
Discrete Applied Mathematics 32 (1991) 103-129

North-Holland
103

Grammatical codes of trees

A. Ehrenfeucht

Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA

G. Rozenberg

Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, Nether-

lands; and Department of Computer Science, University of Colorado at Boulder, Boulder,

CO 80309, USA

Received 10 April 1988

Revised 2 October 1989

Abstract

Ehrenfeucht, A. and G. Rozenberg, Grammatical codes of trees, Discrete Applied Mathematics

32 (1991) 103-129.

The problem of coding (chain free) trees by words where the length of the word coding a tree

t equals the number of leaves of t is investigated. The notion of an insertive strict code is intro-

duced and investigated-these are codes of a grammatical nature. It is shown that there are exact-

ly 120 insertive strict codes. A characterization of these codes (and their various subclasses) is

given in grammatical terms.

Introduction

The notion of a tree plays an important role in (among others) linguistics, logic,

mathematics, and computer science. The concept itself was used before it got its cur-

rent name and graphical notation-see, e.g., the notation of a semantic tableaux

as used in logic by Jaskowski [8] and Gentzen [6], or the notion of prime consti-

tuents as used in linguistics by Harris [7] and Fris [5].

The concept of a deep structure used by Chomsky [2] is different from the notion

of surface structure (representing syntax) and the notion of semantical structure

(representing the meaning). For Chomsky, deep structure is a blueprint for the con-

struction of the surface structure. In the formalization of Chomsky’s ideas by

mathematicians (such as Bar-Hillel) the notion of a deep structure became the no-

tion of a derivation tree-hence trees became algorithms for constructing strings.

0166-218X/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82103453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

104 A. Ehrenfeucht, G. Rozenberg

In this paper we view a tree very much in the line of a deep structure by
Chomsky-it is an object that can be “matched” in two directions-towards syntax
and towards semantics. As a matter of fact this point of view corresponds quite
closely to the concept of a tree as used in mathematics.

The notion of a grammar in formal language theory corresponds closely to an al-
gorithm that either (nondeterministically) generates text or (nondeterministically)
parses text. In general linguistics and in logic (see, e.g., [9]) a grammar provides
relationships between concepts (objects) that are given by the lexicon of the lan-
guage. Still another approach, represented by [l], is to view a grammar as a system
which protects text from a “noise” (by inserting “check bits” into a text).

In this paper we view grammar as coding deep structures, where we assume that
a deep structure is an ordered chain-free tree. Accordingly, the main question in-
vestigated in this paper is: “What are good grammatical linear codes for ordered
chain-free trees?”

Preliminaries

We assume the reader to be familiar with basic notions of graph theory and in
particular with the basic theory of trees, and with the basics of formal languages
and automata theory.

We will recall now some notions and establish the notation to be used in this
paper.

For a set 2, #Z denotes its cardinality; 0 denotes the empty set. tN denotes the
set of natural numbers, N+ = l?4 - {0}, and for each k22, Nk is the k-folded carte-
sian product of IN.

For a function cp :X-, Y, Dom(cp) denotes X, Ran(p) denotes Y, and Rran(p) =
{ y E Y: y = p(x) for some x E X} . We consider only total functions.

For a sequence x, 1x1 denotes its length, and i(x) for an 1~ ic 1x1 denotes the ith
element of x (this notation carries over to words which are sequences of letters); also
we use first(x) to denote the first element of x and last(x) to denote the last element
of x.

For a word x, n(x) denotes the Parikh vector of x, and alph(x) is the set of letters
appearing in x. For words x, y we say that x is a segment of y iffy = y, xy, for some
words yi, y2 and we say that x is a subword of y iff y = y. al y1 a2.. . a,, y, for some
words yo, y,, . . . , yn and letters al, . . . , a,, where x= al . . . a,.

We consider only trees without chains, i.e., each internal node has more than one
direct descendant. Hence, by a tree we mean a nonempty rooted directed ordered
tree without chains (where “ordered” means that for each node all its direct de-
scendants are linearly ordered).

Let t be a tree.
ND(t) denotes the set of all nodes of t, IN(t) denotes the set of internal nodes

of t, LEAF(t) denotes the set of leaves of t, and root(t) denotes the root of 1.

Grammatical codes of trees 105

For an internal node u of f, DDES,(o) is the set of all direct descendants of u in

t, and ddes,(o) is the sequence of all direct descendants of u in t (i.e., the elements

of DDES,(u) ordered according to the order of t).

Frontier of t, denoted front(t), is the sequence of all leaves of t ordered according

to the order of t.

For a 1 li< 1 front(t)), leaf,(i) denotes the ith leaf of t, hence the ith element of

front(t).

If XE LEAF(t), then

l x is a leftmost child iff there exists ueIN(t) such that x=first(ddes,(u)),

l x is a rightmost child iff there exists o E IN(t) such that x= last(ddes,(u)),

l x is a middle child iff there exists ueIN(t) such that xeDDES,(u) and x is

neither a leftmost nor a rightmost child.

If w is a segment of front(t) (i.e., w is a sequence of consecutive elements of

front(t)), then

l w is a sibling segment (of front(t)) iff 1 WI = 2 and there exists u E IN(t) such that

w is a segment of ddes,(u), and

l w is a complete segment (of front(t)) iff there exists u E IN(t) such that w =

ddes,(u).

For a 1 I i I 1 front(t) 1 and n 2 2, sub,& n) denotes the family of all trees resulting

from t by adding n new nodes and making them the direct descendants of leaf,(i)

(which in the resulting tree becomes an internal node).

A node-labeling of t (by an alphabet Z) is a function t+~ : ND(t) + Z.

If we don’t want to distinguish between isomorphic trees, then we can consider

a selector set (of trees) which is a set of trees T such that, for each tree t there exists

t’E T isomorphic with t, and moreover, for all different tl, t, E T, t, is not isomor-

phic with t2.

A OS system (see, e.g., [4]) is like a context-free grammar except that one does

not distinguish between terminal and nonterminal symbols. An unlimited OS system
is like a OS system except that it has infinitely many productions. Hence an un-

limited OS system is a triple G=(Z, P,o), where .Z is the (finite) alphabet of G,

P c _Zx Z+ is the infinite set of productions of G, and CT E Z is the axiom of G; we

assume that P does not contain chain productions, hence 1x1~2 for each a +x in
P. We use the standard notation for grammars: a +p x (or a -+o x) denotes the fact

that a + x is in P, y *o z means that y directly derives z in G, and y *g z, y *G z

stands for y derives z in G, and y derives z in G in at least one step, respectively.

If y -$ UZD, for some U, u EZ*, then we say that z is reachable from y in G. If

a -‘p xay for some x, y E .Z*, then a is directly recursive. Also, we use Lo and RG (or

simply L and R whenever G is understood from the context of considerations) to

denote

{beZ: b=first(x) for some a-+x in P},

{bEZ: b=last(x) for some a+x in P}.

106 A. Ehrenfeucht, G. Rozenberg

1. Codes and strict codes

In this section we formulate the notion of a code and introduce the subclass of

strict codes which are the subject of investigation of this paper.

Definition 1.1. Let T be a selector set of trees, let .Z be an alphabet, and let

p: T+Z*.
(i) cp is length-preserving iff, for all te T, lcp(t)l = Ifront(t)l.

(ii) v, is local iff there exists a mapping I+V : Zx (N + - {l}) + Et such that, for all

t,,&ET, where t2Esubl,(i,n) for some ieN+, n~tN+-{l}, if q(t,)=xay
with 1x1 =i-1 and ae2, then &tz)=xw(a,n)y.

(iii) p is a code (of T) iff v, is injective, length-preserving, and local.

Remark 1.2. (1) Note that we have not required that .Z is finite.

(2) For technical reasons we have defined v, on a selector set T rather than on the

class of all trees. However, v, is easily extended to the class of all trees: for a tree

t, p(t) = cp(t’) where t’E T is isomorphic with t; hence we will freely write p(t) for

an arbitrary tree t.

(3) Since a code v, is length-preserving, for a t E T, the ith element of p(t) cor-

responds to the ith leaf of t, for all 15 is 1 cp(t)l. In this sense one may consider p(t)
to be a labeling of leaves of t: the ith leaf of t is labeled by i(cp(t)).

(4) Clearly iff v, is a code and I,U as in the definition above, then (D is uniquely

determined by the pair (one,, I,v), where one. is the value of (p for the one node tree

from T; this pair is referred to as a defining pair of p.

Definition 1.3. Let p : T+ .Z* be a code.

(i) v, is sibling-consistent iff for all XE Z+ and ally, z E Rran(q) such that 1x1 = 2,

Y=YIXY~, and z=z1xz2 for some Y~,Y~,z~,z~EZ* with ly,l =i and /z,l =j,

leaf,-lr,)(i+ l)leaf,-l(,,(i+ 2) is a sibling segment of front(yl-l(y))

iff leaf,-ir,)(j+ l)leaf,~I(,,(j+t) is a sibling segment of front(p-l(z)).

(ii) v, is completeness-consistent iff

(1) for all x E .Z’+ and all y, z E Rran(cp) such that Ix 1 = n, y = y, xy2, z = z1 xz2,
for some n 2 2, y1,y2, zl, z2 E Z* with I y, / = i and Izt I =j,

leaf,-lr,)(i+ 1) . . . leaf,-l(,)(i-t n) is a complete segment of front(v-l(y))

iff leaf,-l,,(j+ 1) . . . leaf ‘p I(~) (j + n) is a complete segment of

front(pP’(z)),

and

(2) there is a defining pair (one,, w) of ~JJ such that for all a, b E .Z and all

12 E tN + - {l}, w(a, n) = ty(b, n) implies a = b.

Grammatical codes of trees 101

(iii) cp is rich iff for each XEP there exist y,z~_Z’+ such that yxz E Rran(p).

(iv) cp is strict iff cp is sibling-consistent, completeness-consistent, and rich.

Clearly we require sibling consistency and completeness consistency to guarantee

the unique parsability of words coding trees, and the richness requirement guarantees

that a strict code is as close as possible to an onto mapping.

Remark 1.4. Clearly, if v, is a rich code, then ~1 has exactly one defining pair-we

refer to it as the defining pair of p.

2. Basic properties of strict codes

We will prove now some basic properties of strict codes-they will be quite fun-

damental in the sequel of this paper.

The following classification of the letters from the range of a code is essential in

our investigation of strict codes.

Definition 2.1. Let v, : T+E* be a code and let a ~2;.
(i) a is left (w.r.t. (p) iff, there exist XE Rran(p) and 1 I is 1x1, such that j(x) = a

and leaf,-l,,,(i) is a leftmost child.

(ii) a is right (w.r. t. a) iff, there exist XE Rran(yl) and 15 is 1x1, such that i(x) = a

and leaf, IC,,(i) is a rightmost child.

(iii) a is middle (w.r.t. p) iff, there exist XE Rran(y?) and 1 <is 1x1, such that

j(x) =a and leaf, ~~,,(i) is a middle child.

We use L,, R,, IV& to denote the sets of left, right, and middle letters (w.r.t. P),

respectively.

Remark 2.2. If a code ~0: T-+ ,Z* is sibling-consistent, then there exists a relation

S,CZxZ such that, for each x~Rran(p) and for each lli<lxl, leaf,-1(,,(i)

leaf,-I(,,(i+ 1) is a sibling segment of v-‘(x) iff (I’(x),i+ l(x))~S~.

Lemma 2.3. For each strict code q~ : T-t E”, (Lc, R,, Mul} is a partition of C.

Proof. (i) Obviously each of L,, R,, A4+, is nonempty.

(ii) Since v, is rich, C= L, U R, U MV.

(iii) Consider a EL,.
Since aEL@, x=xlazx2~ Rran(p) and _~=x,cx~~Rran(p) for some x~,x~,zEZ+

and c EZ, where i + l(p-lx)) is a leftmost child for i = Ix, 1.

If a E R, U h4,, then there exists b E 2 such that (6, a) E S,. Since v, is rich, u1 bcu2 E

Rran(y?) for some u~,u~EC+, and consequently u = u1 bazu2 E Rran(p). However

k+2(@‘(u)) is again a leftmost child for k= 1.~ and so k+l(yl-‘(u))k+2(q-‘(u))

108 A. Ehrenfeucht, G. Rozenberg

is not a sibling segment of front(v-l(u)). Since a, is sibling-consistent, this contra-
dicts the fact that (b, a) E S,. Hence a $ R, U M,. Consequently, L, fl (Rv U M,) = 0.

Similarly one can prove that R, fl (La, U M,) = 0. Consequently the sets L,, R,,

M, are mutually disjoint. The lemma follows from (i), (ii), and (iii). q

Remark 2.4. In our proof of the above lemma we have used the fact that P is
sibling-consistent and rich but not that p is completeness-consistent. Consequently,
it is easily seen that Definition 1.3(ii.l) is redundant. We have included Defini-
tion 1.3(ii.l), because it seems to be more natural to define strict codes this way.

Remark 2.5. It is instructive to notice that if a,: T+Z* is a strict code, then

S, = (Lq x M,) U (Lu, x Rv) U (A,$ x M,) U (M, x RJ.

This is seen as follows.
(i) By Lemma 2.3,

S, c L,xM,UL,xR,UA4,xM,UM,xR,.

(ii) To prove the reverse inclusion we proceed as follows. Consider L, xMp. Let
aE L, and b EM+,. Since v, is rich there exist y,z EZ* such that _yabzE Rran(yl).
Consequently, by Lemma 2.3, and because v, is sibling-consistent, (a, b) ES,. Hence
L, X iMq C S,. Reasoning analogously, we prove that L, x R, c S,, Mp x Mv c Sp,

and Mp x R, c Sp. Consequently,

L,xM,UL,xR,UM,xM,UM,xR, c S,.

By (i) and (ii), S,=L,xM,UL,xR,UM,xM,UM,xR,,

Definition 2.6. Let v, : T+Z* be a code, and let XEZ+, where 1x1 = n. x is complete

(w.r.t. q) iff, there existyERran(q) and ie IN,, suchthati(y)i+l(y)...i+n(y)=x,
and leaf,-l(,)(i+ 1) . . . leaf,-l(,)(i+ n) is a complete segment of front(p-l(y)).

We use Cy, to denote the set of all complete words (w.r.t. p) of _Z*.

Lemma 2.1. For each strict code 9, C,=L,M,*R,.

Proof. (i) Let x E C,. By Definition 2.1, x = ayb, where a EL,, y E M,*, and b E R,.

Hence C, G L,M,*k,.

(ii) Let XE L,M,*R,. Since p is rich, there exist y, z E Ran(p
Rran(y,). Thus, by Lemma 2.3,

leaf,-I(,,(i+l)leaf,-l(,)(z+2)... leaf,-l,,,(i + n)

is a complete segment of front(q-l(u)), where i= lyl and n =
The lemma follows from (i) and (ii). 0

such that u = yxz E

xl. Hence XE CV.

Grammatical codes of trees 109

3. The size of the alphabet of a strict code

It turns out (quite unexpectedly) that if q: T+Z* is a strict code, where Z is

finite, then Z contains exactly (!) 6 letters. This result is proved in this section.

First we need the following lemma.

Lemma 3.1. Let IJI : T-+X* be a strict code, and let (oneP, t,u) be the defining pair

of v.
(1) For all ae_E, neN+-{l}, /t,v(a,n)I =n.
(2) ly is a bijection onto C,.

Proof. (1) This follows from the fact that p is length-preserving and rich.

(2) This follows from the fact that q is injective, completeness-consistent, and

rich. 0

Theorem 3.2. For each strict code q~ : T-+C* where C is finite, #_Z= 6.

Proof. Let (one,, I+V) be the defining pair of cp, and let w2 and I+V~ be restrictions of

v/ to Zx (2) and Zx {3}, respectively.

By Lemma 2.7 and Lemma 3.1, ty2 is a bijection onto L, x R, and I,V~ is a bijec-

tion onto L,xM,xR,. Since #(~x{2})=#(~x{3})=#Z, this implies that

#E= (#L,)(#R,) = (#L,)(#M,)(#R,). (1)

From (1) it follows that MP = 1. From (1) and Lemma 2.3 it follows that

#L, + #iV& + #R, = (# L,)(# RJ and so by the above

#L,+#R,+l= (#L,)(#R,). (2)

Consequently,

#L,>l and #R,>l. (3)

By (2) we get #R, + 1 = # L,(# R,,, - l), and so, by (3), #R, + 12 2(# R, - 1). Hence

#R,r3. Analogously, from (2) and (3) we get #L,13. Thus l<#L,,#R,z~3.
There are obviously two solutions of (2):

#L, = 2, #R, = 3, #L, = 3, #R, = 2.

Thus, by (l), #Z=6, and the theorem holds. 0

Remark 3.3. (1) In the rest of this paper we will consider finite alphabets only.
(2) According to the proof of the above theorem, for each strict code p : T-, Z*,

#M,=l and either #L,=3 and #R,=2, or #L,=2 and #R,=3; if the former

holds, then we say that a, is of the type (3,2) and if the latter holds, then we say

that a, is of the type (2,3). We will reserve the symbol mrp to denote the element of

MV; we will write simply m whenever v, is understood from the context of con-

siderations.

110 A. Ehrenfeucht, G. Rozenberg

(3) For technical convenience, in the rest of this paper we will assume that for
each strict code p, q(t) = m for each one-node tree t.

4. Strict codes and unlimited OS systems

In this section we will demonstrate that strict codes are of grammatical nature in

the sense that they correspond (in a well-defined sense) to a subclass of the class of

unlimited OS systems.

The subclass of unlimited OS systems corresponding to strict codes is defined as

follows.

Definition 4.1. Let G = (2, P, a) be an unlimited OS system.
(1) G is semi-deterministic iff, for each a E 2 and each II 2 2, there exists precisely

one production a +x in P such that 1x1= n.
(2) G is backwards-deterministic iff for each XEZ’+ there exists at most one

a E Z such that a hp x.
(3) G is strict iff

(i) G is semi-deterministic,

(ii) G is backwards-deterministic, and

(iii) there exists a partition of _Z into three sets L, M, R such that

. M=(a),

l either #L=3 and #R=2, or #L=2 and #R=3, and

l for each production a+p x, first(x) EL, last(x) E R, and j(x) EM for

all l<i< 1x1.

The following lemma follows directly from the definition of a strict unlimited OS

system.

Lemma 4.2. Let G = (Z, P, a) be a strict unlimited OS system. For each 1~ L, r E R,
k 2 0 there exists a E Z such that a +p lakr.

In order to establish the relationship between strict codes and strict unlimited OS

systems we need the following three definitions.

Definition 4.3. Let 9 : T+ Z* be a strict code, let (one,, I,U) be the defining pair of

p, and let t E T. The node-labeling oft induced by q, denoted lab,,,, is defined as

follows:

lab,,(root(t)) = one,.

If o E IN(t) is such that ddes,(u) = o1 . . . uk for kr2, ui END(~) for all 1 lil k, and

lab,,(v)=a, then lab,,(u;)=j(W(a,k)) for each 1 silk.

Remark 4.4. The above definition of lab,, is in a “top-down fashion”. One can

also define lab,, in a ‘bottom-up fashion” as follows.

Grammatical codes of trees 111

(i) If u = leaf,(i) for some 1% is /front(t then lab,,,(u) =j(v(t)).

(ii) If t, is a tree and u E IN(t,) is such that DDES,,(u) c LEAF(t,), then lab,,(u) =

i(p(tz)), where tz results from t, by removing DDES,,(u) for 1 ci< lfront(t2)1, and

u = leaf,,(i).

Hence starting with t by successive removals of a complete subsequence of the

frontier of a current tree, one gets a sequence of trees tl, . . . , t, where t, = t and t, is

the one-node tree consisting of root(t). For each 1 <i<s, leafs of tj are labeled ac-

cording to q(ti). Since U, ci5s { LEAF(t;)} = ND(t), in this way we get a labeling of

all nodes of t.

The bottom-up definition of lab,, as above is quite natural, because, to start

with (see Remark 1.2) p(t) can be considered to be a labeling of leaves of t.

Definition 4.5. Let q : T+,Z* be a strict code and let (one,, IJ) be the defining pair

of 0.

(i) Let t E T and let u E IN(t). The yl-production of u in t, denoted prod,(u, t),

is the production a-+x, where lab,,,(u) = a, #DDES,(u) = k and w(a, k) =x.
(ii) Let t E T. The set of y7-productions induced by t, denoted PROD,(t), is the

set {prod,(u, t): u E IN(t)}.
(iii) The set of p-productions, denoted PROD(v), is the set UIEr. PROD,(t).

(iv) The unlimited OS system induced by V, denoted OS(p), is the unlimited OS

system (Z, PROD(p), m).

Definition 4.6. Let G = (2, P, a) be a strict unlimited OS system and let T be a selec-

tor (of trees). The code induced by G (on T), denoted COD.,,, is the mapping of

T into Z* defined as follows. Let t E T.
(i) Let q be the following node-labeling of t:

r(root(t)) = 0.

If u E IN(t) is such that ddes,(u) = ul.. . uk for kz2, ui END(t) for all 1 silk, and

n(u)=a, then n(u;)=a; for each lrilk, where a-+a,...a,EP.
(ii) COD,, r(t) = n(d,) . . . n(d,), where front(t) = d, . . . d,, with d, E LEAF(t) for

each 1 lisn.

We refer to q as above as the node-labeling of t induced by G.

Remark 4.7. Since we have assumed (see Remark 3.3) that, for each strict code p,

p(t) = m for each one-node tree t, we will assume in the sequel that o = m for each
unlimited OS system G = (Z, P, a).

Now the relationship between strict codes and strict unlimited OS systems can be

stated in the form of the following result.

Theorem 4.8. (i) For each strict code v, : T-t 2 *, OS(v) is a strict unlimited OS
system, and moreover COD,,,,,, r = p.

112 A. Ehrenfeucht, G. Rotenberg

(ii) For each strict unlimited OS system G and each
COD,, r is a strict code, and moreover OS(CODo, r) = G.

selector set of trees T,

Proof. (i) This follows directly from the construction of OS(v) for a given strict
code VI.

(ii) Let G=(Z; P, m) be a strict unlimited OS system. It is easily seen that for
each selector set of trees T, CODo,r is a code which is sibling-consistent and
completeness-consistent.

To prove that COD,, is rich is more involved. To this aim we will prove that
each w EE+ is reachable from m (in G). First however we state an obvious com-
binatorial observation.

Claim4.9, LetZcXxYforsomesetsX,Y. If #Z>#X+#Y, then #Zr6.

Lemma 4.10. Each w EE’ is reachable from m.

Proof. We prove the lemma by induction on 1 WI.

Base. Assume that 1 WI = 1, hence w E .E. Let

L, = (a E Lo: a is reachable from w in G}
and

R, = {a E Ro: a is reachable from w in G}.

Consider now all productions of the type a +x where a EX and 1x1= 2, hence
XE Lo Ro. Since G is semi-deterministic, there is exactly one such production for
each letter of .E; let for each a E_J?, 1, E Lo and r, E Ro be such that a +p l,r,.

Clearly if aez is reachable from w then so are I, and ra; let

Z, = {(I,, r,): a E 2 is reachable from m}.

Since G is strict, if a # b then (I,, rob) # (Ib:rb), and so #Z,,, = #L, + #R, + 1 (because
m is obviously reachable from m). Hence #Z, > #L, + #R,, and consequently,
by Claim 4.9, #Z,r 6 which implies that each letter of ,E is reachable from m.

Inductive step. Assume that for some n > 1, each u EP such that I u I <n is
reachable from m, and consider aw ~2’ such that I WI = n.

We will consider five possible cases for w.

Case 1: w E M+. Then clearly w is reachable from m.
Case2: w=w,Imkrw~forsomew,,w~~~‘*,k~0,I~Landr~R.ByLemma4.2

there exists a E .l? such that a +p lmkr. Hence w1 aw2 *o w. But 1 w1 aw, I < 1 WI, and
so by the inductive assumption wi aw2 is reachable from m which obviously implies
that w is reachable from m.

Case 3: w = mkrw2 for some w2 E Z *, krl, and reR. Let aez be such that
a +p lmkr for some I EL. Then aw, *o lw. But law, I < 1 WI, and so by the inductive
assumption aw2 is reachable from m. Consequently w is reachable from m.

Case 4: w = wi lmk for some WI E J7 *, k 11, and I EL. Analogously to Case 3 we
prove that w is reachable from m.

Grammatical codes of trees 113

Case 5: None of the above four cases hold. It is easy to see that Case 5 holds iff

one of the following three cases holds.

(i) we(LUM)’ and last(w)EL.

(ii) we(RUM)+ and first(w)ER.

(iii) first(w) E R and last(w) EL.

We will consider each of these cases separately but first we need the following

claim.

Claim4.11. (1) ForeachrER,eitherthereexisty,zE~suchthaty$Randy-tpzr

or there exist yl, zl, y2, 22 E Z such that yl G R, y1 -+p ZI ~2, and y2 -+p z2r.
(2) For each I EL, either there exist y, z E Z such that y $ L and y -+p lz or there

exist yl, zl, y2, z2 E Z such that y1 B L, y1 -‘p ~222, and ~2 +P 1.~1.

Proof. (1) Let rER. Let

A(r) = {aEZ: a -+px, 1x1 = 2, and last(x) = r};

by Lemma 4.2, either #A(r)=3 or #A(r)=2.
(1.1) If A(r)-R#0, then (the “either” case of) the claim holds.

(1.2) Assume that A(r) c R. Let y, EA (r) be such that y2 # r, and consider

A(y2) = {aEC: a+,x, 1x1 = 2, and last(x) = y2}.

If A(y2) c R, then #Rr4 (because A(r) c R); a contradiction. Hence

A(y2)-R#0. If we choose now y1~A(y2)-R, then (the “or” case of)

the claim holds.

(2) This is proved analogously to (1). 0

Case 5(i). Let w = uf for some u E (L U M)+ and I EL. By Claim 4.11, either there

exist y, z E .Z such that y f$ L and uy *o u/z= wz, or there exist y,zI,z2 EZ such that

y@L and uy*~ulzlz2=wz1z2.

It is easily seen that in both cases uy is in one of the considered Cases l-4, and

hence uy is reachable from m. But then w is reachable from m.

Case S(ii). Let w = ru for some rE R and u E (R U M)+. By Claim 4.11, either

there exist y, z E .E such that y $ R and yu aG zru = zw, or there exist y, zl, z2 E Z such

that y$R and yu *Az,z2ru=z1z2w.
It is easily seen that in both cases yu is one of the Cases l-4, and hence yu is

reachable from rn. But then w is reachable from m.

Case S(iii). Let w =ruI for some UEZ*. By Claim 4.11, either there exist

y,y’,z,z’~Z such that y$R, y’$L, and

YUY’ -& zrulz’ = zwz’,

or there exist y,zl,z2,y’,z’~X such that y$R, y’$L, and

yuy’ -A z1 z2 rulz’ = z1 z2 wz’,

or there exist y, z, y’, z;, zi EZ such that y $ R, y’e L, and

114 A. Ehrenfeucht, G. Rozenberg

yuy’ *z zruIz;z~ = zwz;z;,

or there exist y, zl, ~2, y’, z;, z; EZ such that y $ R, y’$ L, and

yuy’ * & z1 z2 rulz; z; = z1 z2 wz; z; .
It is easily seen that in each of the above cases yuy’ is in one of the previously

considered Cases l-S(ii), and hence yuy’ is reachable from m. But then w is reach-
able from m.

Altogether from Cases l-5(iii) it follows that the inductive step holds. Conse-
quently the lemma holds. 0

Proof of Theorem 4.8 (continued). Since M is tk axiom of G and m-p Imr for
some 1 EL and r E R, the above lemma implies that CODG, T is rich. Consequently
COD,, is strict. Since it is easy to see that OS(COD,,)= G, (ii) holds.

This completes the proof of the theorem. 0

According to the above theorem we may consider strict codes to be strict un-
limited OS systems, and we may consider strict unlimited OS systems (together with
a selector set) to be strict codes. This means in particular that we may specify strict
codes in the form of strict unlimited OS systems. Thus typically we will write “let
v, = (Z, P, m) be a strict code”, where (2, P, m) is a strict unlimited OS system (and
a selector set is clear from the context of considerations); then L, = L, Mv = M, and
R, = R, where {L,M, R} is the partition of C required in the definition of a strict
unlimited OS system. We will assume then that the selector set which is the domain
of v, is clear from the context of considerations, or otherwise one can consider an
arbitrary but fixed selector set of trees. For this reason we will sometimes write
CODG rather than CODG,T to denote the code induced by a strict unlimited OS
system.

Let G = (2, P, m) be a strict unlimited OS system, where {L, M, R} is the partition
of G (required by the definition of a strict unlimited OS system). If #L = 3 and
#R = 2, then we say that G is of the type (3,2), and if #L = 2 and #R = 3, then
we say that G is of the type (2,3). We consider 2, L, R to be ordered:

l L=(4,k4), R=(r,,r~), and
l Z= (II, 12, I,, rl, r,, m) if G is of the type (3,2),

and

l L=(kM, R=(rl,r2,r3), and
l E= (I,, fz, rl, r2, r3, m) if G is of the type (2,3),

where M= {m}.

Example 4.12. Let G = (C, P, m) be the unlimited OS system such that Z = L U R U M,
where L = {I,, 12, 13}, R = { r,, rZ}, M= (m}, and P consists of the following pro-
ductions:

Grammatical codes of trees

Fig. 1.

0 m-+f,mkr, for all kr0,

l 1, -+ 1, mkrz for all k? 0,

l l2 + 12mkr2 for all kr 0,

l l3 + 13mkrl for all kr0,

l rl -+ 12mkrl for all k> 0,

l r2-+13mkr2 for all kz0.

Clearly G is a strict unlimited OS system of the type (3,2).

Let t, be the tree in Fig. 1. Then the node-labeling of tl induced by G is shown

in Fig. 2. Hence ~(t)=l,l,12mr,mr21212mr~, where y,=CODG.

5. Insertive strict codes

In this section we will investigate insertive strict codes. In strict codes of this kind

Fig. 2.

116 A. Ehrenfeucht, G. Rozenberg

a production for a letter b with longer right-hand side j3 is obtained from a pro-
duction for b with a shorter right-hand side a by inserting segments into a. The
situation like this is quite typical in linguistics-take, e.g., a grammar for a frag-
ment of English where productions for the noun phrase (NP) will be of the form:
NP + the car, NP -+ the nice car, NP + the long nice car, NP + the red long nice car,
. . .

Formally insertive strict codes are defined as follows.

Definition 5.1. A strict code VI = (Z, P, m) is insertive iff for each a E .Z and all
a, p E ,Z+ such that a +p a and adpp, if Ial < JPI, then a is a subword of p.

The following technical result follows directly from the definition of an insertive
strict code.

Lemma 5.2. Let a, = (Z, P, m) be a strict insertive code. For each a E Z and for all
x,y~_Z+ such that a--tp x and a +p y, first(x) = first(y) and last(x) = last(y).

The way of specifying strict codes (through strict unlimited OS systems) discussed
at the end of the last section is especially attractive for strict insertive codes because
there is a nice notation for unlimited OS systems corresponding to strict insertive
codes. This notation, that we are going to discuss now is based on Lemma 5.2.

If G = (2, P, m) is of type (3,2), then the tableau of G is the following tableau:

where ~={Uij: lli13 and lsj52}, and for all lsis3, lij52, ao-+Plimkrj
for all k20.

If G = (Z; P, m) is of type (2,3), then the tableau of G is the following tableau:

Grammatical codes of trees 117

where Z={aQ: lsi13 and l<j12}, and for all lli13, lz~j12, aij+piimkrj
for all k 2 0.

We will use Qc to denote the tableau of G and Qo(i,j) to denote the ai,j entry

Example 5.3. It is easily seen that the strict
ple 4.12 is insertive. The tableau

unlimited OS system G from Exam-

Then Q~(l~l)=m, Qc(l,2)=1i, Qo(2,1)=ri, QG(2,2)=lz, Q,(3,1)=I,, and
QG (392) = r,.

The restriction of insertiveness applied to strict codes has quite a dramatic effect:
there is only a finite number of strict insertive codes, where we do not distinguish
between “isomorphic” codes, i.e., codes that result from each other just by “re-
naming” letters of the alphabets involved.

Definition 5.4. Codes pi : T-+22? and p2 : T-+.X; are isomorphic iff there exists a
bijection q : Z, -C, such that for each t E T, rl(vl(t))=V)2(t).

Theorem 5.5. There are only finitely many nonisomorphic insertive strict codes.

Proof. Assume that a, = (Z, P, m) is an insertive strict code.
Since P is insertive, by Lemma 5.2, if X4, lrnkr and X-t, IfmY, where XEZ,

k, sz 0, l,l’~ L,, and r, r’E R,, then I = I’ and r = r’. Thus, all productions for X in
v, are uniquely determined by the pair (I r) (because 9 is semi-deterministic).

Consequently the number of insertive strict codes is not larger than the number
of functions from Z into L, x R,.

Since #Z=6, the theorem holds. 0

As a matter of fact we can compute the exact number of insertive strict codes-or
more precisely, the exact number of nonisomorphic insertive strict codes. This
“nonisomorphy” assumption will hold also in the sequel of this paper in the sense
that, whenever we have a result saying that there are exactly n codes of a given kind,
we mean that there are exactly n mutually nonisomorphic codes of a given kind.

118 A. Ehrenfeucht, G. Rozenberg

Theorem 5.6. There are exactly 120 insertive strict codes.

Proof. Since the number of different tableaux of insertive strict codes obviously
equals 6! and it can be easily checked that by permuting letters so that left remains
left, right remains right, and m remains m, one obtaines 12 different isomorphic
tableaux, the number of nonisomorphic codes of a given type ((2,3) or (3,2)) equals
6!/12 = 60. Consequently, the number of insertive strict codes equals 2 ~60 = 120. 0

Remark 5.7 In the sequel of this paper we will give the precise number of insertive
strict codes satisfying various additional conditions. The proofs of the correspond-
ing theorems are organized in such a way that:

(1) while counting the number of codes of a given sort, the proof of the corre-
sponding theorem gives the precise form of all codes of this kind,

(2) when we prove that there are at most n codes of a given kind, the construction
used in the proof is done in such a way that it is clear that all constructed codes are
mutually nonisomorphic (the proof of the latter fact will be left to the reader), hence
we will conclude that there are precisely n codes of a given kind.

6. Strongly recursive insertive strict codes

Often in considerations concerning grammars one wants to get a clear cut division
between recursive and nonrecursive letters, and so one applies transformations
leading to grammars with “as many as possible” recursive letters (because nonrecur-
sive letters lead often to tedious “exceptions” in reasoning about grammars). A
typical desired situation then is that a recursive letter must be directly recursive and
a nonrecursive letter must lead directly (i.e. in one step) to a recursive letter.

Based on this motivation we will introduce now strongly recursive insertive strict

codes.

Definition 6.1. An insertive strict code cp = (2, P, m) is strongly recursive iff for each
production a +p lmkr, where 1 EL,, rERV, and kz0, if a+1 and a+r, then 1 and
r are directly recursive.

Again, we can compute the exact number of strongly recursive strict codes.

Theorem 6.2. There are exactly 8 strongly recursive insertive strict codes.

Proof. Consider an arbitrary strongly recursive insertive strict code p.
We will compute the number of different forms that Q, may have.

Case 1: Assume that v, is of the type (3,2). Again, we may assume that Q,(l, 1) =
m. Hence each production for m is of the form m jlo l1 mkrl, for some kr 0, and

Grammatical codes of trees 119

so, because p is strongly recursive, both 1, and rl must be directly recursive. Conse-

quently Q,(1,2) = I, and Q,(2,1) = rl.

We have three possibilities for r2: either Q,(2,2) =r2 or Q,(3,1) = r2 or Q,(3,2) = r2.

(i) Q,(2,2) = r,. Then { Q,(3, l), Q,(3,2)) = {I,, js}, and so we have two possibil-

ities for Q,.

(ii) Q,(3,1) = r,. Then each production for r2 is of the form r2 *+, lJmkrl, for

some ,420, and so, because a, is strongly recursive, Is must be directly recur-

sive. Consequently, Q,(3,2) = l3 and consequently Q,(2,2) = 12.

(iii) Q,(3,2) = r,. If Q,(2,2) = 1, and Q,(3,1) = 12, then each production for I, is

of the form l3 jV f2 mkr2, for some k 2 0, and each production for I2 is of the

form I2 jrp I3 mkrl, for some k?O. This however contradicts the fact that ~1

is strongly recursive.

The remaining case is Q,(2,2) = I2 and Q,(3,1) = 13.

Thus we have two possibilities in Case l(i), one possibility in Case l(ii) and one

possibility in Case l(iii); altogether four possibilities.

Case 2:’ Assuming that v, is of the type (2,3), by analogous reasoning we arrive

at four possibilities for Q,.

Thus altogether we have eight possibilities for QV, and consequently there are ex-

actly eight strongly recursive insertive strict codes.

Since it is easily seen that all eight codes we have constructed above are mutually

nonisomorphic, the theorem holds. 0

7. Dependent insertive strict codes

We will consider now the notion of a dependent (insertive) strict code. It for-

malizes the classical notion of dependency in parenthesis notation for derivation

trees of context-free grammar. E.g., if we consider the context-free grammar Go

with productions S + (S), S + SS, S + A generating well-formed parenthesis expres-

sions, then the number of right and left parentheses in each sentential form will be

equal (i.e., will “cancel” each other). Hence there exists a fixed vector 6 = (-1, +l, 0)

such that for all sentential forms x, y in G, such that x derives y, &c(x) =&r(y),

where n(z) for a word z is the Parikh column vector of z, and the fixed order of

the alphabet is (,), S. This idea is now carried over to the framework of dependent

strict codes.

Recall that we assume the alphabet Z of a strict code p to be ordered, i.e. _Z=

(I,, f2, 13, rl, r2, m) if v, is of the (3,2) type, and LX’= (Ii, 12, rl, r2, r3, m) if v, is of the

(2,3) type. Consequently, given a vector 6 = (e,, . . . , e6) E N6 we consider e,, . . . , e6 to

be the values of 6 for I,, I,, . . . , m respectively, i.e., 6(/i) = el, a(/,) = e2, a(/,) = e3,

6(r,) = e4, d(r,) = e5, and 6(m) = e6, if ~1 is of the (3,2) type, and 6(/i) = el, a(/,) = e2,

&ri) = e3, 6(r2) = e4, 6(rs) = e5, and 6(m) =e6, if v, iS Of the (2,3) type.

120 A. Ehrenfeucht, G. Rozenberg

Definition 7.1. A strict code cp = (Z, P, m) is dependent iff there exists a nonzero vec-
tor 6 E N6 such that, for all x,y EZ+, if x aVy, then &r(x) =&c(y). Each nonzero
vector 6 satisfying the above is called a dependency (vector) for q.

Let v, be a strict code of the (3,2) type with

For a vector &E iN6, the q-tableau of 6 is the following tableau:

Similarly, if v, is a strict code of the (2,3) type with

Qp =

and 6 E N6, then the q-tableau of 6 is the following tableau:

SO-d 60-d SO-31

d(4) dh) 66712) d(al3)

6 (12) a(a2d a&22) a(a23)

Grammatical codes of trees 121

We will use Q,, to denote the v-tableau of 6.

If, for a strict code cp and a vector BE kJ6, it holds that 6(aij) = 6(1i) + a(rj),

hence Qq,a(a,) = 6(1;) + S(rj), then we say that Q,,s is additive.

Lemma 7.2. Let a, = (Z, P, m) be an insertive strict code.A nonzero vector 6 E IN 6 is
a dependency for ~1 iff 6(m) = 0 and Q,,s is additive.

Proof. (-) Assume that a nonzero vector 6 is a dependency for p. Since v, is strict

insertive there exist 1~ L,, and rE R, such that rn -frp lmkr for each kr0. Since 6 is

a dependency vector for p, we get then 6(m) =6(l) + k6(m) + 6(r) for each k> 0.
Consequently 6(m) = 0.

Consider an arbitrary entry a;j of Q,. Then a;j jp limkrj for each kr0, and

consequently 6(aij) = S(li) + k&m) + a(rj) for each k ~0. Since 6(m) = 0, 6(aij) =
6(1,) + 6(rj). Consequently, Q,,a is additive.

(t) Assume that BE tN6 is a nonzero vector such that 6(m) =0 and Q,,6 is ad-

ditive.

Consider an arbitrary entry aij of Q,. Then aij +. limkrj for each kr 0,
and so for arbitrary x, y E LX’*, and arbitrary k20, xaijy *VXlimkrjy. Hence [=

-n(xlimkrjy) - n(xa;jy) is such that one of the following possibilities holds:

(1) [(a;j) = -1, c(l;> = +l, [(rj) = +l, c(m) = k, and C(U) = 0 otherwise, or

(2) [(aij) = 0, [(l;) = 0, [(rj) = +l, c(m) = k, and C(U) = 0 otherwise, or

(3) c(aij) = 0, [(l;) = +l, i(q) = 0, c(m) = k, and T(u) = 0 otherwise, or

(4) [(aij) = k - 1, [(li) = 0, c(q) = +l, c(m) = k, and C(U) = 0 otherwise.

Consequently,

and so:

X = &aij> C(a;j> + S(l;) C(li) + a(rj) C(rj) +6(m) C(m)

l if (l), then S[=O, because SC= -6(aij)+6(1i)+6(rj) and Q,,& is additive,

l if (2), then SC= 6(rj) = 0, because S(!;) + S(rj) = 6(aij) = S(l;),

l if (3), then SC= S(li) = 0, because S(l;) + 6(rj) =6(aij) =S(rj),

l if (4), then SC= (k- 1)6(aij) + 6(1i) + 6(rj) = 0, because 6(a;j) =6(m) = 0.
Thus 6 is a dependency for 9. 0

The above result (and its proof) yields the following corollary that will be useful

in the sequel.

Corollary 7.3. Let v, = (25, P, m) be an insertive strict code and let 6 be a dependency

for V.
(i) For all 1 EL,, if 1 jQ lmkr for some kr 0, r E R,, then 6(r) = 0.

(ii) For all r E R,, if r jc lmkr for some k? 0, 1 EL,, then 6(l) = 0.

We will demonstrate now that there are exactly 12 dependent insertive strict

codes.

122 A. Ehrenfeucht, G. Rozenberg

Let SIC3,2j be the set of those insertive strict codes that are isomorphic with either
one of the following insertive strict codes:

rl

m

rl

t.42

r2

Xl

Ul

x2

or with one of the following insertive strict codes:

where {x1,x2} = {4,4> and {u,, ~2) = {r2,&).
Let SI,,,, be the set of those insertive strict codes that are isomorphic with either

one of the following insertive strict codes:

or with one of the following insertive strict codes:

rl

12

Xl

r2

11

m

r3

t-2 9

x2

Grammatical codes of trees 123

Lemma 1.4. An insertive strict code p is dependent iff v, E SI.

Proof. (3) Assume that ~1 is dependent. We consider two cases:

Case 1. Assume that v, is of the type (3,2). Let

Qo =

Claim 1.5. If 6 is a dependency for p, then (module a multiplicative constant and
a permutation of rows and columns) Q,,, equals Qo.

Proof. Let 6 be a dependency vector of v, and let

Q,,s =

We split the proof in five parts (I)-(V).

(I) For no lz~is3, lrjs2, XiYj>O.

This is seen as follows. Assume that for some 15 iol 3, 1 5jol 2, xi,,> 0 and

_YjO> 0. Let bi,j, > 0 be the maximal entry of Q,,d in the sense that for all 1 I is 3

and 1 sjl2, b, I b;,j,.

By Lemma 7.2, Qq,6 is additive and SO, if bi,j, = li, for some 1% i21 3 then

b,, = Xi2 +YjO > bi,j,; a contradiction, and if b;,j, = rjz for some 1 sjz I 2, then bioj2 =

xi0 +Yj,>bi,j,; a contradiction. Consequently there does not exist 1 I iol 3 and

1 5jo 5 2, such that x, > 0 and yj, > 0.

Similarly we prove that there does not exist 15 iol 3 and 15 jol 2, such that

xi,<0 and Yj,<O.

124 A. Ehrenfeucht, G. Rozenberg

(II) There exist 1 I i. 5 3 and 1 sj, I 2, such that xi, # 0 and _Yj, # 0.
This is seen as follows. Assume to the contrary that, for all 1 I is 3, xi = 0. Since

6(m) = 0 and Q,,s is additive, this implies that also y, = 0 or y2 = 0. Hence from the
values 6(/i), a(/,), 6(f,), 6(r,), 6(r2) at most one differs from zero, which implies
that they are all equal to zero, contradicting the fact that 6 is a dependency vector.
Consequently there exists 1 I i. I 3 such that Xi0 # 0.

Similarly we prove that there exists 1 1jel2, such that _Yj,, ~0.

(III) For all llis3, 1 Ij12, either xi?0 and YjlO or XjlO and _YjrO.
This follows directly from (I) and (II).

(IV) There exist 15 iO I 3 and 15 j, 5 2, such that Xi~ = 0 and _Yj, = 0.
This is seen as follows. Consider a 1 sj, 12 such that ‘j, *ilk, lk*rj, for some

1 I ki, k252; clearly such a j, exists. Since 6 is a dependency for cp, 6(rj,) =

a([,,) + a(/,,) + b(rj,), and SO from (III) it fOllOwS that Xk, ‘Xk2 =O.
Similarly we prove that there exists 14 j, I 2 such that _Yj, = 0.

(V) Q,,s is as follows:

for some x1, x3, bii, b3i.
This is seen as follows. By (IV) at least one XE (xt,x2,x3} and exactly one y E

{yl,y2} equal 0. Since we consider the form of Q,,s modulo permutation of rows
and columns we set x2 = 0 and y2 = 0. Since by Lemma 7.2, Q,,s is additive, b12 =x1,
b22=0, and bs2=x3. Since we consider the form of Q,,6 modulo a multiplicative
constant, we set y, = -1, and consequently (because Q9,6 is additive) b2i = -1.

Now we conclude the proof of the claim as follows. Q,,6 must have the form
stated in (V). Since

{Xl,x2,X3,Yr,Y29~} = {brl, h2, b21, b22, b31, b32) and 6(m) = 0,

{hl, b3,) = G29Y21 = (09 01, and so 6ii = b3i =O. Since, by Lemma 7.2, Q,,s is ad-
ditive, xi = 1 and x3 = 1. Thus Q,,s equals Qo. Hence the claim holds. q

Proof of Lemma 7.4 (continued). Consider now the form of Q,. We have:

m E {Q,(L 11, Q,G 21, Q,(3,1>>.

Grammatical codes of trees 125

This follows directly from Claim 7.5 and Lemma 7.2 (because 6(m) = 0).

So we will consider separately two cases.

Case 1.1. m~{Q~(l,l),Q,(3,1)}. Since 6(rt)=-1, Q,(2,l)=rt and so

{xi,xs) = {Q,(L 3, ~~(3,211

and {xdd = {Q,C 21, Q,(3,1>> (if m = Q,U, 111, or { QJL 11, Q&L 2)) (if m =

Q,(39 1)).
Hence in this case Q, E SIo,).

Case 1.2. m = Q,(2,2). Since 6(r,) = -1, Q,(2,1) = ri, and reasoning similarly as

above we conclude that also in this case Q, E SIo2). Consequently Q, E SI.

Case 2. Similarly, assuming that 9 is of the type (2,3) we prove that Q, E SI.

Consequently a, E SI.

(I) We assume that rp E SI and again we consider two cases:

Case 2.1. Assume that p E SI,,,,. We notice that then the vector 6 such that

6(/t) = 1, a(/,) = 0, c?(/~) = 1, 6(r,) = -1, d(r,) =6(m) = 0 is such that 6(m) = 0 and

Q (p,6 is additive. Consequently, by Lemma 7.2, 6 is a dependency for p and so a, is

dependent.

Case 2.2. Similarly we prove that if v, E SI,,,, then a, is dependent. Consequently

v, is dependent.

Now Lemma 7.4 is proven. 0

Theorem 1.6. There are exactly 12 dependent insertive strict codes.

Proof. Follows directly from Lemma 7.2 and from an easy observation that no two

codes in SI are isomorphic. 0

8. Dependent strong recursive insertive strict codes

We will demonstrate now that requiring strong recursivity decreases the number

of dependent insertive strict codes to 4.

Theorem 8.1. There are exactly 4 dependent strongly recursive insertive strict codes.

Proof. Let v, be a strongly recursive insertive strict code.

Case 1. Assume that q is of the (3,2) type. From the proof of Theorem 6.2 (see

also Remark 5.7) we know that P E {pi, ~2, v3, ~4) where

126 A. Ehrenfeucht, G. Rozenberg

Q,, =

(i) Now consider the vector S=(l,O, 1, -l,O,O). Hence

Grammatical codes of trees 127

and

Thus, by Lemma 7.2, 6 is a dependency for both p1 and v)~.

(ii) Consider now q2 and assume that a2 is a dependency for p2. By Lemma 7.2,

6,(m) =O. Corollary 7.3 (together with the form of 472) implies that a2(r2) =O,

6,(1,) = 0, and a2(rr) = 0. Since B2(r1) = 0, and 6,(m) = 0, by Lemma 7.2, a,([,) = 0.

Since a2(r2) =0, and a,(/,) =O, by Lemma 7.2, &(I,) =O. Consequently a2 is the

zero vector in N6; a contradiction.

Thus p2 is not dependent.

(iii) Consider now p3 and assume that d3 is a dependency vector for v3, By

Lemma 7.2, s,(m)=O. Corollary 7.3 (together with the form of p3) implies that

S3(~2)=0, d3(rl)=0, 6,(1,)=0, and 63(1,)=0. Since s,(m)=0 and S,(rr)=O, by

Lemma 7.2, 6,(1,)=0. Consequently d3 is the zero vector in N6, a contradiction.

Thus v)~ is not dependent.

From (i)-(iii) it follows that only two strongly recursive insertive strict codes of

the type (3,2) are dependent.

Case 2. Analogously we prove that only two strict insertive strongly recursive

codes of the type (2,3) are dependent.

Altogether there are exactly four dependent strongly recursive insertive strict

codes. q

9. Discussion

As we have indicated in the introduction, the role of a grammar is to code deriva-

128 A. Ehrenfeucht, G. Rozenberg

tion trees of texts. We have introduced the notion of a strict code and shown that
they correspond to grammars (strict unlimited OS systems) where coding of deriva-
tion trees is done using six syntactic categories.

In general, if we want to code m objects by strings of length n, then the cardinality
t of the alphabet _Z used (to form strings) must satisfy the inequality:

m 5 t”.

In our paper we are interested in the problem of coding (directed ordered chain-free)
trees by length-preserving codes, hence m in the above corresponds to the number
of ordered chain-free trees with n leaves.

It can be proved (e.g., using estimations from [3]) that the number of trees with
n leaves is bigger than 5” and hence the alphabet Z used must have at least t = 6 let-
ters. In this sense our Theorem 3.2 says that strict codes are “informationally op-
timal”-they use precisely 6 letters.

In this paper we have introduced a classification of strict codes. Further insight
into this classification as well as applications of strict codes to parsing and to two-
dimensional text representation will be considered in the sequel of this paper.

We would like to conclude this paper with the following remark.

Remark 9.1. Clearly there are other ways of setting up the notion of a strict code.
E.g., one could start with the notion of a marked code which would be a mapping
p : T-t Z* satisfying the following conditions

(1) length-preserving (Definition 1.1(i)),
(2) local (Definition l.l(ii)),

(3) “injectiveness” of v/ (Definition 1.3(ii.2)), and
(4) “left and right consistency” (in the sense that left and right letters are consis-

tent in all words of Rran(p)-hence {L,,M,+,,R,) is a partition).
Then one could prove that for a marked code cp : T+ Z* (with finite _Z) it must be
that #.X26. Then one can show the existence of “minimal marked codes”-i.e.,
codes for which #Z= 6. A way to ensure minimality is to impose the richness condi-
tion (Definition 1.3(iii)). In this way a strict code is introduced as a rich marked
code.

Both ways of introducing the notion of a strict code formalize our (somewhat dif-
ferent) intuitions of what a “good way” of coding trees is.

Acknowledgement

The authors are indebted to J. Engelfriet, T. Harju and K. Salomaa for very
useful comments on the previous version of this paper, and to Ms. M. van der Nat
for the expert typing of this paper.

Grammatical codes of trees 129

References

[l] P. Beckmann, The Structure of Language-A New Approach (Golem Press, Boulder, NC, 1972).

[2] N. Chomsky, Syntactic Structures (Mouton, The Hague, 1957).

[3] A. Ehrenfeucht, J. Haemer and D. Haussler, Quasi-monotonic sequences: algorithms and applica-

tions, SIAM J. Algorithms Discrete Math. 8 (1987) 410-429.

[4] A. Ehrenfeucht and G. Rozenberg, The sequence equivalence problem is decidable for OS systems,

J. ACM 27 (1980) 656-663.

[5] C.C. Fries, The Structure of English: An Introduction to the Construction of English Sentences

(Harcourt Brase, London, 1957).

[6] G. Gentzen, Untersuchungen iiber das Logische Schliessen, Math. Z. 39 (1934) 176-210, 405-431.

[7] Z. Harris, Methods in Structural Linguistics (Univ. of Chicago Press, Chicago, IL, 1951).

[8] S. Jaskowski, On the rules of suppositions in formal logic, Studia Logica 1 (1934) 27-30.

[9] W. Kintsch, The Representation of Meaning in Memory (Erlbaum, Hillsdale, NJ, 1974).

