cadavers/m2 compared to 0.0 adult cadavers/m2

in the control plots. Plots treated with B. bassiana or M. brunneum,
either alone or in combination, produced an average of 0.7–
16.7 cadavers/m2, which was significantly different (Yigo,



Fig. 2. The effects of nine treatments on damage reduction rates (relative to control damage) as%, of sweetpotato weevil, Cylas formicarius, in crop fields in the Mariana Islands
(a, Yigo; b, Inarajan) in 2013–2014.

Table 2
Results of repeated measures ANOVA for the effect of different treatments on damage
reduction rates, number of cadavers, and yield in trials of biorational pesticides for
control of Cylas formicarius in the Mariana Islands in 2013–2014.

Variables Yigo Inarajan

F
values

P
values

F
values

P
values

Damage reduction rates 8.62 0.001 15.62 0.001
Number of adult cadavers (1 m2

quadrats in each plot)
16.15 0.001 39.74 0.001

Yield 217.30 0.001 535.56 0.001
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F4,85 = 15.07, P = 0.001; Inarajan, F4,85 = 9.89, P = 0.001; Fig. 3) from
B. bassiana + M. brunneum.
3.2.3. Yield levels
All treatments with low-risk insecticides had significantly

higher yields than the control treatments (Yigo, F9,20 = 217.30,
Fig. 3. The effects of nine treatments on number of adult cavaders of sweetpotato weevi
Yigo; b, Inarajan) in 2013–2014.
P = 0.001; Inarajan, F9,20 = 535.56, P = 0.001; Fig. 4). However, the
treatment with B. bassiana + M. brunneum was significantly supe-
rior (Yigo, F4,10 = 45.46, P = 0.001; Inarajan, F4,10 = 164.26,
P = 0.001) to B. bassiana + azadirachtin, B. bassiana + spinosad, M.
brunneum + azadirachtin, or M. brunneum + spinosad. That being
said, the yield levels of these combination treatments was signifi-
cantly higher than for treatments with a single chemical applica-
tion (Yigo, F5,12 = 66.56, P = 0.001; Inarajan, F5,12 = 289.00,
P = 0.001).
4. Discussion

Environmentally friendly microbial pesticides can play a signif-
icant role in sustainable crop production by providing successful
pest management. The current study indicated that the combina-
tion of the pathogenic fungi B. bassiana + M. anisopliae significantly
reduced the damage levels and increased the sweet potato yields in
comparison to individual applications of single pathogenic fungal
species, low-risk insecticides, or the control treatments. We have
l, Cylas formicarius in 1 m2 quadrats in sweet potato fields in the Mariana Islands (a,



Fig. 4. The effects of nine biorational pesticide or entomopathogen treatments on
yield of sweet potatoes in crop fields in the Mariana Islands in 2013–2014, where
C = control with water spray, T1: M. brunneum, T2: B. bassiana, T3: spinosad, T4:
azadirachtin, T5: B. bassiana + M. brunneum, T6: B. bassiana + azadirachtin, T7: B.
bassiana + spinosad, T8: M. brunneum + azadirachtin, and T9: M.
brunneum + spinosad.
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demonstrated the additive effect of these two pathogenic fungi on
control of C. formicarius. The reason for using the combination of
the two entomopathogenic fungi at 50% reduced application rates
compared to the full rate of individual compounds is that these
pathogenic fungi have different optimum temperatures ranges,
which could affect conidial germination. Tests with B. bassiana
and M. anisopliae have given promising results for the control of
C. formicarius in India (Tarafdar and Sarkar, 2006), Kenya
(Ondiaka et al., 2008), Taiwan (Su et al., 1988), and the Philippines
(Burdeos and Villacarlos, 1989). While adult weevils are the only
noticeable stage, infected adults can transmit infections to other
individuals in the field. This study clearly found that the number
of cadavers of adults in the field increased after the application
of entomopathogenic fungi.

The field efficacy of entomopathogenic fungi toward various
pests depends on many factors, some of which are related to the
behavior of the insect host in its natural habitat (Gindin et al.,
2006). As soil is the natural habitat of these fungi, and since larvae
and pupae dwell in the soil, it can be inferred from this study that
the applied fungal formulations caused the observed infection.
Although the adults feed on plant foliage, they can be seen crawl-
ing on the soil where it is possible that they become contaminated
by the fungal spores.

Conidial survival is known to be affected by agrochemicals,
environmental factors (Benz, 1987) or by bio-pesticides or other
chemical products used to protect plants (Anderson and Roberts,
1983). Both B. bassiana and M. anisopliae applied in combination
with azadirachtin or spinosad were less effective than the combi-
nation of the two entomopathogens, possibly due to fungicidal
effects of the azadirachtin or spinosad. There have been some
reports on neem-based products possessing fungicidal properties
applied at certain doses, such as a significant inhibitory effect on
vegetative growth and conidiogenesis of B. bassiana spores caused
by the commercial formulation of neem leaves in concentrations of
5% a.i. or greater (Castiglioni et al., 2003). A 1% aqueous neem
extract caused significant inhibition of mycelial growth of B. bassi-
ana (Castiglioni et al., 2003). Conidiogenesis of B. bassiana was
reductioned among the highest neem concentrations. Amutha
et al. (2010) reported that 3% azadirachtin was slightly harmful
to B. bassiana. This may explain why azadirachtin plus B. bassiana
was less effective than the combination of the two species of fungi
in our study. Ericsson et al. (2007) reported that the combination of
spinosad and M. anisopliae caused significantly higher mortality of
Agriotes lineatus (L.) and Agriotes obscurus (Coleoptera: Elateridae)
than either treatment alone, suggesting that low levels of a
reduced-risk pesticide can be combined with a biological agent
to reduce wireworm populations in lieu of traditional pesticide
strategies. But in our case, this sort of combination was less effec-
tive that combining two entomopathogens.

5. Conclusions

This is the first time that a combination of two entomopatho-
genic fungi has been tested against C. formicarius. This study
showed the potential of entomopathogens as an alternative to
the currently employed traditional insecticides or two combina-
tions of entomophathogens and biorational chemical insecticides.
As an alternative to individual applications of low-risk insecticides,
we suggest that C. formicarius could be controlled by surface appli-
cations of the M. anisopliae + B. bassiana combination to reduce
damage levels and to increase sweet potato yields. Moreover, the
potential for using a fungal delivery system through synthetic
pheromone-baited traps (Lopes et al., 2014) could be useful in
managing the population of insect pests with such cryptic habits
as C. formicarius.
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