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Waiewski Principle is an important tool in the study of the asymptotic 
behavior of solutions of ordinary differential equations. A direct extension of 
this principle to retarded functional differential equations (RFDEs) can be 
obtained by noticing that solutions of RFDEs generate processes on C = 
C([--r, 01, [w”l) and by using the general version of Waiewski Principle for 
flows on topological spaces. The resulting method is of little use in applications, 
due to the infinite-dimensionality of the space C. This paper presents a 
“Razumikhin-type” extension of Waiewski’s Principle, which is widely ap- 
plicable to concrete examples. The main results are Corollaries 3.1 and 3.2. 
Also, an extension of the method to RFDEs with a merely continuous right- 
hand side is given, and a few examples illustrate the use of the method. 
Throughout the paper, n standard notation is used. 

1. INTRODUCTION 

Waiewski’s Principle [9] is an important tool in the study of the asymptotic 

behavior of solutions of ordinary differential equations (ODES). A direct 

extension of this principle to retarded functional differential equations (RFDEs) 
can be obtained by noticing that solutions of RFDEs generate processes on 

C = C([-r, 01, W) (cf. [3], p. 76), and by using the general version of 

Waiewski’s Principle for flows on topological spaces (see e g. [2], p. 24). The 
resulting method is of little use in applications, due to the infinite-dimen- 

sionality of the space C. 
This paper presents a “Razumikhin-type” extension of Waiewski’s Principle, 

which is widely applicable to concrete examples. 
The main results are Corollaries 3.1 and 3.2. Also, an extension of the method 

to RFD& with a merely continuous right-hand side is given, and a few examples 
illustrate the use of the method. In particular, a result in [8] is generalized. 
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Throughout this paper, standard notation is used. Let us only remark that 
/lo, A and &4 denote the interior, the closure and the boundary of A, respec- 
tively. (A being a subset of some topological space.) If x is a continuous mapping 
from an interval [-r + t, t] into [w”, then xt denotes the element of 
C = C([-Y, 01, Rn) defined as x,(e) = x(t + 8), 0 E [-Y, 01. 

2. W~~EWSKI’S PRINCIPLE FOR SYSTEMS OF CURVES 

In this section, an abstract version of Waiewski’s Principle is stated. 
It appeared earlier in a different form in [7]. However, the version presented here 
has an intuitively more appealing geometrical character, and it leads more 
directly to our main result in Section 3. We need two definitions: 

DEFINITION 2.1. Let X be a topological space, and let A C X. We consider 
A endowed with the relative topology of X. 

(a) A is called a retract of X, if there exists a continuous mappingf: X -+ A 
such that f(x) = x for all x E A. f is called a retraction of X onto A. 

(b) A is called a strong deformation retract of X if there is a continuous 
mapping F: [0, l] x X -+ X such that: 

(i) F(0, x) = x for all x E X, 

(ii) F(1, x) E A for all x E X, 

(iii) F(s, x) = x for all s E [0, l] and all XE A. 

F is called a strong deformation retraction of X onto A. 

Remark. This definition of a strong deformation retract follows Conley [2]. 
Borsuk [I] uses a weaker definition. 

DEFINITION 2.2. Let A be a convergence space, let Q C R x A be open in 
R x A, and let x be a mapping, associating with every (a, A) E Q a function 
x(0, A): D,,, -+ [Wn where D,,, is an interval in R (closed, open, or half-open). 

Assume 1, through 3. 

[SC 11 (J ED,,,; 

[SC 21 if (un, A,> E Q, (0, A) E J-4 t, , t E R 

t E D8., , and if o’71 --f 0, A, ---f A, t, -+ t as 

n -+ co, then there is an n, such that for all 

8 > no: t, E D~,,A,; 
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[SC 31 If (u, , A,) E s2, (a, A) E i-2, u, ---f u, A, + h 

and t, E DO,r,A, , t E D,., , t, ---f t, then 

X(% , &J(L) - x(u, h)(t). 

If all the above conditions are satisfied, then (A, Q, x) is called a system of curves 
in UP. 

THEOREM 2.1, Let (A, Q, x) be a system of curzles in R”. Let W, W, 2 be sets. 
Assume that conditions 1 through 4, below hold: 

(1) (01) w is open in [w X [w”, WC &I, 
(/I) ZCw~W,B=~n(ZuW),ZnWisaretractofW,Z~Wis 

not a retract of 2. 

(2) There is a continuous map p: B --f A such that for any z == (a, y) E B: 
(a, p(z)) E -Q, and if also z E W, then x(u, p(z))(u) = y. 

(3) Let A be the set of all z = (a, y) E Z n w such that there is a t, t > u, 

t E Do>p(z) and such that (t, ~(a, p(z))(t)) q! w. 

Assume that for ecery z = (a, y) E A there is a t(z), t(x) > u, such that: 

(a) t(z) ED,,,(,) and for all t, o < t < t(z): (t, x(u,p(z))(t)) E w, 

(P) (W,x(u, pM)(tk))) E W> 
(y) For any 6 > 0, there is a t = t(S, z), t(z) < t < t(z) + 8, such that 

t E Dc7dz) and (6 40, p(d)(t)) $6. 

(4) For any z = (u, y) E W n B, and aZZ 8 > 0, there is a t = t(8, x) 
such that u < t < o + 8, t E D,,,(,, and (t, x(o,p(z))(t)) $6. 

If all the aboae assumptions are satisfied, then there is a q, = (uO , yO) E Z n w 
such that for ecery t :- q, , t E DaO,v(z,j : (t, x(uO , p(q))(t)) E W. 

Proqf. To prove the theorem, define the map g on A u W as follows 
(.a =: (u,y)): 

Then g is well-defined, because t(z) E D,,,(,) for z E A. 
Using Definition 2.2 and assumptions (3) and (4), it is easily proved that 

g[A u w] C W and g is continuous. Hence g is a retraction of A v W onto W. 
If the theorem were not true, then 2 n w = A from the definition of A, hence 
W would be a retract of 2 u W. But since 2 n W is a retract of W by assumption 
(l), 2 n W would also be a retract of 2, which contradicts assumption (1). 

This completes the proof of Theorem 2.1. 
Theorem 2.2 is very similar to Theorem 2.1 and the proof repeats that of 

Theorem 2.1 with obvious modifications. Theorem 2.2 is of grater use than- 
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Theorem 2.1 in applications to autonomous RFDEs and this is why it is for 
mulated separately. 

THEOREM 2.2. Let (A, Q, x) be a system of curves in !I%“. Let W, W, Z be sets. 
Assume that conditions (1) through (4) below hold; 

(1) (a) w is open in Iw”, WC &J, 
(/3) ZCWU W, B:=Zn(Zu W), Zn W is a retract of W, but 

Z n W is not a retract of Z. 

(2) There is a continuous mapp: B --t (1 such thatfor any z E B:(O, p(z)) E Sz, 
and if also z E W, then x(0, p(z))(O) = z. 

(3) Let A be the set of all z E Z n w such that there is a t, t > 0, t 6 Do,s(z) 
and such that x(0, p(z))(t) 6 W. Assume that for every x E A there is a t(z), t(z) > 0, 
such that: 

(CS) t(z) E DO,D(z) , and for all t, 0 < t < t(z): x(0, p(z))(t) E w, 

03) 40, PWW) E wj 

(7) For aZZ 6 > 0 there is a t, t(z) < t < t(z) + 6, such that t E Do,v(z) 

and ~(0, p(4)(t) # W. 

(4) FOY all x E W n B and all 6 > 0 there is a t = t(6, z) such that 

0 < t < 6, t E D,,,(z) and x(0, p(z))(t) 6 6. 

If all the above assumptions are satisfied, there exists a z0 E Z n w such that 
for aZZ f > 0, t E DO,P,(z,j : x(0, p+,,))(t) E w. 

Remarks. (1) In this work, we shall consider the following application 
of Theorems 2.1 and 2.2: Let n = C = ([-Y, 01, W) and let Q be open in 
[w x C. Let F: D -+ [w” be a continuous mapping. 

Consider the equation: 

f(t) = F(t, xt). (2.1) 

Assume that through each (u,(b) E Q there is a unique solution x(u, 4) of Eq(2.1) 
defined on a maximal interval [o, a), 0 < a < co. Let D,,, = [u, a). Then 
(/1,52, X) is a system of curves in [w”, this being a consequence of the continuous 
dependence of solutions of Eq. (2.1) on initial data. 

Henceforth, except for Section 4, we shall tacitly assume that all systems of 
curves which will be considered are generated in the way just described. 

(2) If assumption (2) is replaced by the stronger assumption (2’): 
(2’) There is a continuous mapping p: w u W -+ rl such that for any 

x E (a, y) E w u W: (a, p(s)) ED and ~(a, p(z))(u) = y, 

and if, at the same time, (I/?) is replaced by the weaker assumption (l/3’): 

( l/3’) W is not a strong deformation retract of w u W, 
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then the conclusion of Theorem 2.1 remains true. (In the definition of A, 
“2” is replaced by “w u W”, and in assumption (4), W n B is replaced by 
“W”.) If not, define G: [0, 11 x (w U W) + w u W to be 

I 

(0 + s (f(z) - a), +J, PW)(u + s . w - UN 
G(s, 0, Y) = if z=(u,~)Eco=A 

\(%Y) if z = (a, y) E W 

It is easily proved that G is a strong deformation retraction, which contradicts 
assumption (l/Y) and proves our statement. An analogous remark applies to 
Theorem 2.2. 

(3) For autonomous RFDEs, there is a simple relation between Theorem 
2.2 and the direct extension of Waiewski’s Principle mentioned in the intro- 
duction. Let us formulate the latter as Theorem DE: 

THEOREM DE (cf. Conley [2], p. 24). Let Q be open in C, and let F: Q + iP 
be continuous. Consider Eq. (2.2): 

2 = F(x,). (2.2) 

Assume uniqueness of solutions of Eq. (2.2). Let w* be an open subset of L?. Let W” 
be a subset of aw* n 52. 

Defke A* to be the set of all 4 E w * such that xt(O,d) $ w* for some t > 0, 
where x,(0,$) E C is the so&ion of Eq. (2.2) through (0,4). Assume that (3) and 
(4) below hold: 

(3) For every q5 E A* there is a t(d) > 0 such that: 

(a) the solution through (0, 4) is defked at t(#) and for all 0 .< t < t(4): 

x,(0, $) E w *. 

(is) %dO7 $1 E W”- 
(4) For all 4 E W* and all 6 > 0 there is a t = t(8, $), 0 < t < 6, 

such that the solution through (0,4) is defined at t and x,(0,4) $ w*. 

Then W+ is a strong deformation retract of A* U W1;. 

Now suppose the system (/l, Q, x) is generated by Eq. (2.2) and that assump- 
tions (1) and (2) of Theorem 2.2 hold. Let w* be the set of all 4 E C such that 
+(0) E w for 0 E [---I, 01. It is easily seen that w* is open in C. Suppose that w* 
satisfies the following condition (CND): 

(CND) For every 4 E C such that 4(e) E w for 0 E [-r, 01, there is a 
sequence (+,], 4” E w*, such that 4” + 4 as v + co (in the topology of C). 

Now assume that w* C Q and let W* be a subset of SW* n Q. Let A* be 
defined as in Theorem DE. If 4(O) E W for every 4 E W*, and if p(z) E W* 
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for every z E I&’ n B, then a simple argument shows that assumptions (3) and 
(4) of Theorem DE imply assumptions (3) and (4) of Theorem 2.2. 

Condition (CND) is satisfied if w has the following property (PR): 

(PR) For every x E CT, and every E > 0 there is an open set C’, con- 
taining x, with diameter <E and such that U, n w is connected. 

This is proved by using simple topological arguments. 
Property (PR) cannot, in general, be dispensed with: e.g., if w = [(0, 1) x 

(0, ~M~PI x 10, 1/m. 

3. POLYFACIAL SETS AND WABEWSKI'S PRINCIPLE FOR RFDEs 

In this section, our main results are stated and proved. They rest on the 
following concept. 

DEFINITION 3.1. Let Zi, mj, i = I,..., p, j = l,..., q be real-valued Cl- 
functions defined on [w x W. The set w: w = {(t, y) E Iw x W / Zi(t, y) < 0, 
mj(t, y) < 0, for all i,j} is called a (time-dependent) polyfacial set. If Zi, rni are 
Cl-functions defined on [w”, then 

w = { y E R” i Zi( y) < 0, mj( y) < 0, for all i, j} 

is called a time-independent poZyfacia2 set. 

A (time-dependent) poZyf acial set will be called reguZar with respect to Eq. (2.1), 
if (a), (p), (y) below hold: 

(cd) If (t,+) E Iw x C and if (t + e,+(e)) E w for all 8~ E-Y, 0), then 

(6 $1 E Q. 

(/I) For all i = l,..., p, all (t, y) E & for which Zi(t, y) = 0, and all 4 E C 
for which 4(O) = y and (t + 0,$(e)) E w for 6 E [-Y, 0), it follows that (t, 4) E .Q 
and: 

lfl 2 (t, Y) .F,.(h 4 + g (t, y) > 0. 

(y) For all j = I,..., q, all (t,y) E 8~ for which mj(t,y) = 0, and all 
4 E c for which 4(O) = y and (t + 8,+(e)) E w for 0 E [-Y, 0), it follows that 
(t, 4) E Q and: 

If Zi, rni do not depend on t, w is of the form w = [w x 5, where i3 is a time- 
independent polyfacial set. 
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If w is regular with respect to Eq. (2.1), Q is also called regular with respect 

to Eq. (2.1). 

Remarks. (1) Uniqueness of solutions of Eq. (2.1) is not used in Defi 
nition 3.1 and the concept defined there makes sense for arbitrary RFDEs. 

(2) Onuchic’s definition of a regular polyfacial set with respect to Eq. (2.1) 
(see [g]) requires that the inequalities in (fl) and (y) be satisfied for any 4 E C 
such that d(O) = y (and (t, y) as above). This very stringent condition makes 
his results applicable only to very special types of RFDEs. 

(3) The concepts defined in Definition 3.1 are related to, and were, in 
fact, inspired by the concept of a Razumikhin-type Liapunov function: 

A Razumikhin-type Liapunov function with respect to Eq. (2.1) is a continuous 
function 1’: [w x W ---L Iw such that lim sup h+o+(lPw(t + h, x(t, d)(t + 4 - 
qt, C(O))1 < 0, f or every (t, +) E Q such that V(t + e,+(e)) < V(t,+(O)) 
for 0 E [--1., 01. 

Another related concept is that of a guiding function. See 133, p. 139, for a 
definition. 

(4) In [6j, the author considers the scalar delay equation k(t) = f(t, x(t), 
x(t - II),..., x(t - mh)), where h > 0 and m is an integer >O. She imposes 
conditions on f implicitly ensuring that for some R > 0, the interval [-R, R] 
is a regular polyfacial set with respect to this equation (in our sense). [-R, R] 
has pure “exit” behavior on the boundary, i e. no functions of type rnj 
are involved. 

THEOREM 3.1. Let w be a (time-dependent) polyf acial set, regular with respect 
to Eq. (2.1) and let W be defined as follows: 

w = {(t, y) E &JJ I mj(t, y) < 0, for all j = I ,..., q}. 

Moreover, let Z be a subset of W u w, and let p: B = z n (Z u W) - C 
be continuous such that ;f z = (t, y) E: B, then (t, p(z)) E Q, and: 

(1) If z = (t,y)~A (A as in Theorem 2.1), then (t + e,p(z)(B))~ w 
fOY 0 E [-Y, 01. 

(2) If z = (t, y) E W n B, then p(z)(O) = y and (t + O,p(z)(B)) E w 
foY 8 E L-V, 0). 

Then assumptions (3) and (4) of Theorem 2.1 are satisfied. 

hoof. Let z = (a,~) E A, and let t(z) be the smallest of all t >, 0 such that 

t E D,,,u and (t, ~(a, W)(t)) $ w. S ince (0, ~(a, P(z))(u)) = (0, P(z)(O)) E w, 
it follows that 0 < t(z) < co. Obviously, (t(z), x(0, p(.z))(t(x))) E &J and for 
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u < t < t(z): (t, x(0, p(z))(t)) E W, hence (301) holds. Let 4 = X&G, p(z)) E C. 

Then (t(z), $1 E f& (W, d(O)) = (W, 40, P(~)(W) E am, and 

for 0 E [-r, 0). 

We shall show that (t(z), 4(O)) E W. Suppose on the contrary that 
(t(z),4(0)) $ W. Since (t(z), 4(O)) E &J it follows that for some j,, , 
mio(t(x), 4(O)) = 0. Hence the inequality in (y) of Definition 3.1 is satisfied. 
Since x(a, p(z))(t) . d’ff IS I erentiable in t for t > o, this inequality becomes 

hence, for some 6 > 0 and all 0 < h < 6: 

my@) - A, x(0, p(4)(@) - h)) 

> dyt(z), x(0, p(z))(t(z))) = myt(z), $(O)) = 0. 

Hence (t(z) - h, ~(a, p(z))(+) - h)) 6 W, which is a contradiction to (3a) 
(which we have already proved). 

Hence, indeed, (t(z), C(O)) E Wand, th erefore, (38) in Theorem 2. I is satisfied. 
It follows that Po(t(z), $(O)) = 0 for some i,, . Applying (8) of Definition 3.1 
we see that 

Hence, for some 6 > 0 and all 0 < h < 8 

wG4 + h, 40, PW)(W + 4) 

> li”(t(z), x(u, p(z))(t(z))) = PJ(t(z), b(O)) = 0. 

Hence, (t(z) + h, x(0, p(z))(t(z) + h))) $ W, which is even stronger than 
(3~) of Theorem 2.1. Hence (3~) is, indeed, satisfied. 

Now assume z = (a, y) E W n B. Hence Po(u, y) = 0 for some ZO . Let 
4 = p(z), Then (t + 0,$(Q)) E w, for all -Y < 6’ < 0. Hence 

where “d/dt” denotes the right-hand derivative. But this implies the existence 
of 6 > 0 such that for all 0 < h < 8 

zyo + h, x(0, p(z))(u + 4) > eu, x(u, P(4)(u)) 
= tyu, (b(0)) = zyu, y) = 0. 
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Hence (U + h, x(~,~(z))(u + h)) $w, for 0 < h < 6, which, a fortiori, implies 
(4) of Theorem 2.1. 

The theorem is proved. 

COROLLARY 3.1. If all assumptions of Theorem 3.1 are satis$ed, and zf, in 
addition, Z r\ W is a retract of W, but Z n W is not a retract of W, then there 
exists a .zO = (a0 , yo) E Z n w such that (t, x(uo , p(z,,)))(t)) E w for every t 3 u,, , 

t E Dc*.dzo) . 

Proof. Combine Theorems 2.1 and 3.1. 
The following theorem is a reformulation of Theorem 3.1 for time-inde- 

pendent polyfacial sets. The proof follows the same lines as that of Theorem 3.1 
and is, therefore, omitted. 

THEOREM 3.2, Let w be a time-independent polyfacial set in IF, regular with 
respect to Eq. (2.1), and let W be defined as follows: 

W = ( y E &J j mj( y) < 0, for all j = l,..., q]. 

Moreover, let Z be a subset of w u W, and let p: B = Z n (Z u W) + C be 
continuous and such that if z E B, then (0, p(z)) E Q, and: 

(1) If z E A (A as in Theorem 2.2), then p(z)(B) E w for 6’ F [-r, 01. 

(2) If z E W n B, then p(z)(O) = z and p(z)(B) E w for 0 E [-r, 0). 

Then assumptions (3) and (4) of Theorem 2.2 are satisfied. 

COROLLARY 3.2. If all assumptions of Theorem 3.2 are satisfied, and tf, in 
addition, Z n W is a retract of W, but Z n W is not a retract of Z, then there 
exists a x0 E Z n wo such that x(0, p(z,,))(t) E w for every t 3 0, t f Do,p(z,) . 

Remarks. By using Remark 2 after Theorem 2.2 a modification of Corollaries 
3.1 and 3.2 can be obtained. Obvious details are omitted. 

EXAMPLE 3.1. Consider the scalar equation (3.1): 

i = -ax(t) - bx(t - r), where a, b E iw, a # 0, r > 0. (3.1) 

Let w = (-CX, OL), OL > 0. Then any easy computation shows that w is a regular 
time-independent polyfacial set with respect to Eq. (3.1) if and only if 1 b 1 < 1 a 1. 

If / b 1 < 1 a 1, then it is intuitively clear that w is regular not only with respect 
to Eq. (3.1) but also with respect to all sufficiently small perturbations of Eq. (3.1). 
However, if [ a 1 = 1 b /, then even the slightest perturbation a, b + a’, b’ 
can yield / a’ ! < 1 b’ I and then w is no longer a regular polyfacial set with respect 
to the perturbed equation. In fact, there is no regular polyfacial set with respect 
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to the perturbed equation which contains 0. This motivates the following con- 
cept: 

DEFINITION 3.2. Let Sz C R x C be open, and F: 52 + W be continuous. 
Suppose w is a (time-dependent) regular polyfacial set with respect to Eq. (3.2): 

% = F(t, xt). (3.2) 

Then w is called stable at F if there is an E > 0 such that w is regular with respect 
to Eq. (3.3): 

k = F’(t, x,), (3.3) 

whenever F’: Q -+ W is continuous and cb, 1 FT(t, 4) - Fi(t, #)I < E, 
for all (t, 4) E 52 for which (t, C(O)) E &.J and (t + 8, +(e)) E w, 0 G [--r, 0). 

The next proposition establishes a simple characterization of stability of 
w atF. 

PROPOSITION 3.1. Let w be a regular polyfacial set with respect to Eq. (3.2). 
Then w is stable at F if and only if there is E > 0 such that for all i, j, and all 
(t, 4) E R x C for which (t, 4(O)) E &J, and (t + 0, +(e)) E W, 0 E [-Y, 0), the 
following conditions hold: 

(1) E jl 1 2 (t, 4(o)) / < 1 r$ g (t, C(O)) . F,(t, d) + g (ty 4(O)) j y 
whenever P(t, 4(O)) = 0. 

(2) E g 1 y (t, C(O)) j < I & g (6 4(O)) . FT(C 4) + g (t, 4(O)) 17 

r 

whenever mj(t, d(O)) = 0. 

The proof of Proposition 3.1 is a simple computation, which is, therefore, 
omitted. 

If F(+) = -a+(O) - b#(--r), i.e. in case of Eq. (3.1), Proposition 3.1 easily 
implies that If8 x (-a, a) is, indeed, stable at F if I b / < / a 1, and not stable 
atFifIbj =luj. 

In Examples 3.2 through 3.5 below, uniqueness of solutions is assumed. 

EXAMPLE 3.2. Consider Eq. (3.4): 

4 = -ax&) - bxdt - y) +fdt, xlt , Ed, 
x2 = -q(t) - dxg(t - Y) if,(t, xlt , xZt), 

(3.4) 

where a, c f 0, C = C([-Y, 01, Ok!), and f = (fi ,f.): R x C x C-t lR2 
is continuous and such that for some M, N > 0: 

Ifi(t, 6 #)I G (1 a I - I b I) M for all (t, 4, 4) E R X C X C 
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for which 

127 

and 

If2(t,+,1Cr)l <(lcI-i4)~ for all (t, 4, I/J) E R X C X C 

for which 

I ?4w = 1L’, I @)I < Jf> I VW < N / d(e)1 < M, e E c--r, 0). 
Then u := (--M, M) x (-A’, N) is a regular polyfacial set with respect to 
Eq. (3.4). Hence, there is a solution x(t) = (xl(t), xa(t)) of Eq. (3.4) such that 
x(t) is defined for t > 0 and x(t) E w for t > 0. 

Example 3.2 is easily generalized to arbitrary dimensions. 

EXAMPLE 3.3. If y = (i:) E l&P and k E R, define the “kth power of y” to be 

Consider Eq. (3.5): 

i(t) = z4x(t) 1. Bx(t - I-) + PLY”(t) + fp(t - Y) 
+ cxyq + Dkyt - r) + E(t) = F(t, Xi) (3.5) 

where .T = (2) E R, ,4, B, P, Q, C, D are 2 x 2 matrices, 

D= dl 0 i 1 0 4' 
;cl! > id,~, lc:!! > ld,l, 

E: R ---f UP is continuous. 
It is a matter of trivial computation to see that for M > 0 large enough, 

the square u = (--M,M) x (-M, M) is a regular polyfacial set with respect 
to Eq. (3.5), and hence there is a solution x(t) of Eq. (3.5) defined for t > 0 
such that s(t) E w for t > 0. 

EXAMPLE 3.4. The following example is a simple illustration of the useful- 
ness of time-dependent polyfacial sets. 

Let ol: R - 58 and /3: R - R be P-functions such that al(t) - 0, /3(t) -+ 0 
as t -+ j- y. Let 

qt, Y) = y - a(t) 

yt, Y) = P(t) - Y 

m(t,y) = -t 

w/36/1-9 
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Assume that ,B(t) < m(t) for t > 0. Let 

w = ((t, y) E R x lF! I zyt, y) < 0, qt, Y> -=c 0, MY) < 01. 

Consider Eq. (3.6) 

32 = F(t, x,), (3.6) 

where F: R x C([-r,O], W) --f Iw is continuous and such that: 

for which t > r, (b(0) = a(t), fi(t + 0) < 4(e) < a(t i- e), 19 E [--Y, O), and 

FCC $1 < B’(t) for all (t, 4) E [w X C 

for which 

t > r, +(o) = p(t), 4 + e) > +(e) > ~(t + 4, e E L-Y, 0). 

Then w is a regular polyfacial set with respect to Eq. (3.6), and there is a 
solution x(t) of Eq. (3.6) such that x(t) is defined for all t > 0, and p(t) < 
x(t) < CC(~) for t 3 0, hence x(t) + 0 as t --+ CO. 

The following example generalizes Theorem 3 in [8]. 

EXAMPLE 3.5. LetC=C([--r,O],W)andletF:IW x Cx C+Rnbea 
continuous mapping. Consider the second-order RFDE 

Le=y 

Assume that 

is satisfied for all t > T + r, and all 4, # E C for which: 

and 

w) . +(e) c 4(o) . 468 for e E [-r, 0). 

(3.7) 

(3.8) 

(The dot denotes the scalar product in W.) Assume also that uniqueness holds 
for solutions of Eq. (3.7). 



WAkEWSKI’S PRINCIPLE FOR RFDES 129 

Let 

Then for every t, > T + Y there is a family of initial values (4, $) E C x C, 
depending on at least n parameters, such that x(t, ,$, $)(t) . x(t, ,& q)(t) is 
nonincreasing for t 3 to , as long as it is defined. 

Proof. Let b > 0, and T + r < t, < t, . 
Let 

qt, x,y) = x ‘y - ZJ 

m,(t, X,Y) = t1 - t I 
fortER,(X,y)ElP X R”, 

Wb : = {(t, x, y) I m,(t, x, y) < 0, hit> XT Y) < Oh 

w, : = ((6 x, Y) E 8% I m&9 x7 Y) < 0) 

= {(t, x, y) I t > t, , x . y = b}. 

Then wt, is a polyfacial set and assumption (3.8) just implies that wb is regular 
with respect to Eq. (3.7). Let 2, be the line segment connecting two points 

(to, 6, , Q) and (to , t2 y ~1 1 ocated in two distinct components of W, , with 

(to > 090) $ &I . 
Now a simple geometrical consideration shows that a continuous mapping 

p: 2 -+ C can be constructed which satisfies all assumptions of Theorem 3.1. 
Hence, there exists a (xb , yb) E 2, n w such that the solution z(t, , p(t, , xb , yb))(t) 
remains in wb for t 3 to , as long as it is defined. Now take a decreasing sequence 
b, --f 0 and use a compactness argument to obtain a (x0, y,,) such that the solu- 

tion 4t01 p(t, , x0, ye))(t) satisfies X(t, , p(t, , 30 7 YoMt) Y(to ) P(to > x0 1 Yo)) x 
(t) < 0 for all t > 0, as long as it is defined. 

Since for b, # 6, , Zb, can be chosen to be disjoint from Zb, , it follows that 
{(x0 , yo)} depends on at least n parameters and the example is proved. 

Remark. Onuchic’s Theorem 3 in [8] yields a somewhat stronger conclusion. 
However, his assumptions are much stronger than those of Example 3.5. 
Onuchic assumes that (3.8) be satisfied for all 4, I/ E C, #(O) # 0, t > T; 

E.g. Let C = C([--r, 01, R). Let F(t, 4, $J) = d(O). (+(O) . 4(O) - 4(-r) . 
$(--I)), then the assumption (3.8) is satisfied for all 4, $ E C such that 
4(O) . 4(O) > 0 and 

4(-4 4(-r) < W) W). 

Even the stronger inequality 

4(O) . W, 4, #) > 0 
holds for all such 4, #. 



130 KRZYSZTOF P. RYBAKOWSKI 

However, Onuchic’s assumption is not satisfied, since 4(O) . P’(t, $, #) + 
#(O) . 4(O) can be made negative by proper choice of 4, # G C, g(O) # 0. 

4. EXTENSION OF SOME RESULTS TO THE CASE IN WHICH 

UNIQUENESS OF SOLUTIONS DOES NOT HOLD 

In the following two sections, we shall extend Theorems 3. I and 3.2 to the case 
in which F is continuous, but the corresponding Eq. (4.1) 

k = F(t, XJ 

does not necessarily satisfy the uniqueness property of its solutions. 
To this end, we need the following approximation theorem: 

(4.1) 

THEOREM 4.1. Let Q be open in R x C, F: 52 + Rn be continuous. Suppose 
w is a regular polyfacial set with r_espect to Eq. (4. I). 

Then there is an open subset Sz of Q, and a sequence of continuous mappings 
pP : Q - UP such that uniqueness holds fey solutions of equation k = F,,(t, xt) 
for all V, pv - F, as v + co, uniformly on 0, and w is a regular polyfacial set 
with respect to Eq. (4.2) and Eq. (4.3,) for all v: 

it = E’(t, x,), where E =E!o, 

ut = I;;,(t, x1). 

(4.2) 

(4.3”) 

The proof of Theorem 4.1 is given at the end of this section. 
Let us next state a lemma: 

LEMMA~.~. LetQbeopeninR! x C,F,:Q-tWandF:8 
tinuous and that Fv -+ F as v + co, uniformly on Q. 

Consider Eq. (4.4) and Eq. (4.5,): 

W be con- 

k = F(t, XJ, (4.4) 

k = F,(t, xt). (4.5,) 

Let x”(t) be a noncontinuable solution of Eq. (4.5”), through (a”, @‘), where ((T”, d”) E Q. 
Suppose (CY, Cy) + (uO, $0) E Q as v - co. Then there exists a noncontinuable 
solution x”(t) of Eq. (4.4) through (o”, 4”) and a subsequence (.x”*) of (x”) such that 
whenever b is such that x0 is dejked on [uo - Y, b], then for all E > 0 there is 
a k,(c) such that for k 3 k,(c), x”~ is defined on [a0 - 1’ ) E, b] and xv” + s,, 
uni$ormLv on [o” - Y + E, b]. 

The proof of the lemma uses Zorn’s lemma and standard arguments from the 
theory of KFDEs, and is omitted. (Cf. Hale [3]). 
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THEOREM 4.2. Let Q be open in l% x C, F: Q + iWn be continuous and w 
be a regular polyfacial set with respect to Eq. (4.1). 

Let W be defined as in Theorem 3.1, suppose Z is a compact subset of w v W, 
and there is a mapping p, p: B = Z n (Z u W) - C, satisfying all assumptions 
of Theorem 3.1, with “A” replaced by “Z A w” in the statement of that theorem. 
Note that B = Z in this case. Finally, assume that one of the following cases 
holds: 

Either: 

1 ’ Z n W is a retract of W and Z n W is not a retract of Z, 

Or: 

2’ p satisfies p(z)(O) = y for z E w u W, Z = w u W, and W is not a 
strong deformation retract of w. 

Then there is a z0 = (uU , yO) E Z n w and a noncontinuable solution x0(t) 
of Eq. (4.1) through (u. ,p(z,)) such that (t, x0(t)) E w for all t > u,, , as long as 
t is in the domain of de$nition of x0. 

Proof. We can find a sequence pV satisfying the conclusions of Theorem 4.1. 
Since Eq. (4.3,) satisfies the uniqueness property of solutions and all assumptions 
of the corollary to Theorem 3.1 (see also the remark following that corollary) 
are satisfied, we obtain for every v a .z” = (Y, y”) E Z n w such that the solution 

(t, x”(u”, p(4)(t)) of Eq. (4.3,) remains in w for all t > uy, as long as it is defined. 
Since Z is compact, we can assume that (a*‘, y”) - (u”, y”) E Z as v -+ a3. 

Let $’ = p(z”) and do = p(9), so = (aa, y”). Apply Lemma 4.1 to obtain a 
solution of the restricted equation Eq. (4.2) with properties listed in the lemma. 

Let us first show that zU E Z n w. If not, z. E Z n W. Keeping in mind that 
w is a regular polyfacial set with respect to Eq. (4.2) and proceeding as in the 
proof of Theorem 3.1, we see that there is a t, t > u”, such that x0(t) is defined 
and (t, x0(t)) $ W. But then Lemma 4.1 implies that for k sufficiently large, 
xl’k(t) is defined and (t, x”+(t)) $ -, w which contradicts the choice of .vVk. Hence, 
indeed, z. E Z n w. 

Suppose now that for some t > uo, x0(t) is defined and (t, x0(t)) $ w. Then 
t > u” and by the same argument as above, there is a f > aa such that x”([) 
is defined and (f, x0(f)) $G. Now the application of Lemma 4.1 again leads 
to a contradiction. 

So far we know that x0 is a noncontinuable solution of Eq. (4.2). Hence it is 
also a solution of Eq. (4.1). We must show that x0 is also noncontinuable as a 
solution of Eq. (4.1). But this is obvious by (a) of Definition 3.1, since w is a 
regular polyfacial set with respect to both Eq. (4.1) and Eq. (4.2). The theorem 
is proved completely. 

Remark. Theorem 3.2 can analogously be extended to the “nonuniqueness” 
case. The details are omitted. 



132 KRZYSZTOF P. RYBAKOWSKI 

We shall now prove Theorem 4. I : Let us introduce some notation: 
Let: 

r = {(t, 4) E R x c I (f, b(O)) E au, (t + 0, W)) E UP 0 E L-r, 0)) 

77 = ((4 4) E R x c I (f + 0, yqq E w, f3 E C-r, O]> 

Li = {(t, x) E acd 1 P(t, x) = o> 

Mj = ((t, X) E & 1 d(t, X) = 0) 

By (a) of Definition 3.1, it follows that r u rr C Q. 
For every (t, 4) E Q there is an open set U(t, 4) C Q containing (t, 4) and such 

that: 

(I) For all i = l,...,p, if (t, 4(O)) $L’, then for ah (r’,$‘) E u(r,#): 

(f, +‘(oN $Li. 

For allj = l,..., q, if (t, d(O)) $ Mj, th en f or all (t’, 4’) E U(t, 4): (t’, 4’(O)) # Mj. 

(2) If (t, 4) E r and (t, $(O)) E Li, then for all (t’, d’), (t”, 4”) E U(t, #): 

CL1 (WY,) (f’, C’(O)). 

F,.(t”, 4”) -t g (t’, d’(O)) > 0. 

If (t, 4) E r and (t, (b(0)) E Mj, then for all (t’, +‘), (r”, 4”) E u(t, #): C,“=I 

Pmji3Yr) O’J TV))- 

F,(t”, $“) + g (t’, $7%‘(O)) < 0. 

The existence of U(t, 4) satisfying (I) and (2) a b ove follows immediately from 
the definition of r, Li, Mi and Definition 3.1. 

Now let 

and let E > 0 be arbitrary. 
Then there exist two families of open sets, 9>, V’, such that: 

(a) “& is a locally finite refinement of { U(t, 4) 1 (t, 4) E r>; 
%c is a locally finite refinement of {U(t, 4) / (t, 4) E 771; 
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(b) if VEV=u$l, then V#+ and for 

(t’, f$‘), (t”, I$“) E v: i 1 F,(t’, $‘) - F,(t”, $q < ; . 
i-=1 

This follows from the continuity of F and from general topology. 
Let us recall the following concept: 

DEFINITION 4.1. Let X, Y be normed linear spaces, A a subset of X, and 
f: A + Y a mapping. 

f is called Lipschitzian, if there is an L > 0 such that 

llf(4 -f(Y)11 <Ll!x --Y11 for x, y E A. 

f is called locally Lipschitzian, if for every x E A there is an open neighborhood 
li of x, such that f j A n U is Lipschitzian. 

Now the following well-known result holds (cf. the proof of Lemma 1, p. 4 

in PI) 

LEMMA 4.1. If V is a locally finite family of nonempty open sets in a normed 
space X, then there exists a family (qbv)vcv of locally Lipschitzian functions, 
constituting a partition of unity subordinated to V. 

Now let G: VT u ^y^, -+ [w x C be a selector, i.e. G(V) E V for all V E Vr u VT . 

Selectors exist by the axiom of choice. Define F, on fi = &ir u G, to be: 

where (4v)vE~r and (b) W, are locally Lipschitzian partitons of unity sub- 
ordinated to V= and VT , respectively. 

It follows easily that F, is locally Lipschitzian. Hence, by results in Hale [3], 
the RFDE generated by F, satisfies the uniqueness property of its solutions. 
Hence Theorem 4.1 will be proved if we can show that 

1. iI 1 F&t’, 4’) - F,(t’, +‘)I < E fan (t’, +‘) E ai. 

2. w is a regular polyfacial set with respect to the equations (Eq. (4.6) 
Eq. (4.7): 

f = E(t, Xt), where P = F 10, (4.6) 

ff = F,(t, xJ. (4.7) 
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ve,Z,, ddt’, 4’) (2 i FAG(V) - Fdt’, i’)l) < 6 
r 77 r-1 

by (b) above. 
Since r u v C ai, it follows that (a!) of Definition 3.1 is fulfilled. It remains 

to be verified that (/3) and (y) of Definition 3.1 are satisfifd for Eq. (4.7). 
Let (t’, 4’) E r and P(t’, 4’(O)) = 0. Then (t’, 4’) E 52 and, by assumption 1 

above, (t’, 4’) $ V for all V E 9: . Hence, 

(since xVEy.r bv(t’, $‘) = 1). 
Since G(V) E V C U(t, 4) f or some (t, 4) E r, (t, (b(0)) E Li, it follows from 

assumption 2 that the expression in braces is >O, hence (p) of Definition 3.1 
is satisfied. (y) of Definition 3.1 is verified in a similar way. 

Hence, Theorem 4.1 is proved. 
In the situation of Theorem 4.1, fi C a. When can 8 be chosen to be equal 

to 52 ? This can be done if an additional condition (AC) is imposed on the 
geometry of the polyfacial set w: 

(AC): For every (t, X) E 8 w there is a 4 E C such that +(O) = x and 
(t -j- 8, C(O)) E w for 0 E [-r, 0). 

THEOREM 4.3. If all assumptions of Theorem 4_.1 are satisfied and if (AC) 
is true, then all conclusions of Theorem 4.1 hold with Q = Q. 

Proof. We shall modify the proof of Theorem 4.1 by introducing (AC). 
Fix E > 0. Choose for every (t, 4) f Q an open set U(t, 4) C Q containing (t, 4) 
and such that (I) and (2) in the proof of Theorem 4.1 as well as (3), (4), and (5) 
below hold for U(t, 4): 

(3) For every (t’, #J’), (t”, 4”) E U(t, 4), 

il I F,(t’, 6’) - F,(t”, 99 < 5 . 

(4) If (t, 4) 6 r, then U(t, #J) f~ P = #J, where I’ is defined in the proof of 

Theorem 4.1. 
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(5) If (t, 4) E f’\I’, then there is aJ E W such that for all i, j: 

(a) if (t, 4(O)) E Li and 

p&(O))~F(t~)+ijl”(t~)<O 
T=l 8Y,. ' r ' ,Yr' ' 

then for all (t’, 4’) E U(t, 4): 

L$ g (t’, (b’(O)) ‘Fr(f, 4’) + g (t’, C’(0)) < 0 

i Jc (t’ d’(0)) . j + E (t’ c)‘(O)) < 0; r;l ay,. ’ r at ’ 

(b) if (t, #(O)) E Li and 

then for all (t’, 4’) f U(t, 4): 

(c) all statements obtained from (a) and (b) by replacing “Li” by 

“Mj”, csli” by sdmi”, <(<” by “>I’, I‘>” by I‘<“, and “2” by “<I’ hold true; 

(d) for all (t’, 4’) E U(t, 4): 

(3) can be satisfied since F is continuous, (4) can be satisfied since f is closed. 
To see that (5) can also be satisfied, fix (t, 4) E p\R Then (t, 4(O)) E a~, and, 
by condition (AC), there exists a 6~ C, such that 6(O) = 4(O), and 
(t + 8, $(e)) E w for B 6 [-Y, 0). 

From (a) of Definition 3.1 it follows that (t, 6) E Q. Define y to be 

9 = dV, $1 + (1 - p)F(t, &- 

If p is sufficiently close to 1, then it is easily seen that (5) can be satisfied, due 
to the fact that w is a regular polyfacial set with respect to Eq. (4.1). 

Now set 
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As before, there are locally finite refinements Vr , V&- , and Y&Y of (U(t, #J) 1 

(t, 4) E r), {u(t, 4) I (t, 4) E T!O, and i W, 4) I (t, 4) E Q\rh respectively. 

Also, let(bbtYy, (+v)w-~,~, (+v)w,,~ be corresponding locally Lipschitzian 
partitions of unity. 

We assume that V # + for V f V= u V&- u V&p . If I’ E V&p, then there 
is a (t, 4) E Q\f such that V C U(t, 4). H ence, by (4), V n r = 4. Let G(V) := 

W, $1. 
If V E ^yi,,, , then there is a (t, 4) E r\I’ such that V C U(t, 9) and a corre- 

sponding 7 satisfying (5). Let G(V) = jj. If I’ E Vr , then there is a (t, #J) E r, 
such that V C U(t, +). Let G( I’) = F(t, 4). Then G: Vr u 9’& LJ V&p -+ W. 

Now let us note that Q = or u &jrlr- u c&y . For (t’, 9’) E Q, define F,(t’, 4’) 
as follows: 

FG’, $7 = ( x J$ Cv(f,4’) . G(V 
VE”Yr~-rr\r~~n\r v~~i-u~f-\r~~Q\r 

It follows that F, is defined on D and is locally Lipschitzian. 
If (t’, +) E V, then, CFzt=, j G,(V) - F,(t’, +‘)I < E/Z by (3) and (5d). 
Hence, as in the proof of Theorem 4.1, 

jl I F&t’> $7 - F,(t’, +‘)I < 6. 

Now it remains to be shown that w is a regular polyfacial set with respect to 
the equation 2 = F,(t, xJ. Let (t’, 4’) is such that (t’, 4’(O)) E &J and (t’ + 0, 
+‘(e)) E w for 0 E [-r, 0). Suppose e.g. that (t’, 4’(O)) ELM for some i = I,..., p. 
Since for V E V& , (t’, 4’) $ V (by (4)) it follows that 

-il $$ (t’, 9’(O)) . F&t’, 4’) + $ (t’, 4’(o)) 

If l/E$>, then VC U(t, 4) for some (t, 4) E r, G(V) = F(t, +) and 
(t, 4(O)) ELM by (1). Now (2) implies that the expression in braces >O. 

If V E 9’&, then V C U(t, 4) f or some (t, $) E f\r, G(V) = 9, (t, 4(O)) E Lg. 
Obviously (5a) cannot hold, because this would contradict the fact that 

(t’, 4’) E U(t, 4) and w is a regular polyfacial set with respect to 2 = F(t, xJ. 
Hence, the assumption and, therefore, the conclusion of (5b) holds, i.e. the 
expression in braces is >O, again. 
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The case (t’, C’(0)) E Mi for some j = I,..., Q is dealt with in a completely 
analogous manner and Theorem 4.3 is proved completely. 

Remarks. I. Condition (AC) is trivially satisfied if Y = 0, i.e. in the ODE 
case. (AC) is also satisfied if w is of the form: w = R x w’, where w’ is an open 
region in lR” enjoying the following property (S): 

(S) For every E > 0, w’ is the union of a finite number of connected sets 
each of diameter <E. (Cf. Whyburn [lo], p. 16). 

In fact, if (t, X) E &J, then x E &J’, and by Theorem II, 4.3, of Whyburn 
[lo], there is a 4 E C, such that 4(O) = x and C(0) E w, for all 6’ E [-r, 0). Hence 
(AC) is satisfied. 

Conjecture. The condition (AC) cannot, in general be dispensed with. 

II. The approximating mappings F6 in the above theorems are locally 
Lipschitzian. Can F, be chosen to be smoother, e.g., P-functions ? The answer 
is, in general, no. See e.g. Kurzweil[4], p. 223, where it is proved that there is no 
sequence F, of Cl-functions on C([-Y, 01, iw”) such that Fv(+) + jl #J 11 uniformly 
for+E{+EC:i’+lI < 1). 

Note, however, the following: Let F, be such that F,(t, 9) =fo(t, 4(O), 
+(-yl(t)),..., #+rl(t))) wheref, : U + lFP, U open in R X @‘-‘Al, f0 continuous, 
rj:[W+[W,o < rj(t) < Y, yj continuous. Then, by a similar argument to the 
one used in the proof of Theorem 4.1, it follows that there is a 0 C U, 0 open 
in R! x lP.i, and a sequence ( fv) of P-functions defined on 0 such that F, + F, 
uniformlv on a,, where 

n = {(t, I#) E R x c I (f, b(O), 9(-yl(t))l.-, d(-ydt))) E 0’: 

and 

Fv(t, 4) = fv(t, 4(O), 4(-ydt))x +(-rdt))) (for v > 0). 

fi is easily seen to be open. If the additional condition (AC) is satisfied, then 
c can be chosen to be equal to U, hence a = Q. 

III. As an application of Theorem 4.1, let us note that the assumption of 
uniqueness of solutions in Examples 3.2 through 3.4 can be omitted. 
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