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Abstract

Given a seminormal affine monoid M we consider several monoid properties of M and their con-
nections to ring properties of the associated affine monoid ring K[M] over a field K . We characterize
when K[M] satisfies Serre’s condition (S2) and analyze the local cohomology of K[M]. As an ap-
plication we present criteria which imply that K[M] is Cohen–Macaulay and we give lower bounds
for the depth of K[M]. Finally, the seminormality of an arbitrary affine monoid M is studied with
characteristic p methods.
© 2005 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
2. Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
3. Seminormality and Serre’s condition (S2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4. Local cohomology of monoid rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
5. The Cohen–Macaulay property and depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
6. Seminormality in characteristic p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
7. Examples and counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

* Corresponding author.
E-mail addresses: winfried@mathematik.uni-osnabrueck.de (W. Bruns), pingli@mast.queensu.ca (P. Li),

troemer@mathematik.uni-osnabrueck.de (T. Römer).
0021-8693/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.11.012

https://core.ac.uk/display/82103399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


362 W. Bruns et al. / Journal of Algebra 302 (2006) 361–386
1. Introduction

Let M be an affine monoid, i.e., M is a finitely generated commutative monoid which
can be embedded into Z

m for some m ∈ N. Let K be a field and K[M] be the affine
monoid ring associated to M . Sometimes M is also called an affine semigroup and K[M]
a semigroup ring. The study of affine monoids and affine monoid rings has applications in
many areas of mathematics. It establishes the combinatorial background for the theory of
toric varieties, which is the strongest connection to algebraic geometry. In the last decades
many authors have studied the relationship between ring properties of K[M] and monoid
properties of M . See Bruns and Herzog [3] for a detailed discussion and Bruns, Gubeladze
and Trung [4] for a survey about open problems.

A remarkable result of Hochster [7] states that if M is normal, then K[M] is Cohen–
Macaulay. The converse is not true. It is a natural question to characterize the Cohen–
Macaulay property of K[M] for arbitrary affine monoids M in terms of combinatorial and
topological information related to M . Goto, Suzuki and Watanabe [5] could answer this
question for simplicial affine monoids. Later Trung and Hoa [18] generalized their result
to arbitrary affine monoids. But the characterization is technical and not easy to check.
Thus it is interesting to consider classes of monoids which are not necessarily simplicial,
but nevertheless admit simple criteria for the Cohen–Macaulay property.

One of the main topics in the thesis [10] of the second author were seminormal affine
monoids and their monoid rings. Recall that an affine monoid M is called seminormal if
z ∈ G(M), 2z ∈ M and 3z ∈ M imply that z ∈ M . Here G(M) denotes the group generated
by M . Hochster and Roberts [9, Proposition 5.32] noted that M is seminormal if and only
if K[M] is a seminormal ring. By a remarkable result of Gubeladze [6], finitely generated
projective modules over K[M] are free if M is seminormal. See Traverso [17] or Swan [16]
for more details on seminormality. In general, there exist Cohen–Macaulay affine monoid
rings which are not seminormal, and there exist seminormal affine monoid rings which are
not Cohen–Macaulay. One of the main goals of this paper is to understand the problem
in which cases K[M] is Cohen–Macaulay for a seminormal affine monoid M . Another
question is to characterize the seminormality property of affine monoids.

Let us go into more detail. Let R be a Noetherian ring and let N be a finitely generated
R-module. The module N satisfies Serre’s condition (Sk) if

depthNp � min{k,dimNp}

for all p ∈ SpecR. For trivial reasons Cohen–Macaulay rings satisfy Serre’s condition (Sk)
for all k � 1. The main result of [5] and a result of Schäfer and Schenzel [13] show that
for a simplicial affine monoid M the ring K[M] is Cohen–Macaulay if and only if K[M]
satisfies (S2). After some prerequisites we study in Section 3 the question to characterize
the (S2) property for K[M] if M is a seminormal monoid. In the following let C(M) be the
cone generated by M ⊆ Z

m. The main result in this section already appeared in the thesis
of the second author [10] and states:

Theorem. Let M ⊆ Z
m be a seminormal monoid and let F1, . . . ,Ft be the facets of C(M).

Then the following statements are equivalent:
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(i) K[M] satisfies (S2);
(ii) For all proper faces F of C(M) one has

M ∩ intF =
⋂

F⊆Fj

G(M ∩ Fj ) ∩ intF ;

(iii) G(M ∩ F) = ⋂
F⊆Fj

G(M ∩ Fj ).

Here intF denotes the relative interior of F with respect to the subspace topology on
the affine hull of F . Let us assume for a moment that M is positive, i.e., 0 is the only
invertible element in M . In order to decide whether K[M] is a Cohen–Macaulay ring,
one must understand the local cohomology modules Hi

m(K[M]) where m denotes the
maximal ideal of K[M] generated by all monomials Xa for a ∈ M \ {0}, because the
vanishing and nonvanishing of these modules control the Cohen–Macaulayness of K[M].
Already Hochster and Roberts [9] noticed that certain components of Hi

m(K[M]) vanish
for a seminormal monoid. Our result 4.3 in Section 4 generalizes their observation, and we
can prove the following

Theorem. Let M ⊆ Z
m be a positive affine seminormal monoid such that Hi

m(K[M])a �= 0
for some a ∈ G(M). Then a ∈ −G(M ∩ F) ∩ F for a face F of C(M) of dimension � i. In
particular,

Hi
m

(
K[M])

a
= 0 if a /∈ −C(M).

As a consequence of this theorem and a careful analysis of the groups Hi
m(K[M]) we

obtain in 4.7 that under the hypothesis of the previous theorem M is seminormal if and
only if Hi

m(K[M])a = 0 for all i and all a ∈ G(M) such that a /∈ −C(M). Note that this
result has a variant for the normalization, discussed in Remark 4.8.

Using further methods from commutative algebra we prove in Theorem 4.9:

Theorem. Let M ⊆ Z
m be a positive affine monoid of rank d such that K[M] satisfies (S2)

and Hd
m(K[M])a = 0 for all a ∈ G(M) \ (−C(M)). Then M is seminormal.

Since there are Cohen–Macaulay affine monoid rings which are not seminormal (like
K[t2, t3]), one cannot omit the assumption about the vanishing of the graded components
of Hd

m(K[M]) outside −C(M).
In Section 5 we define the numbers

cK(M) = sup
{
i ∈ Z: K[M ∩ F ] is Cohen–Macaulay for all faces F, dimF � i

}
,

n(M) = sup
{
i ∈ Z: M ∩ F is normal for all faces F, dimF � i

}
.

By Hochster’s theorem on normal monoids we have that cK(M) � n(M). The main result
5.3 in Section 5 are the inequalities

depthR � cK(M) � min
{
n(M) + 1, d

}
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for an affine seminormal monoid M ⊆ Z
m of rank d . Since seminormal monoids of rank 1

are normal, we immediately get that depthK[M] � 2 if d � 2. In particular, K[M] is
Cohen–Macaulay if rankM = 2.

One obtains a satisfactory result also for rankM = 3, which was already shown in [10]
by different methods. In fact, in Corollary 5.6 we prove that K[M] is Cohen–Macaulay
for a positive affine seminormal monoid M ⊆ Z

m with rankM � 3 if K[M] satisfies (S2).
One could hope that K[M] is always Cohen–Macaulay if M is seminormal and K[M]
satisfies (S2). But this is not the case and we present a counterexample in 7.1. The best
possible result is given in 5.6: (S2) is sufficient for K[M] to be Cohen–Macaulay in the
seminormal case if the cross-section of C(M) is a simple polytope.

In Section 6 we study the seminormality of affine monoid rings with characteristic p

methods. The main observation is that a positive affine monoid M ⊆ Z
m is seminormal if

there exists a field K of characteristic p such that K[M] is F -injective. This fact is a con-
sequence of our analysis of the local cohomology groups of positive affine monoid rings.
In 6.2 we give a precise description for which prime numbers p and fields of character-
istic p, we have that K[M] is F -injective. Implicitly, this result was already observed by
Hochster and Roberts in [9, Theorem 5.33]. In fact, if M ⊆ Z

m is a positive affine semi-
normal monoid and K is a field of characteristic p > 0, then the following statements are
equivalent:

(i) The prime ideal (p) is not associated to the Z-module G(M) ∩ RF/G(M ∩ F) for
any face F of C(M);

(ii) R is F -split;
(iii) R is F -pure;
(iv) R is F -injective.

As a direct consequence we obtain that M is normal if the equivalent statements hold for
every field K of characteristic p > 0.

In the last section we present examples and counterexamples related to the results of this
paper. In particular, we will show that for every simplicial complex Δ there exists a semi-
normal affine monoid M such that the only obstruction to the Cohen–Macaulay property
of K[M] is exactly the simplicial homology of Δ. Choosing Δ as a triangulation of the real
projective plane we obtain an example whose Cohen–Macaulay property depends on K .
A similar result was proved by Trung and Hoa [18]. Our construction has the advantage of
yielding a seminormal monoid M , and is geometrically very transparent.

2. Prerequisites

We recall some facts from convex geometry. Let X be a subset of R
m. The convex hull

conv(X) of X is the set of convex combinations of elements of X. Similarly, the set C(X)

of positive linear combinations of elements of X is called the cone generated by X. By
convention C(∅) = {0} and conv(∅) = ∅. A cone C is called positive (or pointed) if 0 is the
only invertible element in C. To an affine form α on R

m (i.e., a polynomial of degree 1) we
associate the affine hyperplane Hα = α−1(0), the closed half-space H+

α = α−1([0,∞)),
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and the open half-space H>
α = α−1(0,∞). An intersection P = ⋂n

i=1 H+
αi

of finitely many
closed half-spaces is called a polyhedron. A (proper) face of a polyhedron P is the (proper)
intersection of P with a hyperplane Hβ such that P ⊆ H+

β . Also P is considered as a face
of itself. A facet is a maximal proper face. Recall that there are only a finite number of
faces. A polytope is a bounded polyhedron. The set conv(F ) is a polytope for every finite
subset F of R

m, and every polytope is of this form. A cone is a finite intersection of half-
spaces of the form H+

αi
where the αi are linear forms (i.e., homogeneous polynomials of

degree 1). The set C(F ) is a cone for every finite subset F of R
m, and every cone is of

this form. Let P be a polyhedron and F a face of P . Then we denote the relative interior
of F with respect to the subspace topology on the affine hull of F by intF . Note that P

decomposes into the disjoint union intF of the (relative) interiors of its faces. For more
details on convex geometry we refer to the books of Bruns and Gubeladze [2], Schrijver
[14] and Ziegler [19].

An affine monoid M is a finitely generated commutative monoid which can be embed-
ded into Z

m for some m ∈ N. We always use + for the monoid operation. In the literature
M is also called an affine semigroup in this situation. We call M positive if 0 is the only
invertible element in M . Observe that M is positive if and only if C(M) is pointed.

Let K be a field and K[M] be the K-vector space with K-basis Xa , a ∈ M . The
multiplication Xa · Xb = Xa+b for a, b ∈ M induces a ring structure on K[M] and this
K-algebra is called the affine monoid ring (or algebra) associated to M . The embed-
ding of M into Z

m induces an embedding of K[M] into the Laurent polynomial ring
K[Zm] = K[X±1

i : i = 1, . . . ,m] where Xi corresponds to the ith element of the canon-
ical basis of Z

m. Note that K[M] is a Z
m-graded K-algebra with the property that

dimK K[M]a � 1 for all a ∈ Z
m. It is easy to determine the Z

m-graded prime ideals of
K[M]. In fact every Z

m-graded prime ideal is of the form pF = (Xa : a ∈ M, a /∈ F) for a
unique face F of C(M) (see [3, Theorem 6.1.7] for a proof). In particular, the prime ideals
of height 1 correspond to the facets of C(M).

Recall that a Noetherian domain R is normal if it is integrally closed in its field of
fractions. The normalization R̄ of R is the set of elements in the quotient field of R which
are integral over R. An affine monoid M is called normal, if z ∈ G(M) and mz ∈ M for
some m ∈ N imply z ∈ M . Here G(M) is the group generated by M . It is easy to see that
M is normal if and only if M = G(M)∩C(M). If M is an arbitrary submonoid of Z

m, then
its normalization is the monoid M̄ = {z ∈ G(M): mz ∈ M for some m ∈ N}. By Gordan’s
lemma M̄ is affine for an affine monoid M .

Hochster [7] proved that K[M] is normal if and only if M is a normal monoid, in fact we
have that K[M] = K[M̄]. In particular, Hochster showed that if M is normal, then K[M]
is a Cohen–Macaulay ring. One can characterize the Cohen–Macaulay property of K[M]
in terms of combinatorial and topological information associated to M . This amounts to an
analysis of the Z

m-graded structure of the local cohomology of K[M]; see Trung and Hoa
[18] for a criterion of this type.

A Noetherian domain R is called seminormal if for an element x in the quotient
field Q(R) of R such that x2, x3 ∈ R we have x ∈ R. The seminormalization +R of R

is the intersection of all seminormal subrings S such that R ⊆ S ⊆ Q(R). An affine
monoid M is called seminormal, if z ∈ G(M), 2z ∈ M and 3z ∈ M imply that z ∈ M .
The seminormalization +M of M is the intersection of all seminormal monoids N such
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that M ⊆ N ⊆ G(M). It can be shown that +M is again an affine monoid. Hochster and
Roberts [9, Proposition 5.32] proved that an affine monoid M is seminormal if and only if
K[M] is a seminormal ring. We frequently use the following characterization of seminor-
mal monoids. See Reid and Roberts [11, Theorem 4.3] for a proof for positive monoids,
but this proof works also for arbitrary affine monoids.

Theorem 2.1. Let M be an affine monoid M ⊆ Z
m. Then

+M =
⋃

F face of C(M)

G(M ∩ F) ∩ intF.

In particular, M is seminormal if and only if it equals the right-hand side of the equality.

3. Seminormality and Serre’s condition (S2)

Let R be a Noetherian ring and let N be a finitely generated R-module. Recall that N

satisfies Serre’s condition (Sk) if

depthNp � min{k,dimNp}

for all p ∈ SpecR. Affine monoid rings trivially satisfy (S1), since they are integral do-
mains. We are interested in characterizing (S2) for affine monoid rings.

While the validity of (Sk) in K[M] may depend on the field K for k > 2, (S2) can be
characterized solely in terms of M , as was shown in [13].

Let F1, . . . ,Ft be the facets of C(M) and let

Mi = {
a ∈ G(M): a + b ∈ M for some b ∈ M ∩ Fi

}

for i = 1, . . . , t . Note that the elements of Mi correspond to the monomials in the homo-
geneous localization K[M](pFi

). We set

M ′ =
t⋂

i=1

Mi.

Proposition 3.1. Let M be an affine monoid M ⊆ Z
m and K a field. Then the following

statements are equivalent:

(i) K[M] satisfies (S2);
(ii) M = M ′.

Observe that (M ′)′ = M ′. Thus K[M ′] always satisfies (S2). For seminormal monoids
M the equality M = M ′ can be expressed in terms of the lattices G(M ∩ F) as we will see
in Corollary 3.4. First we describe the monoids Mi under a slightly weaker condition.
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Lemma 3.2. [10, Proposition 4.2.6] Let M ⊆ Z
m be an affine monoid and let F1, . . . ,Ft

be the facets of C(M) with defining linear forms α1, . . . , αt . Then:

(i) Mi ∩ Hαi
= G(M ∩ Fi).

(ii) If G(M) ∩ int C(M) ⊆ M , then

Mi = (
G(M) ∩ H>

αi

) ∪ G(M ∩ Fi).

Proof. Every element in Mi is of the form c = a − b for some a ∈ M and b ∈ M ∩ Fi .
Hence αi(c) � 0 with equality if and only if a ∈ M ∩ Fi . It follows that

Mi ⊆ (
G(M) ∩ H>

αi

) ∪ G(M ∩ Fi) and Mi ∩ Hαi
⊆ G(M ∩ Fi).

If c ∈ G(M ∩ Fi) and c = a − b for some a, b ∈ M ∩ Fi , then clearly by the definition
of Mi we have that c ∈ Mi . Thus we see that Mi ∩ Hαi

= G(M ∩ Fi).
For (ii) it remains to show that if c ∈ G(M) ∩ H>

αi
, then c ∈ Mi . Pick d ∈ M ∩ intFi

such that αj (c + d) > 0 for all j �= i. Hence c + d ∈ int C(M). But

c + d ∈ G(M) ∩ int C(M) ⊆ M,

by the additional assumption in (ii). Thus c ∈ Mi . �
In the following proposition we consider C(M) as a face of itself.

Proposition 3.3. [10, Proposition 4.2.7] Let M be an affine monoid M ⊆ Z
m and let

F1, . . . ,Ft be the facets of C(M). If G(M) ∩ int C(M) ⊆ M , then

M ′ =
⋃

F face of C(M)

[ ⋂
F⊆Fi

G(M ∩ Fi) ∩ intF

]

with the convention that
⋂

F⊆Fi
G(M ∩ Fi) = G(M) if F = C(M).

Proof. We apply 3.2 several times. By assumption we have

G(M) ∩ int C(M) ⊆ M ′.

Let F be a proper face of C(M). Choose a facet Fj with defining linear form αj . Either
intF ⊆ Fj and thus

⋂
F⊆Fi

G(M ∩ Fi) ∩ intF ⊆ G(M ∩ Fj ) ∩ intF ⊆ Mj,

or intF is contained in C(M) ∩ H>
αj

and

⋂
G(M ∩ Fi) ∩ intF ⊆ G(M) ∩ H>

αj
⊆ Mj .
F⊆Fi
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Hence

⋂
F⊆Fi

G(M ∩ Fi) ∩ intF ⊆ M ′.

Note that

M ′ ∩ int C(M) ⊆ G(M) ∩ int C(M).

For a proper face F of C(M) it follows from 3.2 that

M ′ ∩ intF ⊆
⋂

F⊆Fi

Mi ∩ intF =
⋂

F⊆Fi

G(M ∩ Fi) ∩ intF.

All in all we see that

M ′ =
⋃

F face of C(M)

[ ⋂
F⊆Fi

G(M ∩ Fi) ∩ intF

]
. �

The equivalence of parts (ii) and (iii) in the following corollary was shown in [10, The-
orem 4.2.14].

Corollary 3.4. Let M ⊆ Z
m be an affine monoid, K a field, and let F1, . . . ,Ft be the facets

of C(M). If G(M) ∩ int C(M) ⊆ M , then the following statements are equivalent:

(i) K[M] satisfies (S2);
(ii) M = M ′;

(iii) For all proper faces F of C(M) one has

M ∩ intF =
⋂

F⊆Fj

G(M ∩ Fj ) ∩ intF.

If M is seminormal, then the following is equivalent to (i)–(iii):

(iv) G(M ∩ F) = ⋂
F⊆Fj

G(M ∩ Fj ).

Proof. The equivalence of (i) and (ii) was already stated in 3.1. The equivalence of (ii) and
(iii) is an immediate consequence of 3.3.

In the seminormal case one has G(F ∩ M) ∩ intF ⊆ M for all faces, so that (iv) im-
plies (iii). For the converse implication one uses the fact that G(M ∩ F) is generated by its
elements in int(F ) (see Bruns and Gubeladze [2]). �
Remark 3.5. If M is seminormal, then we know from 2.1, that G(M) ∩ int C(M) ⊆ M .
Hence we can apply 3.2, 3.3 and 3.4 in this situation.
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The corollary shows that a seminormal monoid satisfies (S2) if and only if the restriction
of the groups G(M ∩ F) happens only in the passage from C(M) to its facets.

4. Local cohomology of monoid rings

For the rest of the paper K always denotes a field, and M ⊆ Z
m is an affine positive

monoid of rank d . Recall that the seminormalization of M is

+M =
⋃

F face of C(M)

G(M ∩ F) ∩ intF

and the normalization of M is

M̄ = G(M) ∩ C(M).

In this section we want to compute the local cohomology of K[M] and compare it with the
local cohomology of K[+M] and K[M̄].

If M is a positive affine monoid, then K[M] is a Z
m-graded K-algebra with a unique

graded maximal ideal m generated by all homogeneous elements of nonzero degree. By the
local cohomology of K[M] we always mean the local cohomology groups Hi

m(K[M]).
Observe that +M and M̄ are also positive affine monoids. Since the K-algebras K[+M]
and K[M̄] are finitely generated modules over K[M] and the extensions of m are pri-
mary to their maximal ideals, the local cohomology groups of K[+M] and K[M̄] coincide
with Hi

m(K[+M]) and Hi
m(K[M̄]), respectively. Because of this fact and to avoid cumber-

some notation we always write Hi
m(K[+M]) and Hi

m(K[M̄]) for the local cohomology of
K[+M] and K[M̄]. The same applies to Z

m-graded residue class rings of K[M].
In the following R will always denote the ring K[M], and thus +R and R̄ will stand for

K[+M] and K[M̄], respectively.
Let F be a proper face of C(M). Then pF = (Xa: a ∈ M, a /∈ F) is a monomial prime

ideal of R, and conversely, if p is a monomial prime ideal, then F(p) = R+{a ∈ M:
Xa /∈ p} is a proper face of C(M). These two assignments set up a bijective correspondence
between the monomial prime ideals of R and the proper faces of C(M).

Note that the natural embedding K[M ∩ F ] → K[M] is split by the face projection
K[M] → K[M ∩F ] that sends all monomials in F to themselves and all other monomials
to 0. Its kernel is pF . Therefore we have a natural isomorphism K[M]/pF

∼= K[M ∩ F ].
The next lemma states a crucial fact for the analysis of the local cohomology of R. For

this lemma and its proof we need the following notation. For W ⊆ Z
m we define

−W = {−a: a ∈ W }.

For a Z
m-graded local Noetherian K-algebra R with R0 = K (like the monoid ring K[M]

for a positive affine monoid M) and a Z
m-graded R-module N we set

N∨ = HomK(N,K).
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(Here we mean by HomK(N,K) the homogeneous homomorphisms from N to K .) Note
that N∨ is again a Z

m-graded R-module by setting

(
N∨)

a
= HomK(N−a,K) for a ∈ Z

m.

Lemma 4.1. Let M ⊆ Z
m be a positive affine monoid of rank d . The R-module ω̄ of R

generated by the monomials Xb with b ∈ int C(M) ∩ G(M) is the canonical module of the
normalization R̄. If a ∈ G(M), then

Hi
m(ω̄)a ∼=

{
0 if i < d or a /∈ −C(M),

K if i = d and a ∈ −C(M).

Proof. Danilov and Stanley showed that ω̄ is the canonical module of R̄ (see Bruns and
Herzog [3, Theorem 6.3.5] or Stanley [15]). Thus ω̄ is Cohen–Macaulay of dimension d .
This implies Hi

m(ω̄) = 0 for i < d . Furthermore, by graded local duality we have that

Hd
m(ω̄)∨ ∼= HomR̄(ω̄, ω̄) ∼= R̄

as Z
m-graded modules. This concludes the proof. �

For the central proofs in this paper it is useful to extend the correspondence between the
faces of C(M) and the monomial prime ideals of R to a bijection between the unions of
faces of C(M) and the monomial radical ideals. If q is a monomial radical ideal, then we
let F(q) denote the union of the faces F(p) such that p ⊃ q, and if F is the union of faces,
then the corresponding radical ideal qF of R is just the intersection of all monomial prime
ideals pG such that G ⊆ F . We need the following lemma about monomial prime ideals
of R.

Lemma 4.2. Let M ⊆ Z
m be an affine monoid and F1, . . . ,Ft ,G be faces of C(M). Then:

(i) pF1∩···∩Ft = pF1 + · · · + pFt ;

(ii) pG + ⋂t
i=1 pFi

= ⋂t
i=1(pG + pFi

).

Proof. Observe that the pFi
are Z

m-graded ideals of R, i.e., they are monomial ideals in
this ring. In other words, their bases as K-vector spaces are subsets of the set of monomials
Xa , a ∈ M . Using this fact it is easy to check the equalities claimed. �

We are ready to prove a vanishing result for the local cohomology of seminormal
monoid rings. Hochster and Roberts [9, Remark 5.34] already noticed that certain “pos-
itive” graded components of Hi

m(R) vanish for a seminormal monoid. We can prove a
much more precise statement.
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Theorem 4.3. Let M ⊆ Z
m be a positive affine seminormal monoid and R = K[M]. If

Hi
m(R)a �= 0 for a ∈ G(M), then a ∈ −M ∩ F for a face F of C(M) of dimension � i. In

particular,

Hi
m(R)a = 0 if a /∈ −C(M).

Proof. The assertion is trivial for rankM = 0. Thus assume that d = rankM > 0. Since M

is seminormal, int C(M) ∩ G(M) is contained in M . Thus ω̄, which as a K-vector space is
generated by the monomials Xa with a ∈ int C(M)∩G(M), is an ideal of R. Now consider
the exact sequence

0 → ω̄ → R → R/ω̄ → 0.

By Lemma 4.1 the long exact local cohomology sequences splits into isomorphisms

Hi
m(R) ∼= Hi

m(R/ω̄) for i < d − 1 (1)

and the exact sequence

0 → Hd−1
m (R) → Hd−1

m (R/ω̄) → Hd
m(ω̄) → Hd

m(R) → 0. (2)

The local cohomology of ω̄ has been determined in 4.1. Thus

Hd
m(R)a = 0 for a /∈ −C(M).

This takes care of the top local cohomology. For the lower cohomologies we note that

R/ω̄ ∼= R
/ t⋂

i=1

pFi

where F1, . . . ,Ft are the facets of C(M).
Therefore it is enough to prove the following statement which generalizes the theorem:

let q be a monomial radical ideal of R; if Hi
m(R/q)−a �= 0, then a ∈ M ∩ G for a face

G ⊆ F(q) of dimension � i.
The case q = (0) has already been reduced to the case q = ω̄. So we can assume that

q �= (0) and use induction on rankM and on the number t of minimal monomial prime
ideals p1, . . . ,pt of q.

If t = 1, then R/p1 ∼= K[M ∩ F(p1)]. Now we can apply induction on rankM . Let
t > 1. We set q′ = ⋂t−1

j=1 pj . Then we have the standard exact sequence

0 → R/q → R/q′ ⊕ R/pt → R/(q′ + pt ) → 0.
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The local cohomologies of R/q′ and R′ = R/pt are under control by induction. But this
applies to R/(q′ + pt ), too. In fact, by Lemma 4.2 one has

R/(q′ + pt ) ∼= R
/ t−1⋂

j=1

(pt + pj ) ∼= R′/q′′

where q′′ = ⋂t−1
j=1((pt + pj )/pt ). Thus q′′ is a monomial radical ideal of R′ ∼= K[M ∩

F(pt )]. Now it is enough to apply the long exact cohomology sequence

· · · → Hi−1
m (R′/q′′) → Hi

m(R/q) → Hi
m(R/q′) ⊕ Hi

m(R′) → ·· · . �
We describe a complex which computes the local cohomology of R. Writing RF for the

homogeneous localization R(pF ), let

L
.
(M) : 0 → L0(M) → ·· · → Lt(M) → ·· · → Ld(M) → 0

be the complex with

Lt(M) =
⊕

F face of C(M), dimF=t

RF

and the differential ∂ :Lt−1(M) → Lt(M) induced by

∂G,F :RG → RF to be

{
0 if G �⊂ F,

ε(G,F ) · nat if G ⊂ F,

where ε is a fixed incidence function on the face lattice of C(M) in the sense of [3, Sec-
tion 6.2]. In [3, Theorem 6.2.5] it was shown that L

.
(M) is indeed a complex and that for

an R-module N we have that

Hi
m(N) = Hi

(
L

.
(M) ⊗R N

)
for all i � 0.

Next we construct another, “smaller” complex which will be especially useful for the
computation of the local cohomology of R if M is seminormal. Let

+L.
(M) : 0 → +L0(M) → ·· · → +Lt(M) → ·· · → +Ld(M) → 0

be the complex with

+Lt(M) =
⊕

F face of C(M), dimF=t

K[−M ∩ F ]

and the differential +∂ : +Lt−1(M) → +Lt(M) is induced by the same rule as ∂ above.
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Proposition 4.4. Let M ⊆ Z
m be a positive affine monoid, a ∈ −C(M) ∩ G(M). Then

Hi
m(R)a = Hi

(+L(M)
)
a
.

Proof. We know that Hi
m(R)a is the cohomology of the complex L(M)a . To prove the

claim it suffices to determine (RF )a for a face F of C(M) if a ∈ −C(M) ∩ G(M). It is an
easy exercise to show that

(RF )a = K[−M ∩ F ]a,

where one has to use the fact that M ∩ F = G(M ∩ F) ∩ F . �
It follows from 4.3 and 4.4 that the local cohomology of +R is a direct summand of the

local cohomology of R as a K-vector space.

Corollary 4.5. Let M ⊆ Z
m be a positive affine monoid. Then

⊕
a∈−C(M)∩G(M)

H i
m(R)a ∼=

⊕
a∈−C(M)∩G(M)

H i
m(+R)a = Hi

m(+R).

Corollary 4.6. Let M ⊆ Z
m be a positive affine monoid of rank d . Then:

(i) If R is Cohen–Macaulay, then +R is Cohen–Macaulay.
(ii) If depthR � k, then depth +R � k.

(iii) If R satisfies (Sk), then +R satisfies (Sk).

Proof. It is well known that the Cohen–Macaulay property and depth can be read off the
local cohomology groups. This is also true for Serre’s property (Sk) since we have that R

satisfies (Sk) if and only if dimH
j
m(R)∨ � j −k for j = 0, . . . ,dimR−1 and an analogous

characterization of Serre’s property (Sk) for +R. (See Schenzel [12] for a proof of the latter
fact.) �

The results of this section allow us to give a cohomological characterization of semi-
normality for positive monoid rings.

Theorem 4.7. Let M ⊆ Z
m be a positive affine monoid. Then the following statements are

equivalent:

(i) M is seminormal;
(ii) Hi

m(R)a = 0 for all i and all a ∈ G(M) such that a /∈ −C(M).

Proof. Consider the sequence

0 → R → +R → +R/R → 0
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of finitely generated Z
m-graded R-modules. Observe that Hi

m(R)a ∼= Hi
m(+R)a for

a ∈ −C(M). Thus it follows from the long exact cohomology sequence

· · · → Hi
m(R) → Hi

m(+R) → Hi
m(+R/R) → ·· ·

that Hi
m(R)a = 0 for a /∈ −C(M) and all i if and only if Hi

m(+R/R)a = 0 for all a and
all i. This is equivalent to +R/R = 0. Hence R and, thus, M are seminormal. �
Remark 4.8. The previous results have variants for the normalization. If we restrict the
direct sum in Corollary 4.5 to those a that belong to −int C(M) ∩ G(M) then the local
cohomology of K[+M] must be replaced by that of R̄. Moreover, the local cohomology
of R vanishes in all degrees a outside −int C(M) if and only if M is normal.

This follows by completely analogous arguments since we have that Hi
m(R̄) = 0 for

i < d and Hd
m(R̄)a �= 0 if and only if a ∈ − int C(M) ∩ G(M).

With different methods than those used so far we can prove another seminormality
criterion. It involves only the top local cohomology group, but needs a stronger hypothesis
on M .

Theorem 4.9. Let M ⊆ Z
m be a positive affine monoid of rank d . If R satisfies (S2) and

Hd
m(R)a = 0 for all a ∈ G(M) \ (−C(M)), then M is seminormal.

Proof. The assumption and 4.5 imply that the d th local cohomology of R and +R coincide
as R-modules. Since M and therefore +M are positive, there exists a Z-grading on R and
+R such that both K-algebras are generated in positive degrees. We choose a common
Noether normalization S of R and +R with respect to this Z-grading.

Since R satisfies (S2) it is a reflexive S-module. By 4.6 also +R satisfies (S2) and is a
reflexive S-module. In the following let ωS be the canonical module of S which is in our
situation just a shifted copy of S with respect to the Z-grading. By graded local duality and
reflexivity we get the following chain of isomorphisms of graded S-modules:

R ∼= HomS

(
HomS(R,S), S

) ∼= HomS

(
HomS(R,ωS),ωS

)
∼= HomS

(
Hd

m(R)∨,ωS

) ∼= HomS

(
Hd

m(+R)∨,ωS

)
∼= HomS

(
HomS(+R,ωS),ωS

) ∼= HomS

(
HomS(+R,S),S

)
∼= +R.

Hence M =+M is seminormal. �
Again we can obtain a similar normality criterion if we replace −C(M) by −int C(M)

in Theorem 4.9. In the rest of this section we further analyze the local cohomologies of R.

Proposition 4.10. Let M be seminormal and R = K[M]. Then:
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(i) Hd
m(R)−a �= 0 (and so of K-dimension 1) ⇔ a ∈ M̄ \ ⋃

F G(M ∩ F) where F runs
through the facets of C(M).

(ii) Hd−1
m (R)−a �= 0 ⇔ a ∈ ∂C(M)∩⋃

F G(M ∩F) and dimK Hd−1
m (R/ω̄)−a � 2 where

F again runs through the facets of C(M).
(iii) R is Cohen–Macaulay ⇔ R/ω̄ is Cohen–Macaulay and dimK Hd−1

m (R/ω̄)−a � 1 for
all a ∈ G(M).

Proof. Hd
m(R) is the cokernel of the map

⊕
F facet of C(M)

K[−M ∩ F ] → K
[−C(M) ∩ G(M)

]
,

which implies (i).
(ii) We have the exact sequence (2)

0 → Hd−1
m (R) → Hd−1

m (R/ω̄) → Hd
m(ω̄)

π−→ Hd
m(R) → 0.

Lemma 4.1 and (i) yield the Z
m-graded structure of Kerπ : its nonzero graded components

have dimension 1 and live in exactly the degrees −a with a ∈ C(M) ∩ ⋃
F G(M ∩ F).

On the other hand, Hd−1
m (R/ω̄) can have nonzero components only in these degrees,

as follows from the generalization of Theorem 4.3 stated in its proof. Thus Hd−1
m (R) is

limited to these degrees and is nonzero at −a if and only if dimK Hd−1
m (R/ω̄)−a � 2.

(iii) The isomorphisms Hi
m(R) ∼= Hi

m(R/ω̄) for i < d −1 reduce the claim immediately
to (ii). �

Having computed the d th local cohomology of K[M], we can easily describe the Goren-
stein property of K[M] in combinatorial terms:

Corollary 4.11. Let M be seminormal and R = K[M] Cohen–Macaulay. For each facet F

of C(M) let γF denote the index of the group extension G(M ∩ F) ⊂ G(M) ∩ RF , and σF

the unique Z-linear form on G(M) such that σF (M̄) = Z+ and σF (x) = 0 for all x ∈ F .
Then the following are equivalent:

(i) R is Gorenstein;
(ii) (a) γF � 2 for all facets F of C(M);

(b) there exists b ∈ M̄ such that

b ∈ F \ G(M ∩ F), if γF = 2,

σF (b) = 1, else.

Proof. The multigraded support of the K-dual ωR of Hd
m(R) is N = M̄ \ ⋃

F G(M ∩ F),
and R is Gorenstein if and only if there exists b ∈ M̄ such that N = b+M , or, equivalently,
ωR = RXb. It remains to be shown that such b exists if and only if the conditions in (ii)
are satisfied. We leave the exact verification to the reader. (Note that for each facet F there
exists c ∈ M̄ ∩ int C(M) ⊂ M such that σF (x) = 1.) �
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Finally, we give an interpretation of Hi
m(R)−a for a ∈ C(M) which will be useful in

later sections.

Remark 4.12. Let M ⊆ Z
m be a positive affine monoid of rank d , i ∈ {0, . . . , d},

a ∈ C(M) ∩ G(M) and F(M,a) = {F face of C(M): a ∈ M ∩ F }. Then Hi
m(R)−a is the

ith cohomology of the complex

C.
(M,a) : 0 → C0(M,a) → ·· · → Ct (M,a) → ·· · → Cd(M,a) → 0,

where

Ct (M,a) =
⊕

G∈F(M,a), dimG=t

KeG

and the differential is given by ∂(eG) = ∑
F face of C(M), G⊆F ε(G,F )eF . (Here ε is the

incidence function on the face lattice of C(M) which we fixed above to define the complex
L

.
(M).)

Theorem 4.13. Let M ⊆ Z
m be a positive affine monoid of rank d and a ∈ C(M) ∩ G(M).

If the set F(M,a) = {F face of C(M) a ∈ M ∩ F } has a unique minimal element G, then

Hi
m(R)−a = 0 for all i = 0, . . . , d − 1.

Proof. It follows from 4.12 that Hi
m(R)−a is the ith cohomology of the complex

C.
(M,a) : 0 → C0(M,a) → ·· · → Ct (M,a) → ·· · → Cd(M,a) → 0,

where

Ct (M,a) =
⊕

G∈F(M,a), dimG=t

KeG.

By taking a cross-section of C(M) we see that the face lattice of C(M) is the face lattice of
a polytope (see [3, Proposition 6.1.8]). If F(M,a) has a unique minimal element, then this
set is again the face lattice of a polytope P , as can be seen from Ziegler [19, Theorem 2.7].
Note that if F(M,a) has only one element, then P is the empty set. But this can only
happen if F(M,a) = {C(M)} and then we have homology only in cohomological degree d .
If F(M,a) has more than one element, then C.

(M,a) is the K-dual of a cellular resolution
which computes the singular cohomology of P . A nonempty polytope is homeomorphic
to a ball and thus the complex Cd(M,a) is acyclic. Hence in this case Hi

m(R)−a = 0 for
i = 0, . . . , d , and this concludes the proof. �

The following corollary collects two immediate consequences of Theorem 4.13.

Corollary 4.14. Let M be a positive affine monoid.
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(i) Let F be the unique face of C(M) such that a ∈ intF . If a ∈ G(M ∩ F), then

Hi
m(R)−a = 0 for all i = 0, . . . , d − 1.

(ii) Suppose that M is seminormal. Then R is Cohen–Macaulay if F(M,a) has a unique
minimal element for all a ∈ M̄ .

Finally we note that nonzero lower local cohomologies must be large in the seminormal
case.

Proposition 4.15. Let M ⊆ Z
m be a positive affine seminormal monoid. If Hi

m(R)a �= 0
for some a ∈ −C(M), then dimK Hi

m(R) = ∞. In particular, if a seminormal monoid is
Buchsbaum, then it must be Cohen–Macaulay.

Proof. If Hi
m(R)a �= 0, then the complex C.

(M,a) has nontrivial cohomology in degree i.
Consider the multiples ka for k ∈ N. If a ∈ M ∩ F = G(M ∩F)∩F , then ka ∈ M ∩ F for
all k ∈ N. If a /∈ M ∩ F , then there exist infinitely many k such that ka /∈ M ∩ F . Since the
face lattice of C(M) is finite we can choose a sequence (kn)n∈N such that kn < kn+1 and
a /∈ M ∩ F if and only if kna /∈ M ∩ F . Thus C.

(M,a) = Ct (M,kna) for all n � 0 which
implies Hi

m(R)kna �= 0. Hence dimK Hi
m(R) = ∞.

If R is Buchsbaum, then dimK Hi
m(R) < ∞ for all i < d . Thus the local cohomology

must vanish in this case for i < d which implies that R is already Cohen–Macaulay. �

5. The Cohen–Macaulay property and depth

If a seminormal monoid M fails to be normal by the smallest possible margin, then
K[M] is Cohen–Macaulay as the following result shows:

Proposition 5.1. Let M be seminormal such that M ∩ F is normal for each facet F

of C(M). Then R is Cohen–Macaulay.

Proof. It is enough to show that F(M,a) has a unique minimal element for all a ∈ M̄ .
Let a ∈ G(M) ∩ C(M). If a /∈ M ∩ G for all facets G of C(M), then C(M) is the unique
minimal element of F(M,a).

Otherwise we have a ∈ M ∩ G = M ∩ G ⊂ M for some facet G of C(M). We choose
the unique face F ′ of C(M) with a ∈ intF ′. It follows that a ∈ F ′ ∩M , and F ′ is the unique
minimal element of F(M,a). �
Remark 5.2. Another, albeit more complicated proof of the proposition can be given as
follows. The main result of Brun, Bruns and Römer [1] implies for R = K[M] that

(i) R/ω̄ is Cohen–Macaulay,
(ii) Hd

m(R/ω̄) = ⊕
H dimF

m (K[M ∩F ]) where F runs through the proper faces of C(M),
F
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provided all the rings K[M ∩ F ] are Cohen–Macaulay. If they are even normal, then the
local cohomology modules in (ii) do not “overlap” because the Z

m-graded support of
H dimF

m (K[M ∩ F ]) is restricted to −intF , and the relative interiors of faces are pairwise
disjoint. Now we can conclude from Proposition 4.10 that R is Cohen–Macaulay.

In general, without normality of the facets the local cohomology modules in (ii) will
overlap (see Example 7.1). This limits all attempts to prove stronger assertions about the
Cohen–Macaulay property in the seminormal case.

Using the results and techniques of Section 4, we can give lower bounds for the depth
of seminormal monoid rings. Let M ⊆ Z

m be an affine seminormal monoid. We define

cK(M) = sup
{
i ∈ Z: K[M ∩ F ] is Cohen–Macaulay for all faces F, dimF � i

}
,

n(M) = sup
{
i ∈ Z: M ∩ F is normal for all faces F, dimF � i

}
.

Observe that if M ∩ F is normal for a face F of C(M), then also M ∩ G is normal for all
faces G ⊆ F of C(M). Hence it would be enough to consider all i-dimensional faces of
C(M) in the definition of n(M). However, as we will see in Section 7, this is not true for
the Cohen–Macaulay property.

Theorem 5.3. Let M ⊆ Z
m be an affine seminormal monoid of rank d , and R = K[M].

Then

depthR � cK(M) � min
{
n(M) + 1, d

}
.

Proof. The proof of the first inequality follows essentially the same idea as that of Theo-
rem 4.3.

The assertion is trivial for rankM = 0. Thus assume that d = rankM > 0. There is noth-
ing to prove if cK(M) = d . So we can assume that cK(M) < d . Since M is seminormal,
we can again use the exact sequence

0 → ω̄ → R → R/ω̄ → 0.

Since depth ω̄ = d according to Lemma 4.1, it is enough to show that depthR/ω̄ � cK(M).
Again we write ω̄ = ⋂t

j=1 pFj
where F1, . . . ,Ft are the facets of C(M). However, con-

trary to Theorem 4.3, the bound does not hold for arbitrary residue class rings with respect
to monomial radical ideals q, since the combinatorial structure of the set F(q) may contain
obstructions.

Therefore we order the facets F1, . . . ,Ft in such a way that they form a shelling se-
quence for the face lattice of C(M). Such a sequence exists by the Brugesser–Mani theorem
(applied to a cross-section polytope of C(M)). See [19, Lecture 8]. The generalization
of the first inequality of the theorem to be proved is the following: let F1, . . . ,Ft be a
shelling sequence for C(M) and let u ∈ {1, . . . , t}, then depthR/q � min{d − 1, cK(M)}
for q = ⋂u

pF .
j=1 j
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If u = 1, then R/p1 ∼= K[M ∩ F(p1)]. Now we can apply induction on rankM . Let
u > 1. We set q′ = ⋂u−1

j=1 pFj
. Again we have the standard exact sequence

0 → R/q → R/q′ ⊕ R/pFu → R/(q′ + pFu) → 0.

Therefore

depthR/q � min
{
1 + depthR/(q′ + pFu),depthR/pFu,depthR/q′}.

By induction on u we have depthR/pFu,depthR/q′ � min{d − 1, cK(M)}.
Now the crucial point is that Fu∩⋃u−1

j=1 Fj = ⋃u−1
j=1 Fu∩Fj is the union of certain facets

G1, . . . ,Gv of Fu that form the starting segment of a shelling sequence for Fu (by the very
definition of a shelling). As in the proof of Theorem 4.3 we have

R/(q′ + pFu)
∼= R

/ t−1⋂
j=1

(pFu + pFj
) ∼= R′/q′′

where q′′ = ⋂t−1
j=1((pFu + pFj

)/pFu). Therefore q′′ is the radical ideal of R′ = K[M ∩ F1]
corresponding to the union G1, . . . ,Gv . By induction we have

depthR′/q′′ � min
{
d − 2, c(M ∩ Fu)

}
� min

{
d − 2, cK(M)

}
,

and this completes the proof for the inequality depthR � cK(M).
By Hochster’s theorem the second inequality holds if M itself is normal. Suppose that

n(M) < d and let F be a face of dimension n(M)+ 1. Then we must show that K[M ∩F ]
is Cohen–Macaulay. Thus the second inequality reduces to the claim that R is Cohen–
Macaulay if the intersections F ∩ M are normal for all facets F of C(M) (and M is
seminormal). This has been shown in Proposition 5.1. �

There is a general lower bound for the depth of seminormal monoid rings of rank � 2.
It follows from the proposition since seminormal monoids of rank 1 are normal.

Corollary 5.4. Let M ⊆ Z
m be an affine seminormal monoid of rank d � 2. Then

depthR � 2.

In particular, R is Cohen–Macaulay if d = 2.

One could hope that seminormality plus some additional assumptions on M already
imply the Cohen–Macaulay property of R. But most time this is not the case as will be
discussed in Example 7.1. However, we will now show that Serre’s condition (S2) implies
the Cohen–Macaulay property of R if C(M) is a simple cone (to be explained below).
More generally, we want to show that simple faces of C(M) cannot contain an obstruction
to the Cohen–Macaulay property in the presence of (S2).
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Let F be a proper face of C(M). We call the face F simple if the partially ordered
set {G face of C(M): F ⊆ G} is the face lattice of a simplex. Observe that by [19, Theo-
rem 2.7] the latter set is always the face lattice of a polytope, because the face lattice of
C(M) is the face poset of a cross-section of C(M). Let F be a simple face of C(M). It is
easy to see that every face G of C(M) containing the simple face F is also simple.

We say that C(M) is simple if a cross-section polytope of C(M) is a simple polytope.
This amounts to the simplicity of all the edges of C(M). (Note that the apex {0} is a simple
face if and only if C(M) is a simplicial cone.)

Proposition 5.5. Let M ⊆ Z
m be a positive affine seminormal monoid such that R satisfies

(S2). Let a ∈ G(M) ∩ C(M) and a ∈ intF for a proper face F of C(M). If Hi
m(R)−a �= 0

for some i, 0 � i � d − 1, then F is not a simple face of C(M).

Proof. Assume that F is a simple face. Consider the intersection

H =
⋂

G face of C(M), F⊆G, a∈M∩G

G

which is a simple face containing F because F is simple. Let F1, . . . ,Ft be the facets of
C(M). For each facet Fj such that H ⊆ Fj there exists a face G of C(M) with F ⊆ G,
a ∈ M ∩ G such that G ⊆ Fj because H is simple. This follows from the fact that the
partially ordered set {L: L is a face of C(M), H ⊆ L} is the face poset of a simplex, and
for a simplex the claim is trivially true. We observe that a ∈ G(M ∩ G) ⊆ G(M ∩ Fj ) for
those facets Fj with H ⊆ Fj . By Corollary 3.4 we have

G(M ∩ H) =
⋂

H⊆Fj

G(M ∩ Fj ).

Therefore a ∈ G(M ∩ H) ∩ H = M ∩ H .
All in all we get that the set F(M,a) = {L face of C(M): a ∈ M ∩ L} has the unique

minimal element H , and 4.13 implies that

Hi
m(R)−a = 0

which is a contradiction to our assumption. Thus F is not a simple face of C(M). �
The latter result gives a nice Cohen–Macaulay criterion in terms of C(M) for a semi-

normal monoid. It implies Theorem 4.4.7 in [10], and can be viewed as a variant of the
theorem by Goto, Suzuki and Watanabe [5] by which (S2) implies the Cohen–Macaulay
property of R if C(M) is simplicial.

Corollary 5.6. Let M ⊆ Z
m be a positive affine seminormal monoid such that R = K[M]

satisfies (S2) and such that C(M) is a simple cone. Then R is Cohen–Macaulay for every
field K . In particular, if rankM � 3, then R is Cohen–Macaulay.
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Proof. Every proper face of C(M), with the potential exception of {0}, is simple. Thus it
follows from 4.3 and 5.5 that Hi

m(R)−a = 0 for a �= 0 and i = 0, . . . , d − 1. For a = 0 this
results from Corollary 4.14. Hence R is Cohen–Macaulay.

If rankM � 3, then the cross-section of C(M) is a polytope of dimension � 2, which is
always simple. Thus we can apply the corollary. �

We will point out in Remark 7.2 that the corollary is the best possible result if one wants
to conclude the Cohen–Macaulay property of R only from the seminormality of M and the
validity of (S2).

6. Seminormality in characteristic p

In this section we study local cohomology properties of seminormal rings in character-
istic p > 0. Let K be a field with charK = p > 0. In this situation we have the Frobenius
homomorphism F :R → R, f �→ f p . Through this homomorphism R is an F(R)-module.
Now R is called F -injective if the induced map on the local cohomology Hi

m(R) is injec-
tive for all i. It is called F -pure if the extension F(R) → R is pure, and F -split if F(R) is
a direct F(R)-summand of R. In general we have the implications

F -split ⇒ F -pure ⇒ F -injective.

For example see [3] for general properties of these notions.

Proposition 6.1. Let M ⊆ Z
m be a positive affine monoid. If there exists a field K of

characteristic p such that R is F -injective, then M is seminormal.

Proof. Assume that there exists an a ∈ G(M), a /∈ −C(M), and an i ∈ {0, . . . , rankM}
such that Hi

m(R)a �= 0. Since R is F -injective, it follows that Hi
m(R)pm·a �= 0 for all

m ∈ N. Write R = S/IM as a Z
m-graded quotient of a polynomial ring S. Then by graded

local duality Hi
m(R)∨ ∼= Extn−i

S (R,ωS) is a finitely generated Z
m-graded R-module. This

implies that Hi
m(R)pm·a = 0 for m � 0, which is a contradiction. Thus Hi

m(R)a = 0 for
all a /∈ C(M). It follows from 4.7 that M is seminormal. �

If M is seminormal there exist only finitely many prime numbers such that R is not
F -injective. Moreover, we can characterize this prime numbers precisely.

Proposition 6.2. Let M ⊆ Z
m be a positive affine seminormal monoid and let K be a field

of characteristic p > 0. Then the following statements are equivalent:

(i) The prime ideal (p) is not associated to the Z-module G(M) ∩ RF/G(M ∩ F) for
any face F of C(M);

(ii) R is F -split;
(iii) R is F -pure;
(iv) R is F -injective.
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Proof. (i) ⇒ (ii) We show by a direct computation that F(R) = Kp[pM] is a direct
Kp[pM]-summand of R. Since Kp[pM] is a Kp[pM]-summand of K[pM], it is enough
to show that K[pM] is a direct K[pM]-summand of R. The monoid M is the disjoint
union of the residue classes modulo pG(M). This induces a direct sum decomposition
of R as a K[pM]-module. We claim that pM is the intersection of M and pG(M). This
will show the remaining assertion.

To prove the claim we have only to show that an element w of the intersection of M

and pG(M) is an element of pM . Write w = pz for some z ∈ G(M). We have that
w ∈ intF for a face F of C(M). Then p annihilates the element z ∈ G(M) ∩ RF mod-
ulo G(M ∩F). By assumption p is a nonzero-divisor on that module. Thus z ∈ G(M ∩F).
Since z ∈ G(M ∩ F) ∩ intF and M is seminormal we have that z ∈ M by 2.1. Hence
w ∈ pM as desired.

(ii) ⇒ (iii) and (iii) ⇒ (iv) This holds in general as was remarked above.
(iv) ⇒ (i) Assume that (p) is associated to some of the Z-modules G(M) ∩ RF/

G(M ∩ F) for the faces F of C(M). Choose a maximal face F with this property. Choose
an element 0̄ �= ā ∈ G(M) ∩ RF/G(M ∩ F) which is annihilated by p. We may assume
that a ∈ intF .

If follows from 4.12 that H dimF+1
m (R)−a �= 0, since the poset F(M,a) consists all faces

which contain F but not F itself. But H dimF+1
m (R)−pa = 0, because F(pa) consists all

faces which contain F including F itself. This poset is the face poset of a polytope and thus
acyclic. We have derived a contradiction to the assumption that R is F -injective, because
the map H dimF+1

m (R)−a → H dimF+1
m (R)−pa is not injective. �

Corollary 6.3. Let M ⊆ Z
m be a positive affine monoid. Then the following statements are

equivalent:

(i) M is normal;
(ii) R is F -split for every field K of characteristic p > 0;

(iii) R is F -pure for every field K of characteristic p > 0;
(iv) R is F -injective for every field K of characteristic p > 0.

Proof. It is easy to see that M is normal if and only if G(M) ∩ RF = G(M ∩ F) for all
faces of C(M). Thus (i) is equivalent to (ii), (iii) and (iv) by 6.1 and 6.2. �

In a sense, it is inessential for the results of this section that K has characteristic p. In
order to obtain variants that are valid for every field K , one has to replace the Frobenius
endomorphism by the natural inclusion K[pM] → K[M].

7. Examples and counterexamples

In this section we present various examples and counterexamples related to the results
of this paper. We choose a field K .

We saw in 5.6 that R = K[M] is Cohen–Macaulay for a positive seminormal monoid
M of rank d � 3. Since a Cohen–Macaulay ring always satisfies (S2) one could hope that
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Fig. 1.

seminormality and (S2) already imply the Cohen–Macaulay property of R. This is not the
case as the following example shows.

Example 7.1. For this example and the following one we fix some notation. Let P be a
3-dimensional pyramid with a square base embedded into R

4 in degree 1. For example let
P be the convex hull of the vertices given by

m0 = (0,0,1,1), m1 = (−1,1,0,1), m2 = (−1,−1,0,1),

m3 = (1,−1,0,1), m4 = (1,1,0,1).

Figure 1 shows projections of the pyramid onto its base.
Let C be the cone generated by P , so that P is a cross-section of C. The facets of C are

the cones

F0 = C(m1,m2,m3,m4), F1 = C(m0,m1,m2), F2 = C(m0,m2,m3),

F3 = C(m0,m3,m4), F4 = C(m0,m1,m4).

Let M be the monoid generated by all integer points of even degree in the facets F1 and
F3 and all their faces, and all remaining integer points in the interior of all other faces of C

including C. (The facets F1 and F3 have been shaded in the left diagram in Fig. 1.) Thus
M is positive, C(M) = C and M is not normal. It follows from 2.1 that M is seminormal
and from 3.4 that R satisfies (S2).

We claim that R is not Cohen–Macaulay. Observe that all faces of C are simple except
the face C(m0). Thus 4.3 and 5.5 imply that Hi

m(R)−a can be nonzero only for some
a ∈ C(m0) ∩ G(M). Choose an arbitrary a in the relative interior of C(m0) ∩ G(M) of odd
degree. The set F(M,a) introduced in 4.12 is

{F2,F4,C}
and we see that the complex C.

(M,a) has cohomology in cohomological degree 3. Hence
H 3

m(R)−a �= 0 and therefore R is not Cohen–Macaulay.
The reader may check that R/ω̄ is Cohen–Macaulay, but both K[F2 ∩ M] and

K[F4 ∩ M] have nonzero third local cohomology in degree −a.

Remark 7.2. Example 7.1 can be generalized in the following way: if C is not a simple
cone, then there exists a seminormal affine monoid M with C = C(M) such that K[M]
satisfies (S2), but is not Cohen–Macaulay for any field K .
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Next we consider the question whether the Cohen–Macaulay property or the (S2) prop-
erty are inherited by face projections. A counterexample to this claim is already given in
[8, Example 2.2]. We can modify 7.1 a little bit to get the same result for seminormal
monoids.

Example 7.3. With the same notation as in 7.1 let C be the cone over the pyramid P with
facets F0, . . . ,F4. Now let M be the monoid generated by all integer points of even degree
in the facet F1 and all its faces (as indicated in the right diagram in Fig. 1), and all remaining
integer points in the interior of all other faces of C. Thus M is positive, C(M) = C and M

is not normal. It still follows from 2.1 that M is seminormal and by 3.4 that R satisfies (S2).
Since all proper faces of C except C(m0) are simple, we only have to check the vanishing
of the local cohomology for points in the in −int C(m0). Let a ∈ int C(m0). If a has even
degree, then

F(M,a) = {
F face of C: C(m0) ⊆ F

}
.

If a has odd degree, then

F(M,a) = {F2 ∩ F3, F3 ∩ F4, F2, F3, F4, C}.
In any case, we can check that the complex C.

(M,a) is acyclic and therefore Hi
m(R) = 0

for i < rankM . Thus R is Cohen–Macaulay and must satisfy (S2).
But K[M ∩F3] has only depth 1, as can be seen from a similar discussion as for R. So it

does not satisfy (S2). Hence neither the Cohen–Macaulay property, nor (S2) are inherited
by face projections of seminormal monoid rings.

Let Δ be a simplicial complex contained in the simplex Σ with vertex set V . We con-
sider the dual simplex Σ∗ whose facets correspond bijectively to the vertices v ∈ V of Δ.
Next we erect the pyramid Π over Σ∗ with apex t . Then the faces of Π that contain t are
in bijective correspondence with the faces G of Σ :

F ∈ Σ ↔ F ∗ ∈ Σ∗ ↔ F̃ = F ∗ ◦ {t},
where ◦ denotes the join. Observe that this correspondence reverses the partial order by
inclusion. Choose a realization of Π as a rational polytope, also denoted by Π .

Next we plane off those faces of Π that correspond to the minimal nonfaces of Δ. For
such a nonface G we choose a support hyperplane H of Π with Π ∩ H = G̃. Moving
this hyperplane by a sufficiently small rational displacement towards the interior of Π ,
and intersecting Π with the positive half-space of the displaced parallel hyperplane H ′ we
obtain a polytope Π ′ such that exactly the faces F of Σ that do not contain G are preserved
in Π ′: F̃ ∩ Π ′ �= ∅ ⇔ F �⊃ G.

Repeating this construction for each minimal nonface of Δ we finally reach a polytope
Π ′′ in which exactly the faces F̃ , F ∈ Δ, have survived in the sense that F ′ = F̃ ∩ Π ′′ is a
nonempty face of Π ′′.

Moreover, the only facets of Π ′′ containing F ′ are the facets {v}′ corresponding to the
vertices v ∈ F . On the other hand, every face E of Π ′′ that is not of the form F ′ is contained
in at least one “new” facet of Π ′′ created by the planing of Π .
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Fig. 2. Planing off a face and the construction of Γ .

Note that Π is a simplex and therefore a simple polytope. The process by which we
have created Π ′′ does not destroy simplicity if the displacements of the hyperplanes are
sufficiently small and “generic.”

Set d = dimΠ ′′ +2 and embed Π ′′ into R
d−2 ×{0} ⊂ R

d−1. Then let Γ be the pyramid
over Π ′′ with apex v = (0, . . . ,0,1). The construction of Γ that leads to the pyramid of
Example 7.1 is illustrated in Fig. 2.

Note that all faces of Γ , except {v}, are simple. ({v} is simple only if Δ = Σ , or equiv-
alently, Π ′′ = Π .)

In the last step we embed Γ into R
d−1 × {1} ⊂ R

d by the assignment x �→ (x,1) and
choose the cone C = R+Γ . It has dimension d . The point v (in R

d ) has the coordinates
(0, . . . ,0,1,1). Therefore it has value 1 under the linear form deg: R

d → R, deg(y) = yd .
Set L = {a ∈ Z

d : deg(a) ≡ 0 (2)}. To each facet F of C we assign the lattice

LF =
{

RF ∩ Z
d , F = R+{v}′ for some v ∈ V,

RF ∩ L, else.

Finally, we let M be the monoid formed by all a ∈ C ∩Z
d such that a ∈ LF for all facets F

of C containing a. Clearly M is seminormal. Moreover, with the notation of Corollary 3.4,
we have M = M ′, since we have restricted the lattice facet-wise, and thus K[M] satisfies
(S2) for all fields K .

Let a ∈ M̄ = G(M)∩C. (By construction we have G(M) = Z
d .) If the face F of C with

a ∈ int(F ) is different from R+v, then it is a simple face of C, and Hi
m(K[M])−a = 0 for

all i < n by Proposition 5.5. If F = R+v and deg(a) ≡ 0 (2), then we arrive at the same
conclusion by Corollary 4.14. However, if F = R+v and deg(a) ≡ 1 (2), then the poset
F(M,a) is isomorphic to the dual of Δ (as a poset). Hence the cochain complex C•(M,a)

is isomorphic to the chain complex of Δ (up to shift). We have

Hi
m

(
K[M])−a

= H̃d−i−1(Δ;K), i = 0, . . . , d. (3)

Theorem 7.4. Let Δ be a simplicial complex and K a field. Then there exists a seminormal
monoid M of rank d with M = M ′ and such that R = K[M] has the following proper-
ties:

(i) For every a ∈ M̄ :
(a) Hi

m(R)−a = 0 for all i < d ; or
(b) H •

m(R)−a is given by (3).
(ii) Moreover, case (b) holds true for at least one a ∈ M̄ .



386 W. Bruns et al. / Journal of Algebra 302 (2006) 361–386
(iii) The following are equivalent:
(a) Δ is acyclic over K ;
(b) R is Cohen–Macaulay.

If we choose Δ as a triangulation of the real projective plane, then we obtain a monoid
algebra K[M] which is Cohen–Macaulay if and only if charK �= 2.
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