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Abstract--In this paper, new classes of generalized (F, a, p, d)-2Xype I functions are introduced for 
a nonsmooth multiobjective programming problem. Based upon these generalized functions, sufficient 
optimality conditions are established. Weak, strong, and strict converse duality theorems are also 
derived for Wolfe and Mond-Weir type multiobjective dual programs in order to relate the efficient 
and weak efficient solutions of primal and dual problems. (~) 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - N o n s m o o t h  multiobjective programming, (F, a, p, d)-Type I function, Efficiency, Suf- 
ficiency, Duality. 

1. I N T R O D U C T I O N  

Hanson [1] introduced a class of functions by generalizing the difference vector x - • in the 
definition of a convex function to any vector function 7/(x,~). These functions were named 
invex by Craven [2] and ~/-convex by Kaul and Kaur [3]. Hanson and Mond [4] defined two 
new classes of functions called Type I and Type II functions, which were further generalized 
to pseudo Type I and quasi Type I functions by Rueda and Hanson [5]. Zhao [6] established 
optimality conditions and duality in nonsmooth scalar programming problems assuming Clarke [7] 
generalized subgradients under Type I functions. 

Kaul et al. [8] extended the concept of Type I functions from a single objective to a multi- 
objective programming problem by defining the Type I and its various generalizations. They 
investigated necessary and sufficient optimality conditions and derived Wolfe type and Mond- 
Weir type duality results. Suneja and Srivastava [9] introduced generalized d-Type I functions 
in terms of directional derivative for a multiobjective programming problem and discussed Wolfe 
type and Mond-Weir type duality results. In [10], Aghezzaf and Hachimi introduced classes of 
generalized Type I vector valued functions for a differentiable multiobjective programming prob- 
lem and established duality results. Recently, Kuk and Tanino [11] derived optimality conditions 
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and duality theorems for nonsmooth multiobjective programming problems involving generalized 
Type I vector valued functions. 

Motivated by various concepts of generalized convexity, Liang et al. [12] introduced a unified 
formulation of generalized convexity called (F, a, p, d)-convexity and obtained some optimality 
conditions and duality results for nonlinear fractional programming problems. In [13], Hachimi 
and Aghezzaf extended the concept to (F, a, p, d)-Type I functions and obtained several sufficiency 
optimality conditions and established weak and strong duality theorems for mixed type duality. 
Chen [14] gave definitions for the generalized (F, p)-convex class about the Clark subgradient and 
obtained optimality and duality results for multiobjective fractional programming problems. 

In this paper, we define new classes of functions called generalized (F, a,  p, d)-Type I functions 
for a nonsmooth multiobjective programming problem and derive sufficient optimality conditions. 
We also obtain Wolfe type and Mond-Weir type duality results. 

2. N O T A T I O N S  A N D  P R E L I M I N A R I E S  

The following convention of vectors in R ~ will be followed throughout this paper: x > y ¢:~ 
xi > yi, i = 1 , 2 , . . . , n ;  x > y c ~ x  > y ,  x # y ;  x > y c v x i  > yi, i = 1 , 2 , . . . , n .  

A function f : R ~ ~-* R is said to be locally Lipschitz at a point • E R '~ if there exist scalar 
K > 0 and e > 0 such that  

If (:H) - f (~)1 KII  ~ -  ~11, 

for all x l , x  2 E ~, + eB, where ~ + eB is the open ball of radius e about ~. 

The Clarke generalized directional derivative [7] of a locally Lipschitz function f at • in the 
direction v, denoted by fo (~; v), is defined as follows: 

fo (~;v) = limsup 
y - ~ ,  t--*0 t 

f ( y  + tv) - f ( y )  

The Clarke generalized gradient [7] of f at ~, denoted by Ocf(~), is defined as 

Ocf(~) = {~ ] f° (~;v)  ~ ~v, for all v E Rn}.  

We consider the following nonlinear multiobjective programming problem: 

Minimize f ( x )  = (f l(x) ,  f 2 ( x ) , . . . ,  fk(x)) ,  

subject to x C Xo = (x E X : g(x) <- 0}, 
(MOP) 

where X _ R n is an open set and the functions f = ( f l , f 2 , ' ' . , f k )  : X V-~ R k a ~ d  g = 

(gl,g2 . . . .  ,gin) : X ~ - *  R m are locally Lipschitz on X. 

Since the objectives in multiobjective problems generally conflict with one another, an optimal 
solution is chosen from the set of efficient/weak efficient solutions. Geoffrion [15] defined a 
restricted concept of efficiency, called proper efficiency. 

DEFINITION 2.1. A point • E Xo is said to be a weak efficient (weak Pareto) solution of (MOP), 
i f  there exists no x C Xo such that 

f(x) < f(~). 
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DEFINITION 2.2. A point • • Xo is said to be an efficient solution of (MOP), if  there exists no 
x • Xo such that 

f (x )  <_ f(~).  

DEFINITION 2.3. An efficient solution ~ of (MOP) is said to be properly efficient if  there exists 
a scalar M > 0 such that for each r • K and x • Xo satisfying f~(x) < fr(~), we have 

f ~ ( ~ ) - f ~ ( x ) < = M [ f ~ ( x ) - f ~ ( 2 ) ]  

for at least one j satisfying f j  (~) < f j  (x). 

Let F : X x X x R ~ ~-* R be a sublinear functional in the third variable. Let K = {1, 2 , . . . ,  k}, 
M - -  { 1 , 2 , . . . , m } ,  and d :  X x X ~ R. Let a = (a  1 , a s ) :  X x X ~-* R+ \ {0} and p = (pl, p2) 

such that  pl ~_ (Pl, P~ . . . .  , Pk) • R ~, p2 = (Pk+l, Pk+~,...,  Pk+m) • Rm, i.e., pl has k components 
corresponding to k components of f and p~ has m components corresponding to m components 
of g. The number of components in pl and p2 may vary depending upon the way the objective 
and constraint functions are involved in various hypotheses, e.g., the hypothesis may be on f ,  g, 
Af, or/zg, etc. Also for ~ • Xo, J(~)  = {j : gj (~) = 0} and gj will denote the vector of active 
constraints at ~. For a vector function f : X H R ~, ~ • O~f(~) means ~i • Ocfi(Yc) for i • K and 
the symbol F(x,  ~; ~) denotes the vector of components F(x,  5:; [ t ) , . . . ,  F(x,  ~; ~ ) .  

DEFINITION 2.4. (f ,  g) is said to be (F, ~, p, d)-Type I at • if  for each x • Xo 

f (x )  - f ( ~ )  ~ F ( x , ~ ; a l ( x , ~ ) [ ) + p l d 2 ( x , ~ ) ,  

-g(~)  ~ F ( x , ~ ; a 2 ( x , ~ ) , ) + p 2 d 2 ( x , 2 ) ,  

for all ~ • O~f(~),  

for all n • OCg(~) • 

I f  the first inequality is satisfied as 

f (x )  - f (~) > F (x, ~; al(x ,  ~)~) + pld2(x, ~), for alI ~ • O*f(Yc), 

then ( f  , g) is said to be semistrictly (F, a, p, d)-Type I at ~. 

DEFINITION 2.5. (f, g) is said to be pseudoquasi (F, a, p, d)-Type I at  • if  for each x • Xo 

f (x )  < f(~) ~ F (x,~2;al(x, 5;)~) + pld2(x, 5:) < O, 

- g ( 2 )  < 0 ~ F (x, ~; a2(x,2)~)  + p2d2(x, ~2) < O, 

for all ~ E Oc f(~),  

for all ~ e OCg(~). 

DEFINITION 2.6. ( f  , g) is said to be strictly pseudoquasi ( F, a, p, d)-Type I at Yc i f  for each x e Xo 

f (x )  < f(~2) ~ F (x, ~; a l(x, ~2)~) + pld2 (x, ~) < 0, for all ~ E Ocf(~), 

--g(~) =< 0 ~ f (x, ~; Ol2(X, :~)9~) --[- p2d2 (x, ~) <= 0, for all ~? E OCg(~). 

DEFINITION 2.7. ( f  , g) is said to be weak strictly pseudoquasi ( F, a, p, d)-Type I at • i f  for each 
x 6 X o  

f(x) < F + plde(x, ,) < O, for all ~ e 0¢/(~),  

for all • e OC g(~). 
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DEFINITION 2.8. 

f(~) < f(4) ~ F (5, ~; ~(~,  4)~) + p~d2(~, 4) < 0, 
-g (4)  <= 0 ~ F (x, 4; a2(x, 4)??) + p2d2(x, 4) <= O, 

I f  the first inequality is satisfied as 

f (x )  < f (4)  =~ F (x,4;c~l(x, 4)¢) + p~d2(x,4) <_ O, 

then (f, g) is said to be weak pseudoquasi (F, a, p, d)-Type I at 4. 

( f  , g) is said to be strong pseudoquasi (F, a, p, d)-Type I at 4 i f /or  each x • Xo 

for ali ~ • OCf(4), 

for all ~ • O~ g(4). 

for a//~ • 0of(4), 

DEFINITION 2.9. ( f ,g)  is said to be quasi strictly pseudo (F,a ,p ,d) -Type  I at 4 ff for each 
x • X o  

f(~) < f(4) ~ F (5, 4; ~(~, 4)~) + /d~(~ ,  4) < O, ~or all ~ • OV(4), 
-g (4)  ~= 0 ~ f (x, 4; a2(x, 4)~l) + p2d2 (x, 4) < 0, t'or a//~? • OCg(4). 

DEFINITION 2.10. ( f ,g)  is said to be weak quasi strictly pseudo (F,a ,p ,d)-Type I at 4 i f /or  
each x • Xo 

f(x) ~__ f(4) ==~ F (x, 4; o~ l (x, 4)~) -~ pld2(z, 4) ~ O, for ali ~ • 0el(4), 

-g(4) < 0 ~ f ( ~ , 4 ;~ (~ ,4 ) . )  + p~d2(x,4) < 0, ~or a11. • 0°g(4). 

3. S U F F I C I E N T  O P T I M A L I T Y  C O N D I T I O N S  

In this section we establish some sufficient optimality conditions for the problem (MOP). The 
first theorem gives a properly efficient solution of (MOP). As we go on weakening the assumptions, 
we get a weaker conclusion of the efficient/weak efficient solution of (MOP). 

THEOREM 3.1. Suppose that there exists a feasible solution 4 for (MOP) and scalars A > 0 6 R k, 
# j  >= 0 such that 

(i) 0 6 XOcf(4) + fijOCgj(4), 
(ii) (f, g j)  is (F, a, p, d)-Type I at 4, 

(iii) Xfll/al(x,4) q- fZjp2/a2(X, 4) ~ O. 

Then 4 is a properly efficient solution for (MOP). 

PROOF. Since Hypothesis (ii) holds, we have for all x E Xo 

' f ( x )  - f (4)  >= F (X,4;o~l(x,4)~) -~ pld2(x,4), for all ~ 6 0of(4), 

0 = - g  j(4) > F (x, 4;.2(x,  4)7) + Cd~(~, 4), for all ~ e 0%j(4). 

Using A > 0, p j  _-> 0 and c~1(x,4) > 0, ~2(x, 4) > 0, we get 

Apld2(x, ~.) ~I(~) ~f(4) F(~,4;~¢)  + ~1(~,4) 
~1(x,4) J ( ~ ,  ~) ->- 

f~ gp2d2(x, 4) 
0 >__ F(~, 4; pjv) + ~2(x, 4) 

By sublinearity of F, we have for all ~ • Ocf(4) and ~] • OCgj(4) 

F (~, 4; ~ + pj~) __< F (~, 4; X~) + P (5, 4; p j r )  
< Xf(X) ~f(X) ( ~pl ~j~2 ) d2(x, ~) 

< Af(x)  Af(4) (using Hypothesis (iii)). = .1(~,4) .~(~,4) 
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By Hypothesis (i), there exists some ~ • OCf(2) and ~] • O~gj(2) such that 
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So, the above inequality yields 

As a l (x ,2)  > 0, we get 

X f(2) < Xf(x) 
o~1(x, 2) -~ o~l(x,2)" 

~f(2) < ~f(~). 

Hence, by Theorem 1 in [15], 2 is a properly efficient solution for (MOP). 

THEOREM 3.2. Suppose that there exists a feasible solution 2 for (MOP) and vectors ~ > 0 • R ~, 
fij >_ 0 such that 

(i) 0 • XO~f(2) + #jOCgs(2), 
(ii) (f, g j) is strong pseudoquasi (F, ~, p, d)-Type I at ~, 

(iii) ~pl/al(x ,  2) + #jp2/a2(x,2) >= O. 

Then 2 is an eiticient solution for (MOP). 

PROOF. Suppose that ~ is not an efficient solution for (MOP). Then there exists x • )2o such 
that 

f (x )  ~_ f(~2). 

Also, since g j(2) = 0, Hypothesis (ii) gives 

F (x, 2; o~ 1 (x, 2)~) + pld2(x, 2) <_ 0, for all ~ • 0of(2), 

F (x, 2; ~ ( ~ ,  2)~) + p~d~(x, 2) < 0, for all ~ • O°gj(2). 

Multiplying the above inequalities by ) , /a  1 (x, 2) and f i j /a2(x,  ~), respectively, we have 

~pld2(x, 2) #jp2d2(x, 2) 
5,F(~, 2; ~) < ~nd psS (x ,  2; '7) < 

For all ~ • O~f(2) and ~ • O¢gj(2), sublinearity of F yields 

( ~p' ~p~ "~ d~(x,2) 
< - k~-(;-,2) + ~ - ~ , ~ ) )  
< 0 (using Hypothesis (iii)), 

which contradicts F(x, 2; 0) = 0 as by Hypothesis (i) there exists some ~ E Ocf(~), ~7 E 0Cgj(2) 
such that . 

Hence, 2 is an efficient solution for (MOP). 

THEOREM 3.3. Suppose that there exists a feasible solution • for (MOP) and vectors ~ > 0 E R k, 
fi j > 0 such that 

(i) 0 e ~OCf(2) + #jOCgg(2), 
(ii) (f, g j) is weak strictly pseudoquasi (F, a, p, d)-Type I at 2, 
(iii) ~pl /a l (x ,2)  ÷ #jp2/~2(x,2) >= O. 

Then ,2 is an et~icient soIution for (MOP). 
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PROOF. Suppose that ~ is not an efficient solution for (MOP). Then there exists x • Xo such 

that 

f(x) _< f(2). 

Also, since g j(5)  = O, Hypothesis (ii) gives 

Y (x, 2; ~l(x,  5)¢) + pld2(x, 5) < 0, for all ¢ • 0V(5) ,  

F (~, 2; ~2(~, 2)~) + p=d~(~, 5) < 0, for all ~ • 0cgj(5). 

The rest of the proof is similar to that of the previous theorem. 

THEOREM 3.4. Suppose that there exists a feasible solution 5 for (MOP) and vectors A >= 0 • R k, 
f~j >_ 0 such that 

(i) 0 • AO~I(5) + pjOCgj(5), 
(ii) (f, g j )  is weak quasi strictly pseudo (F, a, p, d)-Type I at 5, 

(iii) Apl/al(x ,  ~2) + #jp2/a2(x,  ~2) >= O. 

Then 5 is an efficient solution for (MOP). 

PROOF. Suppose that 5 is not an efficient solution for (MOP). Then there exists x • Xo such 
that 

f ( x )  <_ f (5) .  

Also, since g~(~) -- O, Hypothesis (ii) gives 

F (x, 2; o~1(2:, 2)~) -4- pld2(x, 2) ~ O, for all f • O=f(2), 

F (~, ~; ~(~, 5)~) + p=d~(~, 5) < 0, for a~ ~ • O~g~(5). 

The rest of the proof is similar to that of Theorem 3.2. 

THEOREM 3.5. Suppose that there exists a feasible solution 5 for (MOP) and vectors A > 0 • R k, 
pJ ~ 0 such that 

(i) 0 • AOcf(2) + pjO~gj("2), 
(ii) (f, g j)  is weak pseudoquasi (F, a, p, d)-Type I at 2, 

(iii) i p l / a l ( x , ~ )  + #jp2/a2(x ,~)  >__ O. 

Then 2 is a weak efficient solution for (MOP). 

PROOF. Suppose that 5 is not a weak efficient solution for (MOP). Then there exists x E Xo 
such that 

f (x)  < f(5).  

Also, we have 

Hence, Hypothesis (ii) gives 

g j ( 5 )  = o. 

F (x ,5 ;a l (x ,~)~)  +pld2(x ,5)  ~ O, 

F (x, 5; a2(x, 5)7) + p2d2(x, 2) <- O, 

for all ~ • Oef(2), 

for all ~ • 0cgj (2) .  

The rest of the proof is similar to that of Theorem 3.2. 

THEOREM 3.6. Suppose that there exists a feasible solution 5 for (MOP) and vectors ~ ~ 0 6 R k, 
f~J ~-~ 0 such that 

(i) 0 E A0cf(2) + pJOCgj(2), 
(ii) (f, g j)  is pseudoquasi (F, a, p, d)-Type I at 2, 

(iii) Apl /a l (x ,2 )  + #jp2/a2(x,~2) ~= O. 
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Then • is a weak e~cient solution for (MOP). 

PROOF. Suppose that • is not an weak efficient solution for (MOP). Then there exists x E Xo 
such that 

f(~) < f(~). 

Also, we have 

gj(~) = 0. 

Hence, Hypothesis (ii) gives 

F(x ,~ ;a l ( x ,~ )~ )+p ld2(x ,~ )  < O, 

F(x ,~;a2(x ,~)~)+p2d2(x ,~)  ~ O, 

for all ~ e 0~f(~), 

for all ~ E O~gj(~). 

The rest of the proof is similar to that of Theorem 3.2. 

4 .  W O L F E  T Y P E  D U A L I T Y  

In this section, we consider the following Wolfe type dual for (MOP) and establish weak, strong, 
and strict converse duality theorems. 

Maximize f (y)  + l~g(y)e, 

subject to y E X, 

0 e ~oV(y)  + ~0~g(y), 

Ai -> 0, i = 1 , 2 , . . . , k ,  

#j > O, j = l , 2 , . . . , m ,  

he = i, 

(WD) 

(1) 
(2) 

(3) 

(4) 

where e is a k-dimensional vector whose all components are ones. 

THEOREM 4.1. WEAK DUALITY. Let x and (y,)~, #) be feasible solutions o[ (MOP) and (WD), 
respectively, such that 

(i) (f,g) is (F ,~ ,p ,d) -Tyve  I a t  y with a l (x ,y )  = a2(x,y).  

Also, if either 
(a) A > 0  andAp i + # p 2  >=O, or 

(b) Ap 1 +/~;2 > 0 holds, ,. 

then the foUowing cannot hold: 

f (x)  _< f (y)  + #g(y)e. (5) 

PROOF. Under Hypothesis (a): by Hypothesis (i), we have 

f (x )  - f (y)  >= F (x ,y;al(x ,y)~)  + pld2(x,y), 

-g(y)  >= F (x, y; al(x,  Y)~I) + p2d2( x, Y), 

for all ~ e OCf(y), 

for all ~/E OCg(y). 
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Since A > 0, we get 

T. R. GULATI AND D. AGARWAL 

~f(x) ~f(Y) > F(~, y; :~) + 
~i(~,y) ~(~,y) = 

--I~g(Y) > F(x, y; tt~) + 
hi(x ,  y) = 

Hence, the above inequalities with sublinearity of F give 

F(x, y; A¢ + #V) <= F(x, y; A¢) + F(x, y; #~7) 

< :,f(x) :,f(y) /~9(y) 
= ~(~,y) ~(~,y) ,~(z,y) 

Since al(x,  y) > 0, Hypothesis (a) reduces (6) to 

= ~ l (~ ,y )  -~(x ,y)  

Now suppose, to the contrary, that (5) holds, that is 

I(x) _< f(y) + ,g(y)e. 

Since, ~ > 0, )~e = 1, and al(x,y) > 0, the above inequality implies 

Hence, (7) yields 

~f(~) ~f(y) .g(y) 

Apld2(x,y) 
~l (~ ,y )  ' 

#p2d2(x,y) 
al(z ,y)  

F(x, y; ;~ + #n) < O, 

( ~pl .p~_~ d2(x,y). 

,g(y) 
~ ( ~ , y ) "  

for all f • oUr(y) and ~ • OCg(y), 

(6) 

(7) 

which contradicts the dual constraint (1) as, for some ~ • OCf(y) and ~ • OCg(y), 

A~ + #~ = 0, which implies F (x, y; ;~  + #~) = 0. 

Hence, (5) cannot hold. 
Under Hypothesis (b): using (2) and (4), inequality (5) yields 

)~f(x) < ,kf(y.......~) + #g(y._....~) 

The above inequality along with Hypothesis (b) reduces (6) to 

F(x, y; ~ + #n) < O, 

which contradicts F(x, y; 0) = 0. Hence the result of the theorem holds. 

The proofs of the following weak duality theorems are similar to Theorem 4.1 and hence are 
omitted. 

THEOREM 4.2. WEAK DUALITY. Let x and (y, A, #) be feasible solutions of (MOP) and (WD), 
respectively, such that 

(i) (f, g) is semistrictly (F, a, p, d)-Type I at y, 
(ii) al(x,y) =- a2(x,y), 

(iii) Ap 1 + #p2 ~ 0. 

Then the following cannot hoId: 
f(x) <_ f(y) + #g(y)e. 
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THEOREM 4.3. WEAK DUALITY. Let x and (y, A,/~) be feasible solutions of (MOP) and (WD), 
respectively, such that 

(i) (f, g) is (F, a, p, d)-Type I at y, 
(iX) al (x , y )  = a2(x,y),  

(iii) Ap I + #p2 > O. 

Then the following cannot hold: 

f (x )  < f (y)  + ~g(y)e. 

COROLLARY 4.4. Let x ° and (yo, Ao, #o) be feasible solutions for (MOP) and (WD), respective/y, 
such that f ( z  °) = f(yO) + #Og(yO)e" If  the weak duality holds between (MOP) and (WD) for all 
feasible solutions of the two problems, then x ° is efficient for (MOP) and (yO, Ao, #o) is efficient 
for (WD). 

PROOF. Suppose that x ° is not efficient for (MOP) then for some x E Xo 

s 

Since f ( x  °) = f(yO) + #Og(yO)e ' the above inequality can be written as 

f (x )  ~_ f (yO) + #Og (yO) e, 

which contradicts the result of Theorem 4.1 as (yO, Ao, #o) is feasible for (WD) and x is feasible 
for (MOP). So, x ° is efficient for (MOP). Similarly (yO Ao, #o) is efficient for (WD). 

DEFINITION 4.1. COTTLE CONSTRAINT QUALIFICATION. Let f~, i E K,  gj, j E M be locally 
Lipschitz functions at a point u E X .  The problem (MOP) satisfies the Cottle constraint qual- 
ification at u, if either gj(u) < 0 for all j E M or 0 ~ conv{O~gj(u) : gj(u) = 0}, where convS 
denotes the convex hull of the set S. 

THEOREM 4.5. KARUSH-KUHN-TUCKER NECESSARY CONDITIONS [16, p. 49]. Assume that 
is an efficient solution for (MOP) at which the Cottle constraint qualification is satisfied. Then, 
there exist multipliers ~ >= O, i E K,  Ae = 1, and p E R m, such that 

0 + 

pg( ) = 0. 

THEOREM 4.6. STRONG DUALITY. Let 5: be an efficient solution for (MOP) at which the Cottle 
constraint qualification is satisfied. Then, there exist ~ 6 R k, p 6 R m such that (5:, ~, p) is feasible 
for (WD) and the two objectives axe equal. Furthermore, if  weak duality holds between (MOP) 
and (WD) for all feasible solutions of the primal and dual problems, then (2, A, p) is efficient 
for (WD). 

PROOF. Since 5: is an efficient solution for (MOP) and the Cottle constraint qualification is 
satisfied at 2, from Theorem 4.5, there exist A => 0 E R k, ~e --- 1, p ~ 0 C R m such that 

o  ocf(5:) + p0cg(5:), 

pg( ) = 0, 

which gives that (5:, A, #) is feasible for (WD)and the objectives are equal. Efficiency of (5:, A,/2) 
for (WD) follows from Corollary 4.4. 
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THEOREM 4.7. STRICT CONVERSE DUALITY. Let • and (9, ~, ft) be feasible for (MOP) and 
(WD), respectively, such that 

(i) ~:(~) < ~:(9) + p~(9), 
(ii) (f, g) is semistrictly (F, a, p, d)-Type I at 9 with ai(~, 9) = a2( ~, Y), 

(iii) 5,p 1 + #p2 => 0. 

Then ~ = 9. 
PI~OOF. We suppose that • 7~ ~ and exhibit a contradiction. Since (9, ~, ~) is feasible for (WD), 
by the dual constraint (1), for some ~ e 0of(9) and 0 E OCg(~), 

A~ + PO = 0, 

which implies 
F (~, 0; X~ + p#) = 0. 

(using Hypothesis (iii)). 

Also, using Hypothesis (ii), we have 

f(x)  - f(Y) > F (2, 9; a 1 (2, 9)~) + pld2( ~, 9), for all ~ 60c f (9 ) ,  

-g(Y) >-_ F (~, Y; al (x, 9)~7) + P 2d2(:2, Y), for all ~ E OCg(9). 

By the dual constraints (2)-(4) and a 1 (~, Y) > 0, we obtain 

_ _  ~pid 2 (~, Y) XI(~) i l ( 9 )  > ~F(~,  9; ~) + 
O~1 (~:, 9) O~1 (:~', 9) a1(5:, 9) ' 

-#9(9)  > PF(~,9;~) + #P2a¢(~'9) 
~1(~, Y) : O~1( ~, 9) 

Adding the above inequalities, we get 
1 

1 
----< c~i( ~, 9) (~f(x) - ~f(Y) --/2g(Y)) 

By sublinearity of F, we have for all ~ E Ocf(9) and ~ e OCg(9) 

F (2, 9; 5,~ + #7) < ~F(~, 9; £) + #F(2, 9; '7) 
1 

< ~,(~,  ~----~ ( ~ / ( : )  - ~ : (9)  - #g(9)) • 

Since a :  (:, 9) > 0, (8) reduces the above inequality to 

~f(£') > ~f(Y) + Pg(Y), 

which 'contradicts Hypothesis (i). Hence • = 9. 

5. M O N D - W E I R  T Y P E  D U A L I T Y  

(8) 

f(y) ,  (MOD) 

y E X ,  

0 C ~OV(y) + ~OCg(y), (9) 

,g(y)  > 0, (10) 

)~>=0, i = l , 2 , . . . , k ,  A e = l ,  (11) 

t9 => 0, j = 1 ,2 , . . . ,m .  (12) 

we shall need the following result. To prove the weak duality theorem, 

locally Lipschitz functions on X. 

Maximize 

subject to 

In this section, we consider the following Mond-Weir type dual for (MOP) and establish weak, 
strong, and strict converse duality theorems. In this section f and g are assumed to be regular 



• po~tmo oxe ooueq pu~ '~IeAt~oodsoa '9"~' pu~ 
I'~ smoaooq~L o~ XelIm!s oxe smoaooq~ X~.tI~n p ~uoa~s pu~ ~e0A~ ~U!~OIIOg 0q~ gO sgoozd eq~ L 

• ~Insoz oq~ 'oouo H '0 = ~r[ + ~y 
'(ti)6~@ 9 ~ ptre (ti)f~0 9 ~ omos zog '(6) zu.rea~suoa l"enp oqa ~q ~ 0 = (0 '.t~ 'x)d s~oipua~uoo qo!qm 

~0:31IO H 

oa soonpoz £~ti~nbout oAoq~ 0q~ 

• (n'x)~p\ ~d + :t,¢ / 

'o > (,tz + ~, !a 'z) d 

'(1.!) st.s~q~odX H :~u.tsn's 0 

> 

(P '.~ '~) d + (~: ~n '~)d ~ (P + VV '.~ '~) d 

, (a'~)~o 

~o~ otn 'd go X~t.a~ou!iqns Xq 'o~ojoaoq~ L 

(p !n'Z)d 

> (~,~ !a'z)d 

'0 ~ (a'~):~a + (,a(a'~): !a'~) d 
'0 > (a'~):~d + (~(~'~)~- ~a'~) d 

LIdm ! qo!q~ 

sPIO~ (!) s!seqzodXH '(01) pu~ (~I) seIZ~.I~nbeu! eqct ~uisn ueq~ L "sp[oq (El) esoddns "aoo~cl 

(~i) (~): ~ (~): 

:plot[ ~ommo ~m.~ol[og aq~ uorlj " 

"o ~ (~'~):,/~" + (~'~)~/~"~: (~:.) 
':~ ~, I ~x~-(p ,d,~,,a) .~boV~o,d xm.m~ ,v,~ ~.~ (o, 7) (!) 

;~rt~ t[ons 'X[a~rAoedsa.r 
'((10141) ptm (dOl4D go strorAnlos o[qr.~a] eq (r/'y 'a) ptm z ~a,/ "xjjqvfl([ I NV~A~ "'['~ IAIX~IO~tHJ~ 

OAet/ O~a U 9 0 ~ rm ~q~.reva .roar 'treq, L "~,~t 9 .z ;urod ~ :~ z;r.rtasdr.," I X[l~oo [ 

I6 ,~,![~nQ pu~ X~ueIo~Jn S 



92 T.R.  GULATI AND D. AGARWAL 

THEOREM 5.2. WEAK DUALITY. Let x and (y, A, #) be feasible solutions of(MOP) and (MOD), 
respectively, such that 

(i) (f, #g) is pseudoquasi (F, a, p, d)-Type I at y, 
(ii) Apl/a~(x,y) + p2/a2(x,y) >= O. 

Then the following cannot hold: 
f (x)  < f(y). 

THEOREM 5.3. STRONG DUALITY. Let • be an efficient solution for (MOP) at which the Cottle 
constraint qualification is satisfied. Then, there exist A 6 R k, p 6 R m such that (~, A, p) is feasible 
for (IYlOD) and the two objectives are equal. Farthermore, if weak duality holds between (MOP) 
and (MOD) for all feasible solutions of the primal and dual problems, then (2, ~, p) is efficient 
for (MOD). 

THEOREM 5.4. STRICT CONVERSE DUALITY. Let • and (~, A, p) be feasible for (MOP) and 
(MOD), respectively, such that 

(i) ,~f(:~) <_- Af(~), 
(ii) p i /a i (¢ ,~)  + p2/(~2(:~,~) ~ 0. 

Also, if either 
(a) (A f,  #g) is strictly pseudoquasi (F, a, p, d)-Type I at f/, or 
(b) (A f,  pg) is quasi strictly pseudo (F, a, p, d)-Type I at Y, 

then, 2 = ~. 

PROOF. Since # => 0, the dual constraint (10) and Hypothesis (a) yield 

F (2, ~; a2(£, ~)~') _<_ -p2d2(~, ~), for all ~' E O~(#g)(~). (14) 

By the dual constraint (9), there exist some ~ E 0cf(~) and # E OCg(~) such that A~ + p~ -- 0 
which implies 

F (~, ~; A~ + ~ )  = 0. (15) 

Also by Lemma 5.1, for ~ E O~f(~) and # E OCg(~) there exist ~ E O~(Af)(~) and ~' ~ O~(#g)(f~) 
such that ~ = A~ and ~' = p~. 

Hence (15) gives 
F (~, z3; ~' + ~') = 0, 

which by sublinearity of F along with (14) and Hypothesis (ii) gives 

(2, ~; ~') > - F  (2, 9; ~') 
> p2d~( ~, ~) 
= ~(~ ,~ )  
> -p~d2( ~2, ~) 
- ~(~,~) 

Or, 

Therefore Hypothesis (a) yields 

F ( 2 , ~ ; ~  t) > -P ld2 (x ,Y)  
= ~ 1 ( ~ , ~ )  

Af(~) > Af(ff), 

which contradicts Hypothesis (i). Hence, the result. 
If Hypothesis (b) holds, then Hypothesis (i) and the dual constraint (10) give 

F(2,~;~1(~,~)~ ') +pld2(~,~) ~0 ,  
F(2,~;a2(~,~)n  ') +p2d2(~,~) <0,  

for .~1 ¢' e 0cGf ) (~ ) ,  

for all 77' E OC(#g)(f]). 
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Since a1(2,  Y) > 0, a2(2,  Y) > 0, subl inear i ty  of F gives 

F (z, 9; ~' + ~') < F (z, 9; ~') + F (z, 9; ~') 

< - + a 2 ( £ , ~ )  d2( £ '~)" 

Using Hypothesis  (ii), we get  

F(z,9;~' +7') < 0, 

which contradicts  F (~ ,  Y; 0) = 0. Hence the result  holds. 

I t  may  be noted t ha t  in this  section we require f and g to  be regular  locally Lipschitz functions 

to use Lemma 5.1. However, we do not  need the  regular i ty  assumpt ion if the  dual  constraint  (10) 
is replaced by  m constraints  #jgj(y)  >= O, j E M.  In t ha t  case the  weak and str ict  converse 

dual i ty  theorems need minor  modificat ions and are s t a ted  below. We shall  use f~  and gg to 

denote  (Al f l ,  A 2 f 2 , . . . ,  Akfk) and (#1gl,/~2g2 . . . .  , #rngm), respectively. 

THEOREM 5.5. WEAK DUALITY. Let  x and (y, A, Iz) be feasible solutions of (MOP) and (MOD), 
respectively, such that 

(i) (f ,  fl ~) is weak strictly pseudoquasi (F, a, p, d)-Type I at fl, 
(ii) A p l / a l ( x , y )  m 2 ~. + ~ j = l  Pk+j/a (x ,y)  > O. 

Then the following cannot hold: 

i(~) </(y). 

THEOREM 5.6. STRICT CONVERSE DUALITY. Let ~2 and (9, A, F z) be feasible for (MOP) and 
(MOD), respectively, such that 

(i) id,(~) < iJ,(~), 
(ii) k m E~=I p,/~l(~, 9) + Ej=I pk+j/~2(~, 9) > 0. 

Also, i f  ei ther  

(a) (f~, gP) is strictly pseudoquasi (F, a, p, d)-Type I at ~ or, 
(b) ( f~,gP) is quasi strictly pseudo (F, a, p, d)-Type I at ~, 

then, ~ = Y. 
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