Grammatical codes of trees

A. Ehrenfeucht
Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA

G. Rozenberg

Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, Netherlands; and Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA

Received 10 April 1988
Revised 2 October 1989

Abstract

Ehrenfeucht, A. and G. Rozenberg, Grammatical codes of trees, Discrete Applied Mathematics 32 (1991) 103-129.

The problem of coding (chain free) trees by words where the length of the word coding a tree t equals the number of leaves of t is investigated. The notion of an insertive strict code is introduced and investigated-these are codes of a grammatical nature. It is shown that there are exactly 120 insertive strict codes. A characterization of these codes (and their various subelasses) is given in grammatical terms.

Introduction

The notion of a tree plays an important role in (among others) linguistics, logic, mathematics, and computer science. The concept itself was used before it got its current name and graphical notation-see, e.g., the notation of a semantic tableaux as used in logic by Jaskowski [8] and Gentzen [6], or the notion of prime constituents as used in linguistics by Harris [7] and Fris [5].

The concept of a deep structure used by Chomsky [2] is different from the notion of surface structure (representing syntax) and the notion of semantical structure (representing the meaning). For Chomsky, deep structure is a blueprint for the construction of the surface structure. In the formalization of Chomsky's ideas by mathematicians (such as Bar-Hillel) the notion of a deep structure became the notion of a derivation tree-hence trees became algorithms for constructing strings.

In this paper we view a tree very much in the line of a deep structure by Chomsky-it is an object that can be "matched"' in two directions-towards syntax and towards semantics. As a matter of fact this point of view corresponds quite closely to the concept of a tree as used in mathematics.

The notion of a grammar in formal language theory corresponds closely to an algorithm that either (nondeterministically) generates text or (nondeterministically) parses text. In general linguistics and in logic (see, e.g., [9]) a grammar provides relationships between concepts (objects) that are given by the lexicon of the language. Still another approach, represented by [1], is to view a grammar as a system which protects text from a "noise" (by inscrting "check bits" into a text).

In this paper we view grammar as coding deep structures, where we assume that a deep structure is an ordered chain-free tree. Accordingly, the main question investigated in this paper is: "What are good grammatical linear codes for ordered chain-free trees?"

Preliminaries

We assume the reader to be familiar with basic notions of graph theory and in particular with the basic theory of trees, and with the basics of formal languages and automata theory.

We will recall now some notions and establish the notation to be used in this paper.

For a set Z, $\# Z$ denotes its cardinality; \emptyset denotes the empty set. \mathbb{N} denotes the set of natural numbers, $\mathbb{N}_{+}=\mathbb{N}-\{0\}$, and for each $k \geq 2, \mathbb{N}^{k}$ is the k-folded cartesian product of \mathbb{N}.

For a function $\varphi: X \rightarrow Y, \operatorname{Dom}(\varphi)$ denotes $X, \operatorname{Ran}(\varphi)$ denotes Y, and $\operatorname{Rran}(\varphi)=$ $\{y \in Y: y=\varphi(x)$ for some $x \in X\}$. We consider only total functions.

For a sequence $x,|x|$ denotes its length, and $\underline{i}(x)$ for an $1 \leq i \leq|x|$ denotes the i th element of x (this notation carries over to words which are sequences of letters); also we use first (x) to denote the first element of x and last (x) to denote the last element of x.

For a word $x, \pi(x)$ denotes the Parikh vector of x, and alph (x) is the set of letters appearing in x. For words x, y we say that x is a segment of y iff $y=y_{1} x y_{2}$ for some words y_{1}, y_{2} and we say that x is a subword of y iff $y=y_{0} a_{1} y_{1} a_{2} \ldots a_{n} y_{n}$ for some words $y_{0}, y_{1}, \ldots, y_{n}$ and letters a_{1}, \ldots, a_{n}, where $x=a_{1} \ldots a_{n}$.

We consider only trees without chains, i.e., each internal node has more than one direct descendant. Hence, by a tree we mean a nonempty rooted directed ordered tree without chains (where "ordered' means that for each node all its direct descendants are linearly ordered).

Let t be a tree.
$\mathrm{ND}(t)$ denotes the set of all nodes of $t, \mathrm{IN}(t)$ denotes the set of internal nodes of $t, \operatorname{LEAF}(t)$ denotes the set of leaves of t, and $\operatorname{root}(t)$ denotes the root of t.

For an internal node v of $t, \operatorname{DDES}_{t}(v)$ is the set of all direct descendants of v in t, and $\operatorname{ddes}_{t}(v)$ is the sequence of all direct descendants of v in t (i.e., the elements of $\operatorname{DDES}_{t}(v)$ ordered according to the order of $\left.t\right)$.
Frontier of t, denoted $\operatorname{front}(t)$, is the sequence of all leaves of t ordered according to the order of t.
For a $l \leq i \leq \mid$ front $(t) \mid$, leaf $f_{t}(i)$ denotes the i th leaf of t, hence the i th element of front (t).
If $x \in \operatorname{LEAF}(t)$, then

- x is a leftmost child iff there exists $v \in \operatorname{IN}(t)$ such that $x=\operatorname{first}\left(\operatorname{ddes}_{t}(v)\right)$,
- x is a rightmost child iff there exists $v \in \operatorname{IN}(t)$ such that $x=\operatorname{last}\left(\operatorname{ddes}_{t}(v)\right)$,
- x is a middle child iff there exists $v \in \operatorname{IN}(t)$ such that $x \in \operatorname{DDES}_{t}(v)$ and x is neither a leftmost nor a rightmost child.
If w is a segment of front (t) (i.e., w is a sequence of consecutive elements of front (t)), then
- w is a sibling segment $(o f$ front $(t))$ iff $|w|=2$ and there exists $v \in \operatorname{IN}(t)$ such that w is a segment of $\operatorname{ddes}_{t}(v)$, and
- w is a complete segment (of front (t)) iff there exists $v \in \operatorname{IN}(t)$ such that $w=$ $\operatorname{ddes}_{t}(v)$.
For a $1 \leq i \leq \mid$ front $(t) \mid$ and $n \geq 2, \operatorname{sub}_{t}(i, n)$ denotes the family of all trees resulting from t by adding n new nodes and making them the direct descendants of leaf ${ }_{l}(i)$ (which in the resulting tree becomes an internal node).
A node-labeling of t (by an alphabet Σ) is a function $\psi: \mathrm{ND}(t) \rightarrow \Sigma$.
If we don't want to distinguish between isomorphic trees, then we can consider a selector set (of trees) which is a set of trees T such that, for each tree t there exists $t^{\prime} \in T$ isomorphic with t, and moreover, for all different $t_{1}, t_{2} \in T, t_{1}$ is not isomorphic with t_{2}.

A $0 S$ system (see, e.g., [4]) is like a context-free grammar except that one does not distinguish between terminal and nonterminal symbols. An unlimited $0 S$ system is like a $0 S$ system except that it has infinitely many productions. Hence an unlimited 0 S system is a triple $G=(\Sigma, P, \sigma)$, where Σ is the (finite) alphabet of G, $P \subseteq \Sigma \times \Sigma^{+}$is the infinite set of productions of G, and $\sigma \in \Sigma$ is the axiom of G; we assume that P does not contain chain productions, hence $|x| \geq 2$ for each $a \rightarrow x$ in P. We use the standard notation for grammars: $a \rightarrow_{P} x$ (or $a \rightarrow_{G} x$) denotes the fact that $a \rightarrow x$ is in $P, y \Rightarrow_{G} z$ means that y directly derives z in G, and $y \Rightarrow_{G}^{*} z, y \Rightarrow_{G}^{+} z$ stands for y derives z in G, and y derives z in G in at least one step, respectively. If $y \Rightarrow_{G}^{*} u z v$, for some $u, v \in \Sigma^{*}$, then we say that z is reachable from y in G. If $a \rightarrow_{p} x a y$ for some $x, y \in \Sigma^{*}$, then a is directly recursive. Also, we use L_{G} and R_{G} (or simply L and R whenever G is understood from the context of considerations) to denote

$$
\begin{aligned}
& \{b \in \Sigma: b=\operatorname{first}(x) \text { for some } a \rightarrow x \text { in } P\}, \\
& \{b \in \Sigma: b=\operatorname{last}(x) \text { for some } a \rightarrow x \text { in } P\} .
\end{aligned}
$$

1. Codes and strict codes

In this section we formulate the notion of a code and introduce the subclass of strict codes which are the subject of investigation of this paper.

Definition 1.1. Let T be a selector set of trees, let Σ be an alphabet, and let $\varphi: T \rightarrow \Sigma^{*}$.
(i) φ is length-preserving iff, for all $t \in T,|\varphi(t)|=\mid$ front $(t) \mid$.
(ii) φ is local iff there exists a mapping $\psi: \Sigma \times\left(\mathbb{N}_{+}-\{1\}\right) \rightarrow \Sigma^{+}$such that, for all $t_{1}, t_{2} \in T$, where $t_{2} \in \operatorname{sub}_{t_{1}}(i, n)$ for some $i \in \mathbb{N}_{+}, n \in \mathbb{N}_{+}-\{1\}$, if $\varphi\left(t_{1}\right)=x a y$ with $|x|=i-1$ and $a \in \Sigma$, then $\varphi\left(t_{2}\right)=x \psi(a, n) y$.
(iii) φ is a code (of T) iff φ is injective, length-preserving, and local.

Remark 1.2. (1) Note that we have not required that Σ is finite.
(2) For technical reasons we have defined φ on a selector set T rather than on the class of all trees. However, φ is easily extended to the class of all trees: for a tree $t, \varphi(t)=\varphi\left(t^{\prime}\right)$ where $t^{\prime} \in T$ is isomorphic with t; hence we will freely write $\varphi(t)$ for an arbitrary tree t.
(3) Since a code φ is Iength-prescrving, for a $t \in T$, the i th element of $\varphi(t)$ corresponds to the i th leaf of t, for all $1 \leq i \leq|\varphi(t)|$. In this sense one may consider $\varphi(t)$ to be a labeling of leaves of t : the i th leaf of t is labeled by $\underline{i}(\varphi(t))$.
(4) Clearly iff φ is a code and ψ as in the definition above, then φ is uniquely determined by the pair (one ${ }_{\varphi}, \psi$), where one φ_{φ} is the value of φ for the one node tree from T; this pair is referred to as a defining pair of φ.

Definition 1.3. Let $\varphi: T \rightarrow \Sigma^{*}$ be a code.
(i) φ is sibling-consistent iff for all $x \in \Sigma^{+}$and all $y, z \in \operatorname{Rran}(\varphi)$ such that $|x|=2$, $y=y_{1} x y_{2}$, and $z=z_{1} x z_{2}$ for some $y_{1}, y_{2}, z_{1}, z_{2} \in \Sigma^{*}$ with $\left|y_{1}\right|=i$ and $\left|z_{1}\right|=j$,
leaf $_{\varphi^{-1}(y)}(i+1) \operatorname{leaf}_{\varphi^{-1}(y)}(i+2)$ is a sibling segment of $\operatorname{front}\left(\varphi^{-1}(y)\right)$
iff leaf $_{\varphi^{-1}(z)}(j+1) \operatorname{leaf}_{\varphi^{-1}(z)}(j+2)$ is a sibling segment of front $\left(\varphi^{-1}(z)\right)$.
(ii) φ is completeness-consistent iff
(1) for all $x \in \Sigma^{+}$and all $y, z \in \operatorname{Rran}(\varphi)$ such that $|x|=n, y=y_{1} x y_{2}, z=z_{1} x z_{2}$, for some $n \geq 2, y_{1}, y_{2}, z_{1}, z_{2} \in \Sigma^{*}$ with $\left|y_{1}\right|=i$ and $\left|z_{1}\right|=j$, leaf $_{\varphi^{-1}(y)}(i+1) \ldots \operatorname{leaf}_{\varphi^{-1}(y)}(i+n)$ is a complete segment of front $\left(\varphi^{-1}(y)\right)$ iff leaf ${ }_{\varphi^{-1}(z)}(j+1) \ldots$ leaf $_{\varphi^{-1}(z)}(j+n)$ is a complete segment of front $\left(\varphi^{-1}(z)\right.$,
and
(2) there is a defining pair (one ${ }_{\varphi}, \psi$) of φ such that for all $a, b \in \Sigma$ and all $n \in \mathbb{N}_{+}-\{1\}, \psi(a, n)=\psi(b, n)$ implies $a=b$.
(iii) φ is rich iff for each $x \in \Sigma^{+}$there exist $y, z \in \Sigma^{+}$such that $y x z \in \operatorname{Rran}(\varphi)$.
(iv) φ is strict iff φ is sibling-consistent, completeness-consistent, and rich.

Clearly we require sibling consistency and completeness consistency to guarantee the unique parsability of words coding trees, and the richness requirement guarantees that a strict code is as close as possible to an onto mapping.

Remark 1.4. Clearly, if φ is a rich code, then φ has exactly one defining pair-we refer to it as the defining pair of φ.

2. Basic properties of strict codes

We will prove now some basic properties of strict codes - they will be quite fundamental in the sequel of this paper.

The following classification of the letters from the range of a code is essential in our investigation of strict codes.

Definition 2.1. Let $\varphi: T \rightarrow \Sigma^{*}$ be a code and let $a \in \Sigma$.
(i) a is left (w.r.t. φ) iff, there exist $x \in \operatorname{Rran}(\varphi)$ and $1 \leq i \leq|x|$, such that $i(x)=a$ and leaf ${ }_{\varphi^{-1}(x)}(i)$ is a leftmost child.
(ii) a is right (w.r.t. φ) iff, there exist $x \in \operatorname{Rran}(\varphi)$ and $1 \leq i \leq|x|$, such that $\underline{i}(x)=a$ and $\operatorname{leaf}_{\varphi}{ }^{\prime}(x)(i)$ is a rightmost child.
(iii) a is middle (w.r.t. φ) iff, there exist $x \in \operatorname{Rran}(\varphi)$ and $1 \leq i \leq|x|$, such that $\underline{i}(x)=a$ and $\operatorname{leaf}_{\varphi}{ }^{\prime}(x)(i)$ is a middle child.

We use $L_{\varphi}, R_{\varphi}, M_{\varphi}$ to denote the sets of left, right, and middle letters (w.r.t. φ), respectively.

Remark 2.2. If a code $\varphi: T \rightarrow \Sigma^{*}$ is sibling-consistent, then there exists a relation $S_{\varphi} \subseteq \Sigma \times \Sigma$ such that, for each $x \in \operatorname{Rran}(\varphi)$ and for each $1 \leq i<|x|$, $\operatorname{leaf}_{\varphi^{-1}(x)}(i)$ leaf $_{\varphi^{-1}(x)}(i+1)$ is a sibling segment of $\varphi^{-1}(x)$ iff $(i(x), \underline{i+1}(x)) \in S_{\varphi}$.

Lemma 2.3. For each strict code $\varphi: T \rightarrow \Sigma^{*},\left\{L_{\varphi}, R_{\varphi}, M_{\varphi}\right\}$ is a partition of Σ.
Proof. (i) Obviously each of $L_{\varphi}, R_{\varphi}, M_{\varphi}$ is nonempty.
(ii) Since φ is rich, $\Sigma=L_{\varphi} \cup R_{\varphi} \cup M_{\varphi}$.
(iii) Consider $a \in L_{\varphi}$.

Since $a \in L_{\varphi}, x=x_{1} a z x_{2} \in \operatorname{Rran}(\varphi)$ and $y=x_{1} c x_{2} \in \operatorname{Rran}(\varphi)$ for some $x_{1}, x_{2}, z \in \Sigma^{+}$ and $c \in \Sigma$, where $i+1\left(\varphi^{-1} x\right)$) is a leftmost child for $i=\left|x_{1}\right|$.

If $a \in R_{\varphi} \cup M_{\varphi}$, then there exists $b \in \Sigma$ such that $(b, a) \in S_{\varphi}$. Since φ is rich, $u_{1} b c u_{2} \in$ $\operatorname{Rran}(\varphi)$ for some $u_{1}, u_{2} \in \Sigma^{+}$, and consequently $u=u_{1} b a z u_{2} \in \operatorname{Rran}(\varphi)$. However $\underline{k+2}\left(\varphi^{-1}(u)\right)$ is again a leftmost child for $k=\left|u_{1}\right|$ and so $\underline{k+1}\left(\varphi^{-1}(u)\right) \underline{k+2}\left(\varphi^{-1}(u)\right)$
is not a sibling segment of front $\left(\varphi^{-1}(u)\right)$. Since φ is sibling-consistent, this contradicts the fact that $(b, a) \in S_{\varphi}$. Hence $a \notin R_{\varphi} \cup M_{\varphi}$. Consequently, $L_{\varphi} \cap\left(R_{\varphi} \cup M_{\varphi}\right)=\emptyset$.

Similarly one can prove that $R_{\varphi} \cap\left(L_{\varphi} \cup M_{\varphi}\right)=\emptyset$. Consequently the sets L_{φ}, R_{φ}, M_{φ} are mutually disjoint. The lemma follows from (i), (ii), and (iii).

Remark 2.4. In our proof of the above lemma we have used the fact that φ is sibling-consistent and rich but not that φ is completeness-consistent. Consequently, it is easily seen that Definition 1.3(ii.1) is redundant. We have included Definition 1.3 (ii.1), because it seems to be more natural to define strict codes this way.

Remark 2.5. It is instructive to notice that if $\varphi: T \rightarrow \Sigma^{*}$ is a strict code, then

$$
S_{\varphi}=\left(L_{\varphi} \times M_{\varphi}\right) \cup\left(L_{\varphi} \times R_{\varphi}\right) \cup\left(M_{\varphi} \times M_{\varphi}\right) \cup\left(M_{\varphi} \times R_{\varphi}\right) .
$$

This is seen as follows.
(i) By Lemma 2.3,

$$
S_{\varphi} \subseteq I_{\varphi} \times M_{\varphi} \cup L_{\varphi} \times R_{\varphi} \cup M_{\varphi} \times M_{\varphi} \cup M_{\varphi} \times R_{\varphi}
$$

(ii) To prove the reverse inclusion we proceed as follows. Consider $L_{\varphi} \times M_{\varphi}$. Let $a \in L_{\varphi}$ and $b \in M_{\varphi}$. Since φ is rich there exist $y, z \in \Sigma^{*}$ such that $y a b z \in \operatorname{Rran}(\varphi)$. Consequently, by Lemma 2.3, and because φ is sibling-consistent, $(a, b) \in S_{\varphi}$. Hence $L_{\varphi} \times M_{\varphi} \subseteq S_{\varphi}$. Reasoning analogously, we prove that $L_{\varphi} \times R_{\varphi} \subseteq S_{\varphi}, M_{\varphi} \times M_{\varphi} \subseteq S_{\varphi}$, and $M_{\varphi} \times R_{\varphi} \subseteq S_{\varphi}$. Consequently,

$$
L_{\varphi} \times M_{\varphi} \cup L_{\varphi} \times R_{\varphi} \cup M_{\varphi} \times M_{\varphi} \cup M_{\varphi} \times R_{\varphi} \subseteq S_{\varphi}
$$

By (i) and (ii), $S_{\varphi}=L_{\varphi} \times M_{\varphi} \cup L_{\varphi} \times R_{\varphi} \cup M_{\varphi} \times M_{\varphi} \cup M_{\varphi} \times R_{\varphi}$.
Definition 2.6. Let $\varphi: T \rightarrow \Sigma^{*}$ be a code, and let $x \in \Sigma^{+}$, where $|x|=n . x$ is complete (w.r.t. φ) iff, there exist $y \in \operatorname{Rran}(\varphi)$ and $i \in \mathbb{N}_{+}$, such that $\underline{i}(y) \underline{i+1}(y) \ldots \underline{i+n}(y)=x$, and leaf $\varphi^{-1}(y)(i+1) \ldots \operatorname{leaf}_{\varphi^{-1}(y)}(i+n)$ is a complete segment of front $\left(\varphi^{-1}(y)\right)$.

We use C_{φ} to denote the set of all complete words (w.r.t. φ) of Σ^{*}.
Lemma 2.7. For each strict code $\varphi, C_{\varphi}=L_{\varphi} M_{\varphi}^{*} R_{\varphi}$.
Proof. (i) Let $x \in C_{\varphi}$. By Definition 2.1, $x=a y b$, where $a \in L_{\varphi}, y \in M_{\varphi}^{*}$, and $b \in R_{\varphi}$. Hence $C_{\varphi} \subseteq L_{\varphi} M_{\varphi}^{*} R_{\varphi}$.
(ii) Let $x \in L_{\varphi} M_{\varphi}^{*} R_{\varphi}$. Since φ is rich, there exist $y, z \in \operatorname{Ran}(\varphi)$ such that $u=y x z \in$ $\operatorname{Rran}(\varphi)$. Thus, by Lemma 2.3,

$$
\operatorname{leaf}_{\varphi^{-1}(u)}(i+1) \operatorname{leaf}_{\varphi^{-1}(u)}(i+2) \ldots \operatorname{leaf}_{\varphi^{-1}(u)}(i+n)
$$

is a complete segment of $\operatorname{front}\left(\varphi^{-1}(u)\right)$, where $i=|y|$ and $n=|x|$. Hence $x \in C_{\varphi}$.
The lemma follows from (i) and (ii).

3. The size of the alphabet of a strict code

It turns out (quite unexpectedly) that if $\varphi: T \rightarrow \Sigma^{*}$ is a strict code, where Σ is finite, then Σ contains exactly (!) 6 letters. This result is proved in this section.

First we need the following lemma.
Lemma 3.1. Let $\varphi: T \rightarrow \Sigma^{*}$ be a strict code, and let ($\mathrm{one}_{\varphi}, \psi$) be the defining pair of φ.
(1) For all $a \in \Sigma, n \in \mathbb{N}_{+}-\{1\},|\psi(a, n)|=n$.
(2) ψ is a bijection onto C_{φ}.

Proof. (1) This follows from the fact that φ is length-preserving and rich.
(2) This follows from the fact that φ is injective, completeness-consistent, and rich.

Theorem 3.2. For each strict code $\varphi: T \rightarrow \Sigma^{*}$ where Σ is finite, $\# \Sigma=6$.
Proof. Let (one ${ }_{\varphi}, \psi$) be the defining pair of φ, and let ψ_{2} and ψ_{3} be restrictions of ψ to $\Sigma \times\{2\}$ and $\Sigma \times\{3\}$, respectively.

By Lemma 2.7 and Lemma 3.1, ψ_{2} is a bijection onto $L_{\varphi} \times R_{\varphi}$ and ψ_{3} is a bijection onto $L_{\varphi} \times M_{\varphi} \times R_{\varphi}$. Since $\#(\Sigma \times\{2\})=\#(\Sigma \times\{3\})=\# \Sigma$, this implies that

$$
\begin{equation*}
\# \Sigma=\left(\# L_{\varphi}\right)\left(\# R_{\varphi}\right)=\left(\# L_{\varphi}\right)\left(\# M_{\varphi}\right)\left(\# R_{\varphi}\right) \tag{1}
\end{equation*}
$$

From (1) it follows that $M_{\varphi}=1$. From (1) and Lemma 2.3 it follows that $\# L_{\varphi}+\# M_{\varphi}+\# R_{\varphi}=\left(\# L_{\varphi}\right)\left(\# R_{\varphi}\right)$ and so by the above

$$
\begin{equation*}
\# L_{\varphi}+\# R_{\varphi}+1=\left(\# L_{\varphi}\right)\left(\# R_{\varphi}\right) \tag{2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\# L_{\varphi}>1 \quad \text { and } \# R_{\varphi}>1 \tag{3}
\end{equation*}
$$

By (2) we get $\# R_{\varphi}+1=\# L_{\varphi}\left(\# R_{\varphi}-1\right)$, and so, by (3), $\# R_{\varphi}+1 \geq 2\left(\# R_{\varphi}-1\right)$. Hence $\# R_{\varphi} \leq 3$. Analogously, from (2) and (3) we get $\# L_{\varphi} \leq 3$. Thus $1<\# L_{\varphi}, \# R_{\varphi} \leq 3$. There are obviously two solutions of (2):

$$
\# L_{\varphi}=2, \quad \# R_{\varphi}=3, \quad \# L_{\varphi}=3, \quad \# R_{\varphi}=2
$$

Thus, by (1), $\# \Sigma=6$, and the theorem holds.

Remark 3.3. (1) In the rest of this paper we will consider finite alphabets only.
(2) According to the proof of the above theorem, for each strict code $\varphi: T \rightarrow \Sigma^{*}$, $\# M_{\varphi}=1$ and either $\# L_{\varphi}=3$ and $\# R_{\varphi}=2$, or $\# L_{\varphi}=2$ and $\# R_{\varphi}=3$; if the former holds, then we say that φ is of the type $(3,2)$ and if the latter holds, then we say that φ is of the type $(2,3)$. We will reserve the symbol m_{φ} to denote the element of M_{φ}; we will write simply m whenever φ is understood from the context of considerations.
(3) For technical convenience, in the rest of this paper we will assume that for each strict code $\varphi, \varphi(t)=m$ for each one-node tree t.

4. Strict codes and unlimited $0 S$ systems

In this section we will demonstrate that strict codes are of grammatical nature in the sense that they correspond (in a well-defined sense) to a subclass of the class of unlimited $0 S$ systems.

The subclass of unlimited OS systems corresponding to strict codes is defined as follows.

Definition 4.1. Let $G=(\Sigma, P, \sigma)$ be an unlimited 0 S system.
(1) G is semi-deterministic iff, for each $a \in \Sigma$ and each $n \geq 2$, there exists precisely one production $a \rightarrow x$ in P such that $|x|=n$.
(2) G is backwards-deterministic iff for each $x \in \Sigma^{+}$there exists at most one $a \in \Sigma$ such that $a \rightarrow_{p} x$.
(3) G is strict iff
(i) G is semi-deterministic,
(ii) G is backwards-deterministic, and
(iii) there exists a partition of Σ into three sets L, M, R such that

- $M=\{\sigma\}$,
- either $\# L=3$ and $\# R=2$, or $\# L=2$ and $\# R=3$, and
- for each production $a \rightarrow_{P} x$, first $(x) \in L$, last $(x) \in R$, and $i(x) \in M$ for all $1<i<|x|$.

The following lemma follows directly from the definition of a strict unlimited OS system.

Lemma 4.2. Let $G=(\Sigma, P, \sigma)$ be a strict unlimited $0 S$ system. For each $l \in L, r \in R$, $k \geq 0$ there exists $a \in \Sigma$ such that $a \rightarrow_{p} l \sigma^{k} r$.

In order to establish the relationship between strict codes and strict unlimited $0 S$ systems we need the following three definitions.

Definition 4.3. Let $\varphi: T \rightarrow \Sigma^{*}$ be a strict code, let (one φ_{φ}, ψ) be the defining pair of φ, and let $t \in T$. The node-labeling of t induced by φ, denoted $\operatorname{lab}_{i, \varphi}$, is defined as follows:

$$
\operatorname{lab}_{t, \varphi}(\operatorname{root}(t))=\text { one }_{\varphi} .
$$

If $v \in \operatorname{IN}(t)$ is such that $\operatorname{ddes}_{t}(v)=v_{1} \ldots v_{k}$ for $k \geq 2, v_{i} \in \mathrm{ND}(t)$ for all $1 \leq i \leq k$, and $\operatorname{lab}_{t, \varphi}(v)=a$, then $\operatorname{lab}_{t, \varphi}\left(v_{i}\right)=\underline{i}(\psi(a, k))$ for each $1 \leq i \leq k$.

Remark 4.4. The above definition of $\mathrm{lab}_{t, \varphi}$ is in a "top-down fashion". One can also define lab $b_{l, \varphi}$ in a 'bottom-up fashion'" as follows.
(i) If $v=\operatorname{leaf}_{t}(i)$ for some $1 \leq i \leq \mid$ front $(t) \mid$, then $\operatorname{lab}_{t, \varphi}(v)=\underline{i}(\varphi(t))$.
(ii) If t_{1} is a tree and $v \in \operatorname{IN}\left(t_{1}\right)$ is such that $\operatorname{DDES}_{t_{1}}(v) \subseteq \operatorname{LEAF}\left(t_{1}\right)$, then $\operatorname{lab}_{t, \varphi}(v)=$ $\underline{i}\left(\varphi\left(t_{2}\right)\right)$, where t_{2} results from t_{1} by removing $\operatorname{DDES}_{t_{1}}(v)$ for $1 \leq i \leq \mid$ front $\left(t_{2}\right) \mid$, and $v=\operatorname{leaf}_{t_{2}}(i)$.

Hence starting with t by successive removals of a complete subsequence of the frontier of a current tree, one gets a sequence of trees t_{1}, \ldots, t_{s} where $t_{1}=t$ and t_{s} is the one-node tree consisting of $\operatorname{root}(t)$. For each $1 \leq i \leq s$, leafs of t_{i} are labeled according to $\varphi\left(t_{i}\right)$. Since $\bigcup_{1 \leq i \leq s}\left\{\operatorname{LEAF}\left(t_{i}\right)\right\}=\operatorname{ND}(t)$, in this way we get a labeling of all nodes of t.

The bottom-up definition of $\operatorname{lab}_{t, \varphi}$ as above is quite natural, because, to start with (see Remark 1.2) $\varphi(t)$ can be considered to be a labeling of leaves of t.

Definition 4.5. Let $\varphi: T \rightarrow \Sigma^{*}$ be a strict code and let (one ${ }_{\varphi}, \psi$) be the defining pair of φ.
(i) Let $t \in T$ and let $v \in \operatorname{IN}(t)$. The φ-production of v in t, denoted $\operatorname{prod}_{\varphi}(v, t)$, is the production $a \rightarrow x$, where $\operatorname{lab}_{t, \varphi}(v)=a, \# \operatorname{DDES}_{t}(v)=k$ and $\psi(a, k)=x$.
(ii) Let $t \in T$. The set of φ-productions induced by t, denoted $\operatorname{PROD}_{\varphi}(t)$, is the set $\left\{\operatorname{prod}_{\varphi}(v, t): v \in \operatorname{IN}(t)\right\}$.
(iii) The set of φ-productions, denoted $\operatorname{PROD}(\varphi)$, is the set $\bigcup_{t \in T} \operatorname{PROD}_{\varphi}(t)$.
(iv) The unlimited $0 S$ system induced by φ, denoted $0 \mathrm{~S}(\varphi)$, is the unlimited 0 S system ($\Sigma, \operatorname{PROD}(\varphi), m)$.

Definition 4.6. Let $G=(\Sigma, P, \sigma)$ be a strict unlimited 0 S system and let T be a selector (of trees). The code induced by G (on T), denoted $\mathrm{COD}_{G, T}$, is the mapping of T into Σ^{*} defined as follows. Let $t \in T$.
(i) Let η be the following node-labeling of t :
$\eta(\operatorname{root}(t))=\sigma$.
If $v \in \operatorname{IN}(t)$ is such that $\operatorname{ddes}_{t}(v)=v_{1} \ldots v_{k}$ for $k \geq 2, v_{i} \in \mathrm{ND}(t)$ for all $1 \leq i \leq k$, and $\eta(v)=a$, then $\eta\left(v_{i}\right)=a_{i}$ for each $1 \leq i \leq k$, where $a \rightarrow a_{1} \ldots a_{k} \in P$.
(ii) $\operatorname{COD}_{G, T}(t)=\eta\left(d_{1}\right) \ldots \eta\left(d_{n}\right)$, where $\operatorname{front}(t)=d_{1} \ldots d_{n}$ with $d_{i} \in \operatorname{LEAF}(t)$ for each $1 \leq i \leq n$.

We refer to η as above as the node-labeling of t induced by G.
Remark 4.7. Since we have assumed (see Remark 3.3) that, for each strict code φ, $\varphi(t)=m$ for each one-node tree t, we will assume in the sequel that $\sigma=m$ for each unlimited $0 S$ system $G=(\Sigma, P, \sigma)$.

Now the relationship between strict codes and strict unlimited OS systems can be stated in the form of the following result.

Theorem 4.8. (i) For each strict code $\varphi: T \rightarrow \Sigma^{*}, \operatorname{OS}(\varphi)$ is a strict unlimited 0 S system, and moreover $\operatorname{COD}_{0 \mathrm{~S}(\varphi), T}=\varphi$.
(ii) For each strict unlimited $0 S$ system G and each selector set of trees T, $\mathrm{COD}_{G, T}$ is a strict code, and moreover $0 \mathrm{~S}\left(\mathrm{COD}_{G, T}\right)=G$.

Proof. (i) This follows directly from the construction of $0 \mathrm{~S}(\varphi)$ for a given strict code φ.
(ii) Let $G=(\Sigma, P, m)$ be a strict unlimited 0 S system. It is easily seen that for each selector set of trees $T, \mathrm{COD}_{G, T}$ is a code which is sibling-consistent and completeness-consistent.

To prove that $\mathrm{COD}_{G, T}$ is rich is more involved. To this aim we will prove that each $w \in \Sigma^{+}$is reachable from m (in G). First however we state an obvious combinatorial observation.

Claim 4.9. Let $Z \subseteq X \times Y$ for some sets X, Y. If $\# Z>\# X+\# Y$, then $\# Z \geqq 6$.
Lemma 4.10. Each $w \in \Sigma^{+}$is reachable from m.
Proof. We prove the lemma by induction on $|w|$.
Base. Assume that $|w|=1$, hence $w \in \Sigma$. Let

$$
L_{w}=\left\{a \in L_{G}: a \text { is reachable from } w \text { in } G\right\}
$$

and

$$
R_{w}=\left\{a \in R_{G}: a \text { is reachable from } w \text { in } G\right\} .
$$

Consider now all productions of the type $a \rightarrow x$ where $a \in \Sigma$ and $|x|=2$, hence $x \in L_{G} R_{G}$. Since G is semi-deterministic, there is exactly one such production for each letter of Σ; let for each $a \in \Sigma, l_{a} \in L_{G}$ and $r_{a} \in R_{G}$ be such that $a \rightarrow_{P} l_{a} r_{a}$.

Clearly if $a \in \Sigma$ is reachable from w then so are l_{a} and r_{a}; let

$$
Z_{m}=\left\{\left(l_{a}, r_{a}\right): a \in \Sigma \text { is reachable from } m\right\} .
$$

Since G is strict, if $a \neq b$ then $\left(l_{a}, r_{a}\right) \neq\left(l_{b}, r_{b}\right)$, and so $\# Z_{m}=\# L_{m}+\# R_{m}+1$ (because m is obviously reachable from m). Hence $\# Z_{m}>\# L_{m}+\# R_{m}$, and consequently, by Claim 4.9, \# $Z_{m} \geq 6$ which implies that each letter of Σ is reachable from m.

Inductive step. Assume that for some $n>1$, each $u \in \Sigma^{+}$such that $|u|<n$ is reachable from m, and consider $a w \in \Sigma^{\dagger}$ such that $|w|=n$.

We will consider five possible cases for w.
Case 1: $w \in M^{+}$. Then clearly w is reachable from m.
Case 2: $w=w_{1} l m^{k} r w_{2}$ for some $w_{1}, w_{2} \in \Sigma^{*}, k \geq 0, l \in L$ and $r \in R$. By Lemma 4.2 there exists $a \in \Sigma$ such that $a \rightarrow_{P} \operatorname{lm}^{k} r$. Hence $w_{1} a w_{2} \Rightarrow_{G} w$. But $\left|w_{1} u w_{2}\right|<|w|$, and so by the inductive assumption $w_{1} a w_{2}$ is reachable from m which obviously implies that w is reachable from m.

Case 3: $w=m^{k} r w_{2}$ for some $w_{2} \in \Sigma^{*}, k \geq 1$, and $r \in R$. Let $a \in \Sigma$ be such that $a \rightarrow_{p} l m^{k} r$ for some $l \in L$. Then $a w_{2} \Rightarrow_{G} l w$. But $\left|a w_{2}\right|<|w|$, and so by the inductive assumption $a w_{2}$ is reachable from m. Consequently w is reachable from m.

Case 4: $w=w_{1} l m^{k}$ for some $w_{1} \in \Sigma^{*}, k \geq 1$, and $l \in L$. Analogously to Case 3 we prove that w is reachable from m.

Case 5: None of the above four cases hold. It is easy to see that Case 5 holds iff one of the following three cases holds.
(i) $w \in(L \cup M)^{+}$and last $(w) \in L$.
(ii) $w \in(R \cup M)^{+}$and $\operatorname{first}(w) \in R$.
(iii) first $(w) \in R$ and $\operatorname{last}(w) \in L$.

We will consider each of these cases separately but first we need the following claim.

Claim 4.11. (1) For each $r \in R$, either there exist $y, z \in \Sigma$ such that $y \notin R$ and $y \rightarrow_{P} z r$ or there exist $y_{1}, z_{1}, y_{2}, z_{2} \in \Sigma$ such that $y_{1} \notin R, y_{1} \rightarrow_{p} z_{1} y_{2}$, and $y_{2} \rightarrow_{p} z_{2} r$.
(2) For each $l \in L$, either there exist $y, z \in \Sigma$ such that $y \notin L$ and $y \rightarrow_{p} l z$ or there exist $y_{1}, z_{1}, y_{2}, z_{2} \in \Sigma$ such that $y_{1} \notin L, y_{1} \rightarrow_{P} y_{2} z_{2}$, and $y_{2} \rightarrow_{P} l z_{1}$.

Proof. (1) Let $r \in R$. Let

$$
A(r)=\left\{a \in \Sigma: a \rightarrow_{P} x,|x|=2, \text { and last }(x)=r\right\} ;
$$

by Lemma 4.2, either $\# A(r)=3$ or $\# A(r)=2$.
(1.1) If $A(r)-R \neq \emptyset$, then (the "either" case of) the claim holds.
(1.2) Assume that $A(r) \subseteq R$. Let $y_{2} \in A(r)$ be such that $y_{2} \neq r$, and consider

$$
A\left(y_{2}\right)=\left\{a \in \Sigma: a \rightarrow_{P} x,|x|=2, \text { and last }(x)=y_{2}\right\}
$$

If $A\left(y_{2}\right) \subseteq R$, then $\# R \geq 4$ (because $A(r) \subseteq R$); a contradiction. Hence $A\left(y_{2}\right)-R \neq \emptyset$. If we choose now $y_{1} \in A\left(y_{2}\right)-R$, then (the "or" case of) the claim holds.
(2) This is proved analogously to (1).

Case 5(i). Let $w=u l$ for some $u \in(L \cup M)^{+}$and $l \in L$. By Claim 4.11, either there exist $y, z \in \Sigma$ such that $y \notin L$ and $u y \Rightarrow_{G} u l z=w z$, or there exist $y, z_{1}, z_{2} \in \Sigma$ such that $y \notin L$ and $u y \Rightarrow_{G}^{+} u l z_{1} z_{2}=w z_{1} z_{2}$.

It is easily seen that in both cases $u y$ is in one of the considered Cases 1-4, and hence $u y$ is reachable from m. But then w is reachable from m.

Case 5(ii). Let $w=r u$ for some $r \in R$ and $u \in(R \cup M)^{+}$. By Claim 4.11, either there exist $y, z \in \Sigma$ such that $y \notin R$ and $y u \Rightarrow_{G} z r u=z w$, or there exist $y, z_{1}, z_{2} \in \Sigma$ such that $y \notin R$ and $y u \Rightarrow_{G}^{+} z_{1} z_{2} r u=z_{1} z_{2} w$.

It is easily seen that in both cases $y u$ is one of the Cases 1-4, and hence $y u$ is reachable from m. But then w is reachable from m.

Case 5(iii). Let $w=r u l$ for some $u \in \Sigma^{*}$. By Claim 4.11, either there exist $y, y^{\prime}, z, z^{\prime} \in \Sigma$ such that $y \notin R, y^{\prime} \notin L$, and

$$
y u y^{\prime} \Rightarrow_{C}^{+} z r u l z^{\prime}=z w z^{\prime},
$$

or there exist $y, z_{1}, z_{2}, y^{\prime}, z^{\prime} \in \Sigma$ such that $y \notin R, y^{\prime} \notin L$, and

$$
y u y^{\prime} \Rightarrow_{G}^{+} z_{1} z_{2} r u l z^{\prime}=z_{1} z_{2} w z^{\prime},
$$

or there exist $y, z, y^{\prime}, z_{1}^{\prime}, z_{2}^{\prime} \in \Sigma$ such that $y \notin R, y^{\prime} \notin L$, and

$$
y u y^{\prime} \Rightarrow_{G}^{+} z r u l z_{1}^{\prime} z_{2}^{\prime}=z w z_{1}^{\prime} z_{2}^{\prime},
$$

or there exist $y, z_{1}, z_{2}, y^{\prime}, z_{1}^{\prime}, z_{2}^{\prime} \in \Sigma$ such that $y \notin R, y^{\prime} \ddagger L$, and

$$
y u y^{\prime} \Rightarrow_{G}^{+} z_{1} z_{2} r u l z_{1}^{\prime} z_{2}^{\prime}=z_{1} z_{2} w z_{1}^{\prime} z_{2}^{\prime} .
$$

It is easily seen that in each of the above cases $y u y^{\prime}$ is in one of the previously considered Cases 1-5(ii), and hence $y u y^{\prime}$ is reachable from m. But then w is reachable from m.

Altogether from Cases 1-5(iii) it follows that the inductive step holds. Consequently the lemma holds.

Proof of Theorem 4.8 (continued). Since m is the axiom of G and $m \rightarrow_{p} l m r$ for some $l \in L$ and $r \in R$, the above lemma implies that $\mathrm{COD}_{G, T}$ is rich. Consequently $\mathrm{COD}_{G, T}$ is strict. Since it is easy to see that $0 \mathrm{~S}\left(\mathrm{COD}_{G, T}\right)=G$, (ii) holds.

This completes the proof of the theorem.

According to the above theorem we may consider strict codes to be strict unlimited 0 S systems, and we may consider strict unlimited OS systems (together with a selector set) to be strict codes. This means in particular that we may specify strict codes in the form of strict unlimited 0 S systems. Thus typically we will write "let $\varphi=(\Sigma, P, m)$ be a strict code'", where (Σ, P, m) is a strict unlimited 0 S system (and a selector set is clear from the context of considerations); then $L_{\varphi}=L, M_{\varphi}=M$, and $R_{\varphi}=R$, where $\{L, M, R\}$ is the partition of Σ required in the definition of a strict unlimited 0 S system. We will assume then that the selector set which is the domain of φ is clear from the context of considerations, or otherwise one can consider an arbitrary but fixed selector set of trees. For this reason we will sometimes write COD_{G} rather than $\mathrm{COD}_{G, T}$ to denote the code induced by a strict unlimited 0 S system.

Let $G=(\Sigma, P, m)$ be a strict unlimited 0 S system, where $\{L, M, R\}$ is the partition of G (required by the definition of a strict unlimited 0 S system). If $\# L=3$ and $\# R=2$, then we say that G is of the type $(3,2)$, and if $\# L=2$ and $\# R=3$, then we say that G is of the type $(2,3)$. We consider Σ, L, R to be ordered:

- $L=\left(l_{1}, l_{2}, l_{3}\right), R=\left(r_{1}, r_{2}\right)$, and
- $\Sigma=\left(l_{1}, l_{2}, l_{3}, r_{1}, r_{2}, m\right)$ if G is of the type (3,2), and
- $L=\left(l_{1}, l_{2}\right), R=\left(r_{1}, r_{2}, r_{3}\right)$, and
- $\Sigma=\left(l_{1}, l_{2}, r_{1}, r_{2}, r_{3}, m\right)$ if G is of the type (2,3), where $M=\{m\}$.

Example 4.12. Let $G=(\Sigma, P, m)$ be the unlimited 0 S system such that $\Sigma=L \cup R \cup M$, where $L=\left\{l_{1}, l_{2}, l_{3}\right\}, R=\left\{r_{1}, r_{2}\right\}, M=\{m\}$, and P consists of the following productions:

Fig. 1.

- $m \rightarrow l_{1} m^{k} r_{1}$ for all $k \geq 0$,
- $l_{1} \rightarrow l_{1} m^{k} r_{2}$ for all $k \geq 0$,
- $l_{2} \rightarrow l_{2} m^{k} r_{2}$ for all $k \geq 0$,
- $l_{3} \rightarrow l_{3} m^{k} r_{1}$ for all $k \geq 0$,
- $r_{1} \rightarrow l_{2} m^{k} r_{1}$ for all $k \geq 0$,
- $r_{2} \rightarrow l_{3} m^{k} r_{2}$ for all $k \geq 0$.

Clearly G is a strict unlimited $0 S$ system of the type $(3,2)$.
Let t_{1} be the tree in Fig. 1. Then the node-labeling of t_{1} induced by G is shown in Fig. 2. Hence $\varphi(t)=l_{1} l_{1} l_{2} m r_{1} m r_{2} l_{2} l_{2} m r_{1}$, where $\varphi=\operatorname{COD}_{G}$.

5. Insertive strict codes

In this section we will investigate insertive strict codes. In strict codes of this kind

Fig. 2.
a production for a letter b with longer right-hand side β is obtained from a production for b with a shorter right-hand side α by inserting segments into α. The situation like this is quite typical in linguistics-take, e.g., a grammar for a fragment of English where productions for the noun phrase (NP) will be of the form: $\mathrm{NP} \rightarrow$ the car, NP \rightarrow the nice car, $\mathrm{NP} \rightarrow$ the long nice car, $\mathrm{NP} \rightarrow$ the red long nice car,

Formally insertive strict codes are defined as follows.
Definition 5.1. A strict code $\varphi=(\Sigma, P, m)$ is insertive iff for each $a \in \Sigma$ and all $\alpha, \beta \in \Sigma^{+}$such that $a \rightarrow_{P} \alpha$ and $a \rightarrow_{P} \beta$, if $|\alpha|<|\beta|$, then α is a subword of β.

The following technical result follows directly from the definition of an insertive strict code.

Lemma 5.2. Let $\varphi=(\Sigma, P, m)$ be a strict insertive code. For each $a \in \Sigma$ and for all $x, y \in \Sigma^{+}$such that $a \rightarrow_{p} x$ and $a \rightarrow_{p} y$, first $(x)=\operatorname{first}(y)$ and last $(x)=\operatorname{last}(y)$.

The way of specifying strict codes (through strict unlimited 0S systems) discussed at the end of the last section is especially attractive for strict insertive codes because there is a nice notation for unlimited 0 S systems corresponding to strict insertive codes. This notation, that we are going to discuss now is based on Lemma 5.2.

If $G=(\Sigma, P, m)$ is of type $(3,2)$, then the tableau of G is the following tableau:

	r_{1}	r_{2}
l_{1}	a_{11}	a_{12}
l_{2}	a_{21}	a_{22}
l_{3}	a_{31}	a_{32}

where $\Sigma=\left\{a_{i j}: 1 \leq i \leq 3\right.$ and $\left.1 \leq j \leq 2\right\}$, and for all $1 \leq i \leq 3,1 \leq j \leq 2, a_{i j} \rightarrow_{P} l_{i} m^{k} r_{j}$ for all $k \geq 0$.

If $G=(\Sigma, P, m)$ is of type $(2,3)$, then the tableau of G is the following tableau:

	r_{1}	r_{2}	r_{2}
l_{1}	a_{11}	a_{12}	a_{13}
l_{2}	a_{21}	a_{22}	a_{23}

where $\Sigma=\left\{a_{i j}: 1 \leq i \leq 3\right.$ and $\left.1 \leq j \leq 2\right\}$, and for all $1 \leq i \leq 3,1 \leq j \leq 2, a_{i j} \rightarrow_{p} l_{i} m^{k} r_{j}$ for all $k \geq 0$.

We will use Q_{G} to denote the tableau of G and $Q_{G}(i, j)$ to denote the $a_{i, j}$ entry of Q_{G}.

Example 5.3. It is easily seen that the strict unlimited $0 S$ system G from Example 4.12 is insertive. The tableau

Then $Q_{G}(1,1)=m, \quad Q_{G}(1,2)=l_{1}, \quad Q_{G}(2,1)=r_{1}, \quad Q_{G}(2,2)=l_{2}, \quad Q_{3}(3,1)=l_{3}$, and $Q_{G}(3,2)=r_{2}$.

The restriction of insertiveness applied to strict codes has quite a dramatic effect: there is only a finite number of strict insertive codes, where we do not distinguish between "isomorphic" codes, i.e., codes that result from each other just by "renaming'" letters of the alphabets involved.

Definition 5.4. Codes $\varphi_{1}: T \rightarrow \Sigma_{1}^{*}$ and $\varphi_{2}: T \rightarrow \Sigma_{2}^{*}$ are isomorphic iff there exists a bijection $\eta: \Sigma_{1} \rightarrow \Sigma_{2}$ such that for each $t \in T, \eta\left(\varphi_{1}(t)\right)=\varphi_{2}(t)$.

Theorem 5.5. There are only finitely many nonisomorphic insertive strict codes.

Proof. Assume that $\varphi=(\Sigma, P, m)$ is an insertive strict code.
Since φ is insertive, by Lemma 5.2, if $X \rightarrow_{\varphi} l m^{k} r$ and $X \rightarrow_{\varphi} l^{\prime} m^{s} r^{\prime}$, where $X \in \Sigma$, $k, s \geq 0, l, l^{\prime} \in L_{\varphi}$, and $r, r^{\prime} \in R_{\varphi}$, then $l=l^{\prime}$ and $r=r^{\prime}$. Thus, all productions for X in φ are uniquely determined by the pair (l, r) (because φ is semi-deterministic).

Consequently the number of insertive strict codes is not larger than the number of functions from Σ into $L_{p p} \times R_{p p}$.

Since $\# \Sigma=6$, the theorem holds.

As a matter of fact we can compute the exact number of insertive strict codes - or more precisely, the exact number of nonisomorphic insertive strict codes. This "nonisomorphy", assumption will hold also in the sequel of this paper in the sense that, whenever we have a result saying that there are exactly n codes of a given kind, we mean that there are exactly n mutually nonisomorphic codes of a given kind.

Theorem 5.6. There are exactly 120 insertive strict codes.
Proof. Since the number of different tableaux of insertive strict codes obviously equals 6 ! and it can be easily checked that by permuting letters so that left remains left, right remains right, and m remains m, one obtaines 12 different isomorphic tableaux, the number of nonisomorphic codes of a given type $(2,3)$ or $(3,2)$) equals $6!/ 12=60$. Consequently, the number of insertive strict codes equals $2 \cdot 60=120$.

Remark 5.7 In the sequel of this paper we will give the precise number of insertive strict codes satisfying various additional conditions. The proofs of the corresponding theorems are organized in such a way that:
(1) while counting the number of codes of a given sort, the proof of the corresponding theorem gives the precise form of all codes of this kind,
(2) when we prove that there are at most n codes of a given kind, the construction used in the proof is done in such a way that it is clear that all constructed codes are mutually nonisomorphic (the proof of the latter fact will be left to the reader), hence we will conclude that there are precisely n codes of a given kind.

6. Strongly recursive insertive strict codes

Often in considerations concerning grammars one wants to get a clear cut division between recursive and nonrecursive letters, and so one applies transformations leading to grammars with "as many as possible" recursive letters (because nonrecursive letters lead often to tedious "exceptions" in reasoning about grammars). A typical desired situation then is that a recursive letter must be directly recursive and a nonrecursive letter must lead directly (i.e. in one step) to a recursive letter.

Based on this motivation we will introduce now strongly recursive insertive strict codes.

Definition 6.1. An insertive strict code $\varphi=(\Sigma, P, m)$ is strongly recursive iff for each production $a \rightarrow_{P} l m^{k} r$, where $l \in L_{\varphi}, r \in R_{\varphi}$, and $k \geq 0$, if $a \neq l$ and $a \neq r$, then l and r are directly recursive.

Again, we can compute the exact number of strongly recursive strict codes.
Theorem 6.2. There are exactly 8 strongly recursive insertive strict codes.

Proof. Consider an arbitrary strongly recursive insertive strict code φ.
We will compute the number of different forms that Q_{φ} may have.
Case 1: Assume that φ is of the type $(3,2)$. Again, we may assume that $Q_{\varphi}(1,1)=$ m. Hence each production for m is of the form $m \Rightarrow_{\varphi} l_{1} m^{k} r_{1}$, for some $k \geq 0$, and
so, because φ is strongly recursive, both l_{1} and r_{1} must be directly recursive. Consequently $Q_{\varphi}(1,2)=l_{1}$ and $Q_{\varphi}(2,1)=r_{1}$.

We have three possibilities for r_{2} : either $Q_{\varphi}(2,2)=r_{2}$ or $Q_{\varphi}(3,1)=r_{2}$ or $Q_{\varphi}(3,2)=r_{2}$.
(i) $Q_{\varphi}(2,2)=r_{2}$. Then $\left\{Q_{\varphi}(3,1), Q_{\varphi}(3,2)\right\}=\left\{l_{2}, l_{3}\right\}$, and so we have two possibilities for Q_{φ}.
(ii) $Q_{\varphi}(3,1)=r_{2}$. Then each production for r_{2} is of the form $r_{2} \Rightarrow_{\varphi} l_{3} m^{k} r_{1}$, for some $k \geq 0$, and so, because φ is strongly recursive, l_{3} must be directly recursive. Consequently, $Q_{\varphi}(3,2)=l_{3}$ and consequently $Q_{\varphi}(2,2)=l_{2}$.
(iii) $Q_{\varphi}(3,2)=r_{2}$. If $Q_{\varphi}(2,2)=l_{3}$ and $Q_{\varphi}(3,1)=l_{2}$, then each production for l_{3} is of the form $l_{3} \Rightarrow_{\varphi} l_{2} m^{k} r_{2}$, for some $k \geq 0$, and each production for l_{2} is of the form $l_{2} \Rightarrow l_{3} m^{k} r_{1}$, for some $k \geq 0$. This however contradicts the fact that φ is strongly recursive.
The remaining case is $Q_{\varphi}(2,2)=l_{2}$ and $Q_{\varphi}(3,1)=l_{3}$.
Thus we have two possibilities in Case 1(i), one possibility in Case 1(ii) and one possibility in Case 1(iii); altogether four possibilities.

Case 2: Assuming that φ is of the type (2,3), by analogous reasoning we arrive at four possibilities for Q_{φ}.

Thus altogether we have eight possibilitics for Q_{φ}, and consequently there arc cxactly eight strongly recursive insertive strict codes.

Since it is easily seen that all eight codes we have constructed above are mutually nonisomorphic, the theorem holds.

7. Dependent insertive strict codes

We will consider now the notion of a dependent (insertive) strict code. It formalizes the classical notion of dependency in parenthesis notation for derivation trees of context-free grammar. E.g., if we consider the context-free grammar G_{0} with productions $S \rightarrow(S), S \rightarrow S S, S \rightarrow \Lambda$ generating well-formed parenthesis expressions, then the number of right and left parentheses in each sentential form will be equal (i.e., will 'cancel'' each other). Hence there exists a fixed vector $\delta=(-1,+1,0)$ such that for all sentential forms x, y in G_{0} such that x derives $y, \delta \pi(x)=\delta \pi(y)$, where $\pi(z)$ for a word z is the Parikh column vector of z, and the fixed order of the alphabet is $(),$,$S . This idea is now carried over to the framework of dependent$ strict codes.

Recall that we assume the alphabet Σ of a strict code φ to be ordered, i.e. $\Sigma=$ $\left(l_{1}, l_{2}, l_{3}, r_{1}, r_{2}, m\right)$ if φ is of the (3,2) type, and $\Sigma=\left(l_{1}, l_{2}, r_{1}, r_{2}, r_{3}, m\right)$ if φ is of the $(2,3)$ type. Consequently, given a vector $\delta=\left(e_{1}, \ldots, e_{6}\right) \in \mathbb{N}^{6}$ we consider e_{1}, \ldots, e_{6} to be the values of δ for l_{1}, l_{2}, \ldots, m respectively, i.e., $\delta\left(l_{1}\right)=e_{1}, \delta\left(l_{2}\right)=e_{2}, \delta\left(l_{3}\right)=e_{3}$, $\delta\left(r_{1}\right)=e_{4}, \delta\left(r_{2}\right)=e_{5}$, and $\delta(m)=e_{6}$, if φ is of the (3,2) type, and $\delta\left(l_{1}\right)=e_{1}, \delta\left(l_{2}\right)=e_{2}$, $\delta\left(r_{1}\right)=e_{3}, \delta\left(r_{2}\right)=e_{4}, \delta\left(r_{3}\right)=e_{5}$, and $\delta(m)=e_{6}$, if φ is of the (2,3) type.

Definition 7.1. A strict code $\varphi=(\Sigma, P, m)$ is dependent iff there exists a nonzero vector $\delta \in \mathbb{N}^{6}$ such that, for all $x, y \in \Sigma^{+}$, if $x \Rightarrow_{\varphi} y$, then $\delta \pi(x)=\delta \pi(y)$. Each nonzero vector δ satisfying the above is called a dependency (vector) for φ.

Let φ be a strict code of the $(3,2)$ type with

$Q_{\varphi}=$| | r_{1} | r_{2} |
| :--- | :--- | :--- |
| l_{1} | a_{11} | a_{12} |
| l_{2} | a_{21} | a_{22} |
| l_{3} | a_{31} | a_{32} |.

For a vector $\delta \in \mathbb{N}^{6}$, the φ-tableau of δ is the following tableau:

	$\delta\left(r_{1}\right)$	$\delta\left(r_{2}\right)$
$\delta\left(l_{1}\right)$	$\delta\left(a_{11}\right)$	$\delta\left(a_{12}\right)$
$\delta\left(l_{2}\right)$	$\delta\left(a_{21}\right)$	$\delta\left(a_{22}\right)$
$\delta\left(l_{3}\right)$	$\delta\left(a_{31}\right)$	$\delta\left(a_{32}\right)$

Similarly, if φ is a strict code of the $(2,3)$ type with

and $\delta \in \mathbb{N}^{6}$, then the φ-tableau of δ is the following tableau:

	$\delta\left(r_{1}\right)$	$\delta\left(r_{2}\right)$	$\delta\left(r_{3}\right)$
$\delta\left(l_{1}\right)$	$\delta\left(a_{11}\right)$	$\delta\left(a_{12}\right)$	$\delta\left(a_{13}\right)$
$\delta\left(l_{2}\right)$	$\delta\left(a_{21}\right)$	$\delta\left(a_{22}\right)$	$\delta\left(a_{23}\right)$

We will use $Q_{\varphi, \delta}$ to denote the φ-tableau of δ.
If, for a strict code φ and a vector $\delta \in \mathbb{N}^{6}$, it holds that $\delta\left(a_{i j}\right)=\delta\left(l_{i}\right)+\delta\left(r_{j}\right)$, hence $Q_{\varphi, \delta}\left(a_{i j}\right)=\delta\left(l_{i}\right)+\delta\left(r_{j}\right)$, then we say that $Q_{\varphi, \delta}$ is additive.

Lemma 7.2. Let $\varphi=(\Sigma, P, m)$ be an insertive strict code. A nonzero vector $\delta \in \mathbb{N}^{6}$ is a dependency for φ iff $\delta(m)=0$ and $Q_{\varphi, \delta}$ is additive.

Proof. (\Rightarrow) Assume that a nonzero vector δ is a dependency for φ. Since φ is strict insertive there exist $l \in L_{\varphi}$, and $r \in R_{\varphi}$ such that $m \rightarrow_{\varphi} l m^{k} r$ for each $k \geq 0$. Since δ is a dependency vector for φ, we get then $\delta(m)=\delta(l)+k \delta(m)+\delta(r)$ for each $k \geq 0$. Consequently $\delta(m)=0$.

Consider an arbitrary entry $a_{i j}$ of Q_{φ}. Then $a_{i j} \rightarrow_{\varphi} l_{i} m^{k} r_{j}$ for each $k \geq 0$, and consequently $\delta\left(a_{i j}\right)=\delta\left(l_{i}\right)+k \delta(m)+\delta\left(r_{j}\right)$ for each $k \geq 0$. Since $\delta(m)=0, \delta\left(a_{i j}\right)=$ $\delta\left(l_{i}\right)+\delta\left(r_{j}\right)$. Consequently, $Q_{\varphi, \delta}$ is additive.
(\Leftrightarrow) Assume that $\delta \in \mathbb{N}^{6}$ is a nonzero vector such that $\delta(m)=0$ and $Q_{\varphi, \delta}$ is additive.

Consider an arbitrary entry $a_{i j}$ of Q_{φ}. Then $a_{i j} \rightarrow_{\varphi} l_{i} m^{k} r_{j}$ for each $k \geq 0$, and so for arbitrary $x, y \in \Sigma^{*}$, and arbitrary $k \geq 0, x a_{i j} y \Rightarrow_{\varphi} x l_{i} m^{k} r_{j} y$. Hence $\zeta=$ $\pi\left(x l_{i} m^{k} r_{j} y\right)-\pi\left(x a_{i j} y\right)$ is such that one of the following possibilities holds:
(1) $\zeta\left(a_{i j}\right)=-1, \zeta\left(l_{i}\right)=+1, \zeta\left(r_{j}\right)=+1, \zeta(m)=k$, and $\zeta(u)=0$ otherwise, or
(2) $\zeta\left(a_{i j}\right)=0, \zeta\left(l_{i}\right)=0, \zeta\left(r_{j}\right)-+1, \zeta(m)-k$, and $\zeta(u)=0$ otherwise, or
(3) $\zeta\left(a_{i j}\right)=0, \zeta\left(l_{i}\right)=+1, \zeta\left(r_{j}\right)=0, \zeta(m)=k$, and $\zeta(u)=0$ otherwise, or
(4) $\zeta\left(a_{i j}\right)=k-1, \zeta\left(l_{i}\right)=0, \zeta\left(r_{j}\right)=+1, \zeta(m)=k$, and $\zeta(u)=0$ otherwise.

Consequently,

$$
\delta \zeta=\delta\left(a_{i j}\right) \zeta\left(a_{i j}\right)+\delta\left(l_{i}\right) \zeta\left(l_{i}\right)+\delta\left(r_{j}\right) \zeta\left(r_{j}\right)+\delta(m) \zeta(m)
$$

and so:

- if (1), then $\delta \zeta=0$, because $\delta \zeta=-\delta\left(a_{i j}\right)+\delta\left(l_{i}\right)+\delta\left(r_{j}\right)$ and $Q_{\varphi, \delta}$ is additive,
- if (2), then $\delta \zeta=\delta\left(r_{j}\right)=0$, because $\delta\left(l_{i}\right)+\delta\left(r_{j}\right)=\delta\left(a_{i j}\right)=\delta\left(l_{i}\right)$,
- if (3), then $\delta \zeta=\delta\left(l_{i}\right)=0$, because $\delta\left(l_{i}\right)+\delta\left(r_{j}\right)=\delta\left(a_{i j}\right)=\delta\left(r_{j}\right)$,
- if (4), then $\delta \zeta=(k-1) \delta\left(a_{i j}\right)+\delta\left(l_{i}\right)+\delta\left(r_{j}\right)=0$, because $\delta\left(a_{i j}\right)=\delta(m)=0$.

Thus δ is a dependency for φ.
The above result (and its proof) yields the following corollary that will be useful in the sequel.

Corollary 7.3. Let $\varphi=(\Sigma, P, m)$ be an insertive strict code and let δ be a dependency for φ.
(i) For all $l \in L_{\varphi}$, if $l \rightarrow_{\varphi} l m^{k} r$ for some $k \geq 0, r \in R_{\varphi}$, then $\delta(r)=0$.
(ii) For all $r \in R_{\varphi}$, if $r \rightarrow_{\varphi} I m^{k} r$ for some $k \geq 0, l \in L_{\varphi}$, then $\delta(l)=0$.

We will demonstrate now that there are exactly 12 dependent insertive strict codes.

Let $\mathrm{SI}_{(3,2)}$ be the set of those insertive strict codes that are isomorphic with either one of the following insertive strict codes:

	r_{1}	r_{2}
l_{1}	m	x_{1}
l_{2}	r_{1}	u_{1}
l_{3}	u_{2}	x_{2}

or with one of the following insertive strict codes:

	r_{1}	r_{2}
l_{1}	r_{2}	x_{1}
l_{2}	r_{1}	m
l_{3}	l_{2}	x_{2}

where $\left\{x_{1}, x_{2}\right\}=\left\{l_{1}, l_{3}\right\}$ and $\left\{u_{1}, u_{2}\right\}=\left\{r_{2}, l_{2}\right\}$.
Let $\mathrm{SI}_{(2,3)}$ be the set of those insertive strict codes that are isomorphic with either one of the following insertive strict codes:

	r_{1}	r_{2}	r_{3}
l_{1}	m	l_{1}	u_{2}
l_{2}	x_{1}	u_{1}	x_{2}

or with one of the following insertive strict codes:

	r_{1}	r_{2}	r_{3}
l_{1}	l_{2}	l_{1}	r_{2}
l_{2}	x_{1}	m	x_{2}

where $\left\{x_{1}, x_{2}\right\}=\left\{r_{1}, r_{3}\right\}$ and $\left\{u_{1}, u_{2}\right\}=\left\{r_{2}, l_{2}\right\}$.
Let $\mathrm{SI}=\mathrm{SI}_{(3,2)} \cup \mathrm{SI}_{(2,3)}$.
Lemma 7.4. An insertive strict code φ is dependent iff $\varphi \in S I$.

Proof. (\Rightarrow) Assume that φ is dependent. We consider two cases:
Case 1. Assume that ρ is of the type $(3,2)$. Let

$Q_{0}=$| 1 | -1 | 0 |
| :---: | :---: | :---: |
| 0 | -1 | 1 |
| 1 | 0 | 1 |.

Claim 7.5. If δ is a dependency for φ, then (modulo a multiplicative constant and a permutation of rows and columns) $Q_{\varphi, \delta}$ equals Q_{0}.

Proof. Let δ be a dependency vector of φ and let

$Q_{\varphi, \delta}=$| x_{1} | b_{11} | b_{12} |
| :---: | :---: | :---: |
| x_{2} | b_{21} | b_{22} |
| x_{3} | b_{31} | b_{32} |.

We split the proof in five parts (I)-(V).
(I) For no $1 \leq i \leq 3,1 \leq j \leq 2, x_{i} y_{j}>0$.

This is seen as follows. Assume that for some $1 \leq i_{0} \leq 3,1 \leq j_{0} \leq 2, x_{i_{0}}>0$ and $y_{j_{0}}>0$. Let $b_{i_{1} j_{1}}>0$ be the maximal entry of $Q_{p, \delta}$ in the sense that for all $1 \leq i \leq 3$ and $1 \leq j \leq 2, b_{i j} \leq b_{i_{1} j_{1}}$.

By Lemma 7.2, $Q_{\varphi, \delta}$ is additive and so, if $b_{i_{1} j_{1}}=l_{i_{2}}$ for some $1 \leq i_{2} \leq 3$ then $b_{i_{2} j_{0}}=x_{i_{2}}+y_{j_{0}}>b_{i_{1} j_{1}}$; a contradiction, and if $b_{i_{1} j_{1}}=r_{j_{2}}$ for some $1 \leq j_{2} \leq 2$, then $b_{i_{0} j_{2}}=$ $x_{i_{0}}+y_{j_{2}}>b_{i_{1} j_{1}}$; a contradiction. Consequently there does not exist $1 \leq i_{0} \leq 3$ and $1 \leq j_{0} \leq 2$, such that $x_{i_{0}}>0$ and $y_{j_{0}}>0$.

Similarly we prove that there does not exist $1 \leq i_{0} \leq 3$ and $1 \leq j_{0} \leq 2$, such that $x_{i_{0}}<0$ and $y_{j_{0}}<0$.
(II) There exist $1 \leq i_{0} \leq 3$ and $1 \leq j_{0} \leq 2$, such that $x_{i_{0}} \neq 0$ and $y_{j_{0}} \neq 0$.

This is seen as follows. Assume to the contrary that, for all $1 \leq i \leq 3, x_{i}=0$. Since $\delta(m)=0$ and $Q_{\varphi, \delta}$ is additive, this implies that also $y_{1}=0$ or $y_{2}=0$. Hence from the values $\delta\left(l_{1}\right), \delta\left(l_{2}\right), \delta\left(l_{3}\right), \delta\left(r_{1}\right), \delta\left(r_{2}\right)$ at most one differs from zero, which implies that they are all equal to zero, contradicting the fact that δ is a dependency vector. Consequently there exists $1 \leq i_{0} \leq 3$ such that $x_{i_{0}} \neq 0$.
Similarly we prove that there exists $1 \leq j_{0} \leq 2$, such that $y_{j_{0}} \neq 0$.
(III) For all $1 \leq i \leq 3,1 \leq j \leq 2$, either $x_{i} \geq 0$ and $y_{j} \leq 0$ or $x_{j} \leq 0$ and $y_{j} \geq 0$.

This follows directly from (I) and (II).
(IV) There exist $1 \leq i_{0} \leq 3$ and $1 \leq j_{0} \leq 2$, such that $x_{i_{0}}=0$ and $y_{j_{0}}=0$.

This is seen as follows. Consider a $1 \leq j_{1} \leq 2$ such that $r_{j_{1}} \Rightarrow_{\varphi}^{+} l_{k_{1}} l_{k_{2}} r_{j_{1}}$ for some $1 \leq k_{1}, k_{2} \leq 2$; clearly such a j_{1} exists. Since δ is a dependency for $\varphi, \delta\left(r_{j_{1}}\right)=$ $\delta\left(l_{k_{1}}\right)+\delta\left(l_{k_{2}}\right)+\delta\left(r_{j}\right)$, and so from (III) it follows that $x_{k_{1}}=x_{k_{2}}=0$.

Similarly we prove that there exists $1 \leq j_{0} \leq 2$ such that $y_{j_{0}}=0$.
(V) $Q_{\varphi, \delta}$ is as follows:

	-1	0
x_{1}	b_{11}	x_{1}
0	-1	0
x_{3}	b_{31}	x_{3}

for some $x_{1}, x_{3}, b_{11}, b_{31}$.
This is seen as follows. By (IV) at least one $x \in\left\{x_{1}, x_{2}, x_{3}\right\}$ and exactly one $y \in$ $\left\{y_{1}, y_{2}\right\}$ equal 0 . Since we consider the form of $Q_{\varphi, \delta}$ modulo permutation of rows and columns we set $x_{2}=0$ and $y_{2}=0$. Since by Lemma $7.2, Q_{\varphi, \delta}$ is additive, $b_{12}=x_{1}$, $b_{22}=0$, and $b_{32}=x_{3}$. Since we consider the form of $Q_{\varphi, \delta}$ modulo a multiplicative constant, we set $y_{1}=-1$, and consequently (because $Q_{\varphi, \delta}$ is additive) $b_{21}=-1$.

Now we conclude the proof of the claim as follows. $Q_{\varphi, \delta}$ must have the form stated in (V). Since

$$
\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, m\right\}=\left\{b_{11}, b_{12}, b_{21}, b_{22}, b_{31}, b_{32}\right\} \quad \text { and } \quad \delta(m)=0
$$

$\left\{b_{11}, b_{31}\right\}=\left\{x_{2}, y_{2}\right\}=\{0,0\}$, and so $b_{11}=b_{31}=0$. Since, by Lemma 7.2, $Q_{\varphi, \delta}$ is additive, $x_{1}=1$ and $x_{3}=1$. Thus $Q_{q, \delta}$ equals Q_{0}. Hence the claim holds.

Proof of Lemma 7.4 (continued). Consider now the form of Q_{φ}. We have:

$$
m \in\left\{Q_{\varphi}(1,1), Q_{\varphi}(2,2), Q_{\varphi}(3,1)\right\}
$$

This follows directly from Claim 7.5 and Lemma 7.2 (because $\delta(m)=0$).
So we will consider separately two cases.
Case 1.1. $m \in\left\{Q_{\varphi}(1,1), Q_{\varphi}(3,1)\right\}$. Since $\delta\left(r_{1}\right)=-1, Q_{\varphi}(2,1)=r_{1}$ and so

$$
\left\{x_{1}, x_{3}\right\}=\left\{Q_{\varphi}(1,2), Q_{\varphi}(3,2)\right\}
$$

and $\left\{x_{2}, y_{2}\right\}=\left\{Q_{\varphi}(2,2), Q_{\varphi}(3,1)\right\}$ (if $m=Q_{\varphi}(1,1)$), or $\left\{Q_{\varphi}(1,1), Q_{\varphi}(2,2)\right\}$ (if $m=$ $Q_{\varphi}(3,1)$).

Hence in this case $Q_{\varphi} \in \mathrm{SI}_{(3,2)}$.
Case 1.2. $m=Q_{\varphi}(2,2)$. Since $\delta\left(r_{1}\right)=-1, Q_{\varphi}(2,1)=r_{1}$, and reasoning similarly as above we conclude that also in this case $Q_{\varphi} \in \mathrm{SI}_{(3,2)}$. Consequently $Q_{\varphi} \in \mathrm{SI}$.

Case 2. Similarly, assuming that φ is of the type $(2,3)$ we prove that $Q_{\varphi} \in$ SI. Consequently $\varphi \in$ SI.
(\Leftrightarrow) We assume that $\varphi \in$ SI and again we consider two cases:
Case 2.1. Assume that $\varphi \in \mathrm{SI}_{(3,2)}$. We notice that then the vector δ such that $\delta\left(l_{1}\right)=1, \delta\left(l_{2}\right)=0, \delta\left(l_{3}\right)=1, \delta\left(r_{1}\right)=-1, \delta\left(r_{2}\right)=\delta(m)=0$ is such that $\delta(m)=0$ and $Q_{\varphi, \delta}$ is additive. Consequently, by Lemma 7.2, δ is a dependency for φ and so φ is dependent.

Case 2.2. Similarly we prove that if $\varphi \in \mathrm{SI}_{(2,3)}$ then φ is dependent. Consequently φ is dependent.

Now Lemma 7.4 is proven.

Theorem 7.6. There are exactly 12 dependent insertive strict codes.

Proof. Follows directly from Lemma 7.2 and from an easy observation that no two codes in SI are isomorphic.

8. Dependent strong recursive insertive strict codes

We will demonstrate now that requiring strong recursivity decreases the number of dependent insertive strict codes to 4 .

Theorem 8.1. There are exactly 4 dependent strongly recursive insertive strict codes.

Proof. Let φ be a strongly recursive insertive strict code.
Case 1. Assume that φ is of the (3,2) type. From the proof of Theorem 6.2 (see also Remark 5.7) we know that $\varphi \in\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$ where

(i) Now consider the vector $\delta=(1,0,1,-1,0,0)$. Hence

and

$Q_{\varphi_{4}, \delta}=$| 1 | -1 | 0 |
| :---: | :---: | :---: |
| 0 | -1 | 0 |
| 1 | 0 | 1 |.

Thus, by Lemma 7.2, δ is a dependency for both φ_{1} and φ_{4}.
(ii) Consider now φ_{2} and assume that δ_{2} is a dependency for φ_{2}. By Lemma 7.2, $\delta_{2}(m)=0$. Corollary 7.3 (together with the form of φ_{2}) implies that $\delta_{2}\left(r_{2}\right)=0$, $\delta_{2}\left(l_{2}\right)=0$, and $\delta_{2}\left(r_{1}\right)=0$. Since $\delta_{2}\left(r_{1}\right)=0$, and $\delta_{2}(m)=0$, by Lemma 7.2, $\delta_{2}\left(l_{1}\right)=0$. Since $\delta_{2}\left(r_{2}\right)=0$, and $\delta_{2}\left(l_{2}\right)=0$, by Lemma 7.2, $\delta_{2}\left(l_{3}\right)=0$. Consequently δ_{2} is the zero vector in \mathbb{N}^{6}; a contradiction.

Thus φ_{2} is not dependent.
(iii) Consider now φ_{3} and assume that δ_{3} is a dependency vector for φ_{3}. By Lemma 7.2, $\delta_{3}(m)=0$. Corollary 7.3 (together with the form of φ_{3}) implies that $\delta_{3}\left(r_{2}\right)=0, \delta_{3}\left(r_{1}\right)=0, \delta_{3}\left(l_{2}\right)=0$, and $\delta_{3}\left(l_{3}\right)=0$. Since $\delta_{3}(m)=0$ and $\delta_{3}\left(r_{1}\right)=0$, by Lemma $7.2, \delta_{3}\left(l_{1}\right)=0$. Consequently δ_{3} is the zero vector in \mathbb{N}^{6}, a contradiction.

Thus φ_{3} is not dependent.
From (i)-(iii) it follows that only two strongly recursive insertive strict codes of the type $(3,2)$ are dependent.

Case 2. Analogously we prove that only two strict insertive strongly recursive codes of the type $(2,3)$ are dependent.

Altogether there are exactly four dependent strongly recursive insertive strict codes.

9. Discussion

As we have indicated in the introduction, the role of a grammar is to code deriva-
tion trees of texts. We have introduced the notion of a strict code and shown that they correspond to grammars (strict unlimited 0 S systems) where coding of derivation trees is done using six syntactic categories.

In general, if we want to code m objects by strings of length n, then the cardinality t of the alphabet Σ used (to form strings) must satisfy the inequality:

$$
m \leq t^{n}
$$

In our paper we are interested in the problem of coding (directed ordered chain-free) trees by length-preserving codes, hence m in the above corresponds to the number of ordered chain-free trees with n leaves.

It can be proved (e.g., using estimations from [3]) that the number of trees with n leaves is bigger than 5^{n} and hence the alphabet Σ used must have at least $t=6$ letters. In this sense our Theorem 3.2 says that strict codes are "informationally op-timal"-they use precisely 6 letters.

In this paper we have introduced a classification of strict codes. Further insight into this classification as well as applications of strict codes to parsing and to twodimensional text representation will be considered in the sequel of this paper.

We would like to conclude this paper with the following remark.
Remark 9.1. Clearly there are other ways of setting up the notion of a strict code. E.g., one could start with the notion of a marked code which would be a mapping $\varphi: T \rightarrow \Sigma^{*}$ satisfying the following conditions
(1) length-preserving (Definition 1.1(i)),
(2) local (Definition 1.1(ii)),
(3) 'injectiveness'' of ψ (Definition 1.3(ii.2)), and
(4) 'left and right consistency" (in the sense that left and right letters are consistent in all words of $\operatorname{Rran}(\varphi)$-hence $\left\{L_{\varphi}, M_{\varphi}, R_{\varphi}\right\}$ is a partition).
Then one could prove that for a marked code $\varphi: T \rightarrow \Sigma^{*}$ (with finite Σ) it must be that $\# \Sigma \geq 6$. Then one can show the existence of "minimal marked codes"-i.e., codes for which $\# \Sigma=6$. A way to ensure minimality is to impose the richness condition (Definition 1.3(iii)). In this way a strict code is introduced as a rich marked code.

Both ways of introducing the notion of a strict code formalize our (somewhat different) intuitions of what a "good way" of coding trees is.

Acknowledgement

The authors are indebted to J. Engelfriet, T. Harju and K. Salomaa for very useful comments on the previous version of this paper, and to Ms. M. van der Nat for the expert typing of this paper.

References

[1] P. Beckmann, The Structure of Language-A New Approach (Golem Press, Boulder, NC, 1972).
[2] N. Chomsky, Syntactic Structures (Mouton, The Hague, 1957).
[3] A. Ehrenfeucht, J. Haemer and D. Haussler, Quasi-monotonic sequences: algorithms and applications, SIAM J. Algorithms Discrete Math. 8 (1987) 410-429.
[4] A. Ehrenfeucht and G. Rozenberg, The sequence equivalence problem is decidable for 0 S systems, J. ACM 27 (1980) 656-663.
[5] C.C. Fries, The Structure of English: An Introduction to the Construction of English Sentences (Harcourt Brase, London, 1957).
[6] G. Gentzen, Untersuchungen über das Logische Schliessen, Math. Z. 39 (1934) 176-210, 405-431.
[7] Z. Harris, Methods in Structural Linguistics (Univ. of Chicago Press, Chicago, IL, 1951).
[8] S. Jaskowski, On the rules of suppositions in formal logic, Studia Logica 1 (1934) 27-30.
[9] W. Kintsch, The Representation of Meaning in Memory (Erlbaum, Hillsdale, NJ, 1974).

