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Efficient local monocyte/macrophage recruitment is critical for tissue repair. Recruited macrophages are polarized
toward classical (proinflammatory) or alternative (prohealing) activation in response to cytokines, with tight
temporal regulation crucial for efficient wound repair. Estrogen acts as a potent anti-inflammatory regulator of
cutaneous healing. However, an understanding of estrogen/estrogen receptor (ER) contribution to macrophage
polarization and subsequent local effects on wound healing is lacking. Here we identify, to our knowledge
previously unreported, a role whereby estrogen receptor a (ERa) signaling preferentially polarizes macrophages
from a range of sources to an alternative phenotype. Cell-specific ER ablation studies confirm an in vivo role for
inflammatory cell ERa, but not ERb, in poor healing associated with an altered cytokine profile and fewer
alternatively activated macrophages. Furthermore, we reveal intrinsic changes in ERa-deficient macrophages,
which are unable to respond to alternative activation signals in vitro. Collectively, our data reveal that
inflammatory cell-expressed ERa promotes alternative macrophage polarization, which is beneficial for timely
healing. Given the diverse physiological roles of ERs, these findings will likely be of relevance to many
pathologies involving excessive inflammation.
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INTRODUCTION
Cutaneous wound repair consists of numerous overlapping
events, initiated by injury to the skin, broadly grouped into the
inflammatory response, the proliferative response, and the
remodeling phase. The inflammatory response is a crucial
component of cutaneous healing, as evidenced by severely
delayed repair following in vivo macrophage ablation (Goren
et al., 2009). Moreover, a dysregulated inflammatory response,
often seen with age or co-pathology (e.g., diabetes), prevents
the repair process from progressing efficiently (Loots et al.,
1998).

We have previously demonstrated the importance of the sex
steroid estrogen in delayed healing in the elderly (Hardman
and Ashcroft, 2008), where estrogen replacement accelerates
healing in aged humans and hormone-deprived animal

models (Ashcroft et al., 1997; Hardman et al., 2008) and
protects against developing a chronic wound (Margolis et al.,
2002). Our previous studies have revealed estrogen to be a
global regulator of healing, influencing numerous cell types,
including reducing inflammatory cell influx (Emmerson et al.,
2009). Estrogen is also potently anti-inflammatory in other
tissues: estradiol reduces the inflammatory response to cholera
toxin injection (Josefsson et al., 1992) and is anti-inflamma-
tory in the brain, protecting against neurodegeneration
(Vegeto et al., 2003); and estradiol dampens the expression of
numerous proinflammatory cytokines, including TNF-a, MCP-
1, Interleukin (IL)-1b and -6, and macrophage migration
inhibitory factor (Pfeilschifter et al., 2002; Hardman et al.,
2005). Estrogen signals via two nuclear hormone receptors:
estrogen receptor a (ERa) and estrogen receptor b (ERb), and,
crucially, both ERs are present on macrophages (Harkonen
and Vaananen, 2006). In the context of skin repair, our data
show that although the ERb agonist 2,3-bis(4-hydroxyphenyl)-
propionitrile (DPN) alone promotes healing in an
Ovariectomized (Ovx) mouse model, both DPN and the
ERa agonist 4,40,400-(4-propyl-[1H]-pyrazole-1,3,5-triyl) (PPT)
reduce local wound inflammation (Campbell et al., 2010).

Broadly speaking, macrophages can be polarized toward
two distinct pathways. Classically activated (CA) macrophages,
dependent on the cytokines IFN-g and TNF-a, upregulate the
enzyme-inducible nitric oxide synthase (iNOS) (Mosser and
Zhang, 2008) and produce a variety of proinflammatory
cytokines that are important for host defense, including
IL-1, IL-6, and IL-23. Conversely, alternatively activated (AA)
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macrophages, dependent on IL-4 and IL-13 released from TH2
lymphocytes in response to tissue injury, upregulate the
enzymes Arginase 1, Fizz, and Ym1 (Mosser and Zhang,
2008). The balance between iNOS and arginase activity,
which both compete for the common substrate L-arginine, is
tightly regulated during repair (Albina et al., 1990). Although
CA and AA macrophages are locally present in wounds, little
is known about their specific contributions to healing. Our
previous data have shown that arginase 1 is 82-fold down-
regulated in human nonhealing wounds, indicating its potential
importance for healing (Hardman and Ashcroft, 2008).
Conversely, an absence of iNOS delays healing, whereas
iNOS upregulation correlates with faster healing (Yamasaki
et al., 1998). Intriguingly, both iNOS and arginase are upregu-
lated in chronic venous and diabetic ulcers (Jude et al., 1999;
Abd-El-Aleem et al., 2000). These and other data have led to
the proposal that local macrophage polarization state has a
major influence on healing (Deonarine et al., 2007).

The role of estrogen in macrophage polarization under
physiological conditions remains unclear. It has, however,
been proposed that estrogen inhibits the production of TH1
cytokines, while stimulating the production of TH2 cytokines
(Salem, 2004). Moreover, reduced wound levels of the AA
markers Fizz and Ym1 have been reported following Ovx,
which was rescued with systemic estrogen or progesterone
replacement (Routley and Ashcroft, 2009). In this study,
we demonstrate that estrogen’s anti-inflammatory effects on
cutaneous wound healing are ERa-mediated, with ERa directly
promoting alternative macrophage polarization in vitro in a
variety of macrophage populations.

RESULTS
Estrogen and ER-selective agonists promote alternative
macrophage activation

It is now widely accepted that macrophages become polarized
during healing, playing distinct roles. However, estrogen’s
ability to influence macrophage polarization remains to be
studied in detail, with the specific role of ERs being unclear.
To test these roles, we first used bone marrow-derived
macrophages (BMDMs), pretreated with either 17b-estradiol
or ER-selective agonists, PPT or DPN, and subsequently
stimulated with either IFN-g/lipopolysaccharide (LPS) or IL-4
to induce CA and AA polarization, respectively. Changes in
Nos2 (classical) and Arg1 (alternative) gene expression 6 or
24 hours post stimulation (Figure 1a–d) were analyzed via
real-time PCR. As expected, Nos2 expression was strongly
induced by classical stimulation, whereas Arg1 was induced
following alternative stimulation. Intriguingly, pretreatment
with either 17b-estradiol or the ERb agonist DPN significantly
dampened the 6-hour post stimulation increase in Nos2
expression (Figure 1a). In the absence of ER ligand, no
increase in Arg1 was observed 6 hours post IL-4 stimulation
(Figure 1b), in line with previous findings suggesting that Arg1
is a late marker of AA macrophages (Menzies et al., 2009).
Intriguingly, pretreatment with the ERa agonist, PPT, strongly
induced Arg1 expression after only 6 hours of stimulation
(Figure 1b), suggesting a direct ERa-mediated transcriptional
effect. By 24 hours, IL-4 stimulation strongly induced Arg1

expression in all groups, indicating that the ERa predisposition
was relatively short-lived (Figure 1d).

FACs analysis and measurement of nitric oxide revealed
induction of iNOSþ cells and activity, with little influence of
hormone pretreatement (Figure 1e and g). By contrast, 17b-
estradiol and PPT strongly increased the number of Relmaþ

cells (AA macrophage marker) (Figure 1f) and, crucially,
significantly increased arginase activity measured through
the production of urea (Figure 1h). We note that IL-4
stimulation in combination with 17b-estradiol strongly
induced ERa expression, demonstrating reciprocal signaling
effects (Supplementary Figure S1a online). Moreover, ERb
expression was significantly reduced following stimulation
toward either classical or alternative activation (Supplemen-
tary Figure S1b online).

We next confirmed the observed effects of PPT and DPN
pretreatment in combination with IFN-g/LPS or IL-4 stimula-
tion in additional cell types. In isolated peritoneal macro-
phages, polarization mirrored that observed in BMDMs, with
clear effects of pretreatment at a 6 hours post stimulation time
point (Figure 2a and b), with little effect being seen after
24 hours of stimulation (Figure 2c and d). Finally, to confirm
physiological relevance, we directly isolated macrophages
from murine wounds and subjected them to PPT and DPN
pretreatment in combination with IFN-g/LPS or IL-4 stimula-
tion. In these wound-derived cells, the magnitude of induction
of M1 (Nos2) or M2 (Arg1) gene expression following
exposure to respective stimuli was far less than in BMDMs
or peritoneal macrophages (Figure 2e and f). This observation,
which was confirmed using the additional markers TNFa (M1)
and Ym1 (M2), suggests that these cells are already partially
polarized or activated (Figure 2g and h). Crucially, PPT
stimulation of wound-derived macrophages replicated the
effects observed in BMDMs strongly inducing both M1 and
M2 polarization markers, suggesting that signaling through
ERa directly influences macrophage polarization. The fact that
ERa influences the polarization of macrophages from a range
of sources in vitro strongly suggests that it will be functionally
important during inflammation in vivo.

Inflammatory-specific ERa-null (LysM-ERa) mice display delayed
healing upon exogenous estrogen treatment

Estrogen is known to dampen local wound recruitment of
innate immune cells; however, the cell-specific contribution
of each ER has yet to be determined. To investigate this, wild-
type (WT) and inflammatory cell-specific ER-null (LysM-ERa
and LysM-ERb) mice underwent incisional wounding in the
absence of estrogen (Ovx) or following exogenous estrogen
replacement (Figure 3a). In the absence of estrogen, healing
was delayed irrespective of genotype, as has been previously
reported for Ovx WT mice (Emmerson et al., 2009) (Figure 3b
and c—white bars). However, estrogen treatment revealed
genotype-specific differences in healing response. Inflamma-
tory cell deletion of ERa (LysM-ERa) resulted in a marked
healing delay at 3 days post wounding (i.e., equivalent wound
area to Ovx; Figure 3a and b). By contrast, estrogen replace-
ment in LysM-ERb mice was able to reduce wound area and
improve healing, similarly to WT mice. By 7 days post
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wounding, the LysM-ERa healing delay was even more
pronounced (Figure 3c). Despite clear promotion of re-
epithelialization in WT mice at 3 (Figure 3d) and 7
(Figure 3e) days post wounding, estrogen failed to promote
re-epithelialization in either LysM-ERa or LysM-ERb mice.
Thus, inflammatory cell ERa is clearly essential for estrogen’s
beneficial effects on skin repair, with an absence of ERa
delaying healing.

Estrogen’s effects on wound inflammatory cell composition are
predominantly ERa mediated

The delayed healing phenotype observed with estrogen
replacement in LysM-ERa mice was accompanied by elevated
local neutrophils at both 3 (Figure 4a and c) and 7 (Figure 4b
and d) days post wounding (i.e., estrogen treatment did not
reduce neutrophil recruitment in comparison with Ovx). These
findings were repeated for local macrophage numbers, where
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Figure 1. Estrogen receptor (ER)-selective agonists have differential effects on in vitro macrophage polarization. Bone marrow-derived macrophages (BMDMs)

were pretreated with either 17b-estradiol (E; 10� 7
M), an ERa agonist (PPT; 10�6

M), ERb agonist (DPN; 10�6
M), or left untreated for 16 hours, after which

cells were polarized to classical (þ IFN-g/þ LPS) (CA) or alternative (þ IL-4) activation (AA) or left untreated. (a–d) Real-time PCR for Nos2 (CA marker)

(a, c) or Arg1 (AA marker) (b, d), 6 hours (red box) or 24 hours post stimulation. (e, f) After 24 hours of stimulation, cells were isolated, and flow cytometry analysis

was performed using markers inducible nitric oxide synthase (iNOS) (e) and Relma (AA marker) (f). Data are presented as a percentage of cd11bþ /F480þ -positive

cells. (g, h) iNOS activity (g), nitric oxide production, and arginase activity (h) were measured in macrophages at 24 hours post stimulation. Estrogen

dampens classical activation, whereas both estrogen and estrogen receptor a (ERa) stimulation promote alternative macrophage polarization. Meanþ SEM,

n¼ 3 replicates per group and are representative of three separate experiments. (Black*) Po0.05, (red*) Po0.01. DPN, 2,3-bis(4-hydroxyphenyl)-propionitrile;

PPT, 4,40,40 0-(4-propyl-[1H]-pyrazole-1,3,5-triyl).
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estrogen-treated LysM-ERa wounds exhibited excessive
macrophage influx at both 3 (Figure 4e and g) and 7
(Figure 4f and h) days post wounding. By contrast, estrogen
treatment of both WT and LysM-ERb mice led to reduced
wound neutrophil and macrophage influx. Delayed healing in
estrogen-treated LysM-ERa wounds was accompanied by
potentially causative increased expression of key neutrophil
chemokines and receptors Cxcl1 and Cxcr2 (Supplementary
Figure S2a online), and macrophage-associated chemokines
Ccl2 and Ccr2 (Supplementary Figure S2b online), as com-
pared with WT. Collectively, leukocyte ERa expression

appears to be essential for the anti-inflammatory effects of
estrogen on innate immune cells, and macrophage signaling
through ERb alone appears to confer little anti-inflammatory
effects in vivo.

LysM-ERa wounds have reduced AA macrophages

Our initial in vitro data (Figures 1 and 2) suggest that estrogen
is able to promote alternative macrophage polarization speci-
fically through ERa. To corroborate this in vivo, immunohis-
tochemistry for the iNOS (CA marker) and Arg1 (AA marker)
was performed. Estrogen treatment reduced the number of
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iNOSþ cells, irrespective of genotype, at 3 days post wound-
ing (Figure 5a). However, by 7 days post wounding, although
this trend continued in WT and LysM-ERb wounds, estrogen
treatment increased iNOSþ cells in LysM-ERa wounds
(Figure 5b). Thus, the exaggerated healing delay in LysM-
ERa mice at 7 days post wounding is associated with local
macrophages remaining in a CA state. Further profiling reveals
that in WT wounds estrogen drives the switch to increased AA
macrophages, measured by increased Arg1þ (Figure 5c and d)
cells in the granulation tissue, which complements our in vitro
data (Figure 1). Crucially, estrogen-treated LysM-ERa wounds
were specifically associated with reduced numbers of AA
macrophages, quantified through reduced Arg1þ cells
(Figure 5c and d) at both 3 and 7 days post wounding. The
macrophage specificity of these findings was confirmed by
colocalization studies using iNOS, Arg1, and Mac3 (pan-
macrophage marker), revealing reduced AA macrophages
in LysM-ERa mouse wounds (Figure 5e). The finding that
estrogen treatment in LysM-ERa wounds fails to promote
alternative macrophage polarization was further confirmed

by immunohistochemical staining of Ym1þ (AA marker) cells
(Supplementary Figure S3b online) and quantitative reverse
transcriptase in real-time (qPCR) expression of additional
AA markers from isolated wound tissue (Supplementary
Figure S3c online). These data reveal that estrogen promotes
alternative macrophage activation in vivo via inflammatory
cell ERa.

Estrogen fails to promote alternative macrophage activation in
the absence of ERa in vitro

To confirm our in vivo findings suggesting that inflammatory
cell ERa is required for estrogen to promote alternative
macrophage activation, BMDMs were isolated from condi-
tional null mice pretreated with estrogen and stimulated to
polarize into CA and AA macrophages. Our results reveal that,
in the absence of macrophage ERa, CA macrophages display
substantially increased Nos2 gene expression (Figure 6a),
mirrored at the protein level by increased numbers of iNOSþ

cells within stimulated ERa-deficient macrophages (Figure 6c).
However, we note that nitric oxide production after IFN-g/LPS
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stimulation was equivalent across all genotypes at this
time point (Figure 6e). Importantly, with respect to alterna-
tive activation, ERa-deficient macrophages exhibited
significantly reduced expression of Arg1 compared with WT
and ERb-deficient macrophages (Figure 6b), reduced numbers
of Relmaþ cells (Figure 6d), and, of functional importance,
a profound reduction in arginase activity (Figure 6f).
Thus, in line with in vivo data (Figure 5), ERa-deficient

macrophages appear to be intrinsically unable to adopt an
AA phenotype.

DISCUSSION
Over the past decade, studies from our group and others have
highlighted the importance of estrogen deficiency in delayed
cutaneous wound healing in the elderly (Ashcroft et al., 1997;
Margolis et al., 2002). Replacement of estrogen substantially
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accelerates healing in both aged humans and estrogen-
depleted animal models (Ashcroft et al., 1997) and is
dependent on cell-specific ER isoform expression (Campbell
et al., 2010). Importantly, estrogen is able to dampen
inflammation, a key causative factor in chronic wound
ontogenesis. Macrophage polarization has emerged as a key
factor in the progression of a diverse range of disease
pathologies (Loke et al., 2007; Byers and Holtzman, 2011);
however, the contribution of estrogen and ER signaling to
macrophage polarization during wound healing has yet to be
determined. Here, using a combination of in vitro and in vivo
experiments (inflammatory cell-specific (LysM-cre) ER null
mice), we reveal the importance of inflammatory cell ERa
for effective healing. Further, our data reveal that ERa-
mediated promotion of alternative macrophage activation is
a key factor in the effective progression of tissue repair.

Although both ERs are inflammatory cell expressed, our
data specifically implicate inflammatory cell ERa in estrogen’s
healing-promoting effects. This observation appears at odds
with our recent data revealing that in the epidermis ERb
mediates estrogen’s beneficial effects on wound healing
(Campbell et al., 2010). In fact, it would appear that ER
function is cell-specific during healing, with both epidermal
ERb and inflammatory cell ERa required for effective
promotion of healing. This ‘yin-yang’ relationship has been
demonstrated in other tissues (Lindberg et al., 2003) and is
extensively described in hormone-related cancers where ERa
often promotes cell proliferation, whereas ERb inhibits ERa’s
proliferative effects (Poola and Speirs, 2001; Attia and
Ederveen, 2012). Indeed, at the level of gene expression,
ERs often lead to diametrically opposed regulation (Williams
et al., 2008).
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Our data indicate that ERa is required to mediate estrogen’s
anti-inflammatory activity, and that inappropriate inflamma-
tory cell influx in LysM-ERa mice is the probable cause of the
observed delayed healing. Our findings fit with previous
studies indicating that ERa is important for estrogen’s anti-
inflammatory activity: in T lymphocytes, ERa is required for
estradiol-mediated protection against experimental auto-
immune encephalomyelitis (Lelu et al., 2011), and macro-
phage recruitment in acute and chronic brain injury is
mediated through ERa (Polanczyk et al., 2003). The corres-
ponding increased expression of neutrophil and macrophage
chemokines most likely drive the increased inflammatory cell
influx. ERaKO mice display increased levels of proinflam-
matory chemokines (Ccl2, Ccl3, Ccl5, and Cxcl1) during
neuroinflammation (Brown et al., 2010), whereas the ERa-
selective agonist PPT protects against influenza A virus patho-
genesis via reduced Ccl2 expression (Robinson et al., 2011).

These findings suggest that key cytokines are involved in ERa-
mediated inflammatory cell influx into tissue.

Although macrophage polarization is clearly linked to
disease progression in a range of pathologies (Pesce et al.,
2009), the contribution to chronic wound healing is less clear.
A previous study (Routley and Ashcroft, 2009) showed that
estrogen administration promoted alternative macrophage
polarization in vivo. We now show that alternative macro-
phage activation in the skin is mediated through ERa.
Furthermore, our in vitro studies using macrophages from
multiple sources indicate a role for ERa in not only promoting
expression of AA markers but also functional activity.
Importantly, we show that AA macrophage activation is asso-
ciated with increased levels of ERa expression. In human
monocytes/macrophages, estradiol is known to increase ERa
expression, but has no effect on ERb expression, and this
becomes more pronounced during monocyte–macrophage
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differentiation (Murphy et al., 2009). Work exploring the role
of ER in macrophage activation is currently limited, although
Calippe et al. (2010) have recently shown that loss of ERa
abolished the anti-inflammatory effects of estradiol on isolated
peritoneal macrophages.

The underlying mechanisms that govern macrophage
activation/polarization are not completely understood. AA
macrophages are known to have impaired activation of
NF-kB in response to LPS (Di Napoli et al., 2005), and
induction involves members of the JAK/signal transducer and
activator of transcription (STAT) family (Zhu et al., 2001). It
has recently been shown that estrogen is able to inhibit NFkB-
dependent inflammation by promoting synthesis of the
negative regulator IkBa (Xing et al., 2012). Conversely, a
recent study shows that estrogen inhibits AA polarization in a
tumor-associated macrophage cell line via the inhibition of
the JAK1-STAT6 pathway (Yang et al., 2012). The role of these
pathways in cutaneous macrophage polarization remains
unclear.

In summary, our data clearly indicate that the beneficial
effects of estrogen on cutaneous healing are, in part, mediated
through inflammatory cell ERa. Moreover, we suggest that
ERa-mediated alternative macrophage activation is key for the
promotion of tissue repair, a finding that could also be
translated into other tissues/pathologies where ERa-mediated
inflammation is important. Thus, differential tissue-specific ER-
mediated effects on skin healing reveal important new targets
for future therapies to promote effective healing.

MATERIALS AND METHODS
Animal experiments

All animal studies were approved by the UK Government Home

Office (Project License 40/3203). C57BL/6 mice were purchased from

Harlan Laboratory (Bicester, UK).

Isolation of BMDMs

BMDMs were isolated from C57Bl/6 mice or inflammatory cell-

specific ERa- and ERb-null mice and littermate controls, as described

previously (Menzies et al., 2009). Briefly, bone marrow cells were

flushed with DMEM (without phenol red (Lonza, Slough, UK)) supple-

mented with 10% charcoal-stripped calf serum (Thermo Scientific,

Loughborough, UK) and L-Glutamine (Invitrogen, Paisley, UK)þ 1%

prostrate specific antigen (PSA) (CellnTec, Buckingham, UK) using

a 25G needle. The resultant cells were resuspended and plated

at a density of 10� 6 cells per ml. A concentration of 30 ng ml� 1

macrophage colony stimulating factor (eBioscience, Hatfield, UK)

was added to promote the differentiation of bone marrow cells

into macrophages and cultured for 7–10 days at 37 1C and 5%

CO2. After differentiation, BMDMs were plated in 12-well plates

(2 million cells per well) and pretreated with 17b-estradiol (10� 7
M;

Sigma Aldrich, Poole, UK), PPT 10� 6
M (4,4’,4’’-(4-Propyl-

[1H]-pyrazole-1,3,5-triyl); Tocris, Bristol, UK), or DPN 10� 6
M (2,3-

bis(4-Hydroxyphenyl)-propionitrile; Tocris) for 16 hours or left

untreated. Subsequently, BMDMs were treated with either 1mg/

ml� 1 LPSþ 100 ng ml� 1 IFN-g or 20 ng ml� 1 IL-4 for 24 hours to

differentiate into CA or AA macrophages, respectively, or left

untreated, and then used for expression analysis, flow cytometry, or

enzymatic assays.

Isolation of peritoneal macrophages
Peritoneal macrophages were isolated from female mice by intraper-

itoneal lavage, as previously described (Emmerson et al., 2010).

A density of 106 cells per ml in suspension in RPMI medium

(Invitrogen) supplemented with 10% charcoal-stripped calf serum

(Thermo Scientific) were pretreated with PPT (10� 6
M) or DPN

(10� 6
M) as for BMDCs. Subsequently, cells were treated with

either 1mg ml� 1 LPSþ 100 ng ml� 1 IFN-g or 20 ng ml� 1 IL-4 or left

untreated and collected for qPCR analysis at 6 or 24 hours.

Isolation of wound macrophages

Ten-week-old female mice were wounded according to our estab-

lished protocol (Emmerson et al., 2009). After killing, macrophages

(Gr-1� CD11bþ ) were isolated from excisional wounds (3 days post

wounding). Tissue digestion was performed according to Mahdipour

and Mace (2012). In brief, freshly harvested tissue was incubated

overnight at 4 1C in Hanks buffered saline solution containing

1 mg ml� 1 dispase I (Sigma), 10 mg ml� 1 G418 (Sigma), and 3%

fetal bovine serum, and then transferred to Hanks buffered saline

solution containing 1 mg ml� 1 collagenase D (Roche Diagnostics,

Burgess Hill, Sussex, UK) and 75 U ml� 1 DNase I (Qiagen, Crawley,

UK) for 2 hours at 37 1C. Cell suspensions from both steps were

pooled, filtered (70mM cell strainer, BD Bioscience, Oxford, UK),

centrifuged, and washed three times with phosphate-buffered

salineþ 3% fetal bovine serum and resuspended in phosphate-

buffered salineþ 3% fetal bovine serum for antibody incubation.

Cells were blocked with Fc-block for 5 minutes at room temperature,

and macrophages were isolated by first depleting Gr-1þ cells

by using DSB-X-biotin-labeled anti-Gr-1 and dynabeads (Life

Technologies, Paisley, UK), followed by isolation of CD11bþ cells

using an APC-positive selection EasySep system (Stem Cell

Technologies, Grenoble, France), according to the manufacturer’s

protocol. Isolated cells were plated at a density of 106 cells per ml

and pretreated with PPT (10� 6
M) or DPN (10� 6

M) as for BMDCs.

Subsequently, cells were treated with either 1mg ml� 1

LPSþ 100 ng ml� 1 IFN-g or 20 ng ml� 1 IL-4 or left untreated and

collected for qPCR analysis at 6 hours.

RNA isolation and qPCR

RNA was isolated from cell lysate or whole-wound homogenate

using the Purelink RNA kit (Life Technologies). cDNA was transcribed

from 1mg of RNA (Transcriptor reverse transcriptase; Roche).

Quantitative real-time PCR was performed using MESSA GREEN

qPCR SYBR Mastermix (Eurogentec, Southampton, UK) and an

iQ qPCR thermal cycler (Bio-Rad Laboratories, Hemel Hempstead,

UK). Each sample was serially diluted over three orders of magni-

tude, and all samples were run on the same 96-well plate. Expression

ratios were determined relative to a standard sample and norma-

lized using a value derived from the housekeeping gene

Gapdh. Primer sequences are listed in Supplementary Table S1

online.

Flow cytometry

Cells were detached and transferred to FACs tubes and resuspended

in staining buffer containing phosphate-buffered saline, 0.1% BSA,

and 0.05% sodium azide. Fc receptors were blocked with anti-CD16/

CD32 antibody (BD Biosciences) for 20 minutes on ice, followed by

the addition of 1.5mg ml� 1 PerCP-conjugated 7AAD (eBioscience)
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for a further 5 minutes. Cells were washed in phosphate-buffered

saline containing 10% fetal calf serum and stained with 1.5mg ml� 1

Pe-Cy7-conjugated anti-mouse Cd11b (eBioscience) and Pacific

Blue-conjugated anti-mouse F480 (AbD Serotec, Kidlington, UK) for

60 minutes on ice. For intracellular staining, cells were subsequently

incubated in Cytofix/Cytoperm Fixation/Permeabilisation Solution

according to the manufacturer’s instructions (BD Biosciences) and

stained with 1.5mg ml� 1 AF488-conjugated anti-mouse iNOS (BD

Biosciences) and 3mg ml� 1 rabbit-polyclonal Relma antibody (Pepro-

Tech EC, London, UK) for 45 minutes on ice, followed by 1.5mg ml� 1

phycoerythrin-conjugated secondary antibody for a further 30 min-

utes. Cells were washed before being resuspended in FACs buffer and

analyzed on a BD LSRII flow cytometer.

Greiss assays for determination of NO production

Quantification of nitrite accumulation was used as a measure of

NOS2 activity. A volume of 50ml of Greiss reagent Part 1 (1%

sulfanilamide in 5% phosphoric acid) was incubated with 50ml of

BMDM cell supernatant for 10 minutes. A volume of 50ml of Greiss

reagent Part 2 (0.1% N-(1-Naphthyl)ethylenediamine dihydrochloride

in dH2O) was added and incubated for 10 minutes in the dark and the

absorbance was read at 570 nm. Nitrite production was determined

by comparison with a standard curve generated from known NaNO2

concentrations.

Arginase activity assay

Arginase activity was assessed by measuring the amount of urea

production via metabolism of L-arginine by arginase (Corraliza et al.,

1994). Briefly, BMDMs were vortexed in 100ml of 0.1% Triton X-100

(Sigma Aldrich), incubated for 30 minutes at room temperature, and

100ml of assay buffer (10 mmol l� 1 MnCl in 50 mmol l� 1 Tris, pH

7.5) was added and heated at 55 1C for 10 minutes to activate the

enzyme. Triplicate samples of 25ml of cell lysate in buffer were

incubated with 25ml of 0.5 M L-arginine (Sigma Aldrich) for

60 minutes at 37 1C, after which the reaction was stopped by

adding 400ml of acid. A volume of 25ml of 9% a-isonitroso-

propiophenone (Sigma Aldrich) was added and incubated for

45 minutes at 100 1C in the dark. Absorbance was measured at

570 nm using a MRXII (Dynex Technologies, Worthing, UK).

Arginase activity was determined using a standard curve generated

from known urea concentrations.

Wounding experiments

Inflammatory cell-specific ERa and ERb-null mice (LysM-ERa� /� and

LysM ERb� /� ) were generated by crossing ERafl/fl and ERbfl/fl mice

(Campbell et al., 2010) with the well-characterized LysM-Cre mice

(Clausen et al., 1999). Female heterozygote littermates were used as

controls. Twelve-week-old female mice that had undergone

ovariectomy 1 month previously were wounded (two equidistant 1-cm

full-thickness skin incisional wounds made through skin and

panniculus carnosus muscle using a scalpel blade (Swann-Morton,

Sheffield, UK) and left to heal by secondary intention) according to

our established protocol (Emmerson et al., 2009). Exogenous estrogen

was administered at the time of wounding by subcutaneously

implantation of a 0.05-mg, 21-day, slow-release 17b-estradiol pellet

(Innovative Research of America, Sarasota, FL) with successful

estrogen replacement confirmed by enzyme immunoassay on serum

samples.

Animal euthanasia and tissue collection
Animals were killed by rising carbon dioxide overdose and confirmed

by cervical dislocation. Wounds were excised and bisected (laterally

at the midpoint) at days 3 and 7 post wounding, with one half fixed in

formalin-fixative solution for histology and the remaining half snap-

frozen in liquid nitrogen and stored at � 80 1C before RNA isolation.

Histology and immunohistochemistry

Five-micrometre sections were cut from bisected wound tissue

embedded in paraffin wax and stained with hematoxylin and eosin

or subjected to immunohistochemistry with rat anti-neutrophil (Ther-

moScientific), rat anti-Mac-3 (Becton Dickinson, Oxford, UK), rabbit

anti-iNOS, goat anti-arginase 1 (Santa Cruz Biotechnology, Heidel-

berg, Germany), rabbit anti-nitrotyrosine (Millipore, Watford, UK), or

goat anti-Ym1 (R&D Systems, Abingdon, UK) and the appropriate

biotinylated secondary antibody followed by ABC-peroxidase reagent

(Vector Laboratories, Peterborough, UK) with Novared substrate and

counterstaining with hematoxylin. For immunofluorescence, labeled

secondary antibodies were used (Invitrogen). Wound area and cell

numbers were quantified with the Image Pro Plus software (Media-

Cybernetics, Silver Spring, Maryland), as previously described in

detail (Emmerson et al., 2012). Briefly, wound area was measured

from the panniculus carnosus muscle, to the margins of normal skin

on either side of the wound, and under the epidermis or eschar. Re-

epithelialization was calculated as a percentage by using the

measurement of newly formed epidermis divided by the distance

that the epidermis would migrate to fully close the wound.

Statistical analysis

Statistical differences were determined using analysis of variance

(one-way and two-way) (SIMFIT, The University of Manchester).

A P-value of o0.05 was considered significant.
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