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We study a scalar field theory in a flat five-dimensional setup, where a scalar field lives in a bulk with
a Dirichlet boundary condition, and give an implementation of this setup to the Froggatt–Nielsen (FN)
mechanism. It is shown that all couplings of physical field of the scalar with the all brane localized
standard model particles are vanishing while realizing the usual FN mechanism. This setup gives the
scalar a role as an only Gravitationally Interacting Massive Particle (GIMP), which is a candidate for dark
matter.
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The Large Hadron Collider (LHC) experiments are just being
started. One of the important missions of this big project is the
discovery of the Higgs particle. The coupling to this particle is the
origin of fermion masses in the standard model (SM) and it plays
a crucial role in the electroweak (EW) symmetry breaking. The SM
will be completed as a renormalizable theory when the Higgs is
discovered. However, a theoretical problem still exists within the
SM which is the so-called gauge hierarchy problem about the big
desert between the EW and Planck scales. Theories with additional
space dimensions are interesting approaches towards solving this
problem [1,2]. Generally, extra-dimensional theories lead to rich
phenomenologies, for instance, new heavy particles with masses
of the compactification scale, the so-called Kaluza–Klein (KK) par-
ticles. In the Universal Extra Dimensions (UED) model [3], the
lightest KK particle with an odd parity is stable, and can be a can-
didate for the dark matter. The compactification scale is generally
constrained to be larger than a few TeV by the EW precision mea-
surements for the brane localized fermion scenario [4–8] but it
can be weakened to a few hundred GeV in the UED case due to
the five-dimensional Lorentz symmetry [3,9,10]. Another interest-
ing phenomenological consequence is the top Yukawa deviation,
which is a deviation of the Yukawa coupling between top and
physical Higgs fields from naive SM expectation, induced from an
existence of the brane localized Higgs potentials [11,12] leading
to Dirichlet type boundary conditions [13], and the SO(5) × U (1)

warped gauge-Higgs unification model [14]. The LHC experiment
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may give some suggestions for the TeV or few hundred GeV scale
KK resonances and resultant phenomena induced from bulk fields.

On the other hand, the flavour problem, that is the origin of
the three generations of the SM fermions and their Yukawa cou-
plings, which determine the masses and mixings, is also one of the
most important problems in the SM. A fascinating approach to ex-
plain the flavour structure of the SM is to introduce some flavour
symmetries broken at a high energy scale by an additional scalar
(Higgs) field, the so-called flavon [15]. Such a field is introduced in
a number of flavour models, e.g. for the purpose of realizing tri-
bimaximal generation mixing [16] via non-abelian discrete flavour
symmetries [17], etc.

In this Letter, we study a scalar field theory in a five-dimen-
sional setup, where a scalar field lives in a bulk with a Dirichlet
boundary conditions. We then further discuss implementations of
this setup to the Froggatt–Nielsen (FN) mechanism.

We consider a complex scalar field theory in a five-dimensional
spacetime compactified on a flat line segment. The bulk scalar ki-
netic action is given by

S = −
∫

d4x

+L/2∫
−L/2

dz |∂MΦ|2, (1)

where we write five-dimensional coordinates as xM = (xμ, z) with
μ = 0,1,2,3 and the extra dimension is compactified on a line
segment −L/2 � z � L/2.1 Our metric convention is (− + + + +).

1 One can consider in the usual extra-dimensional coordinate, y. In this case, the
fundamental region becomes 0 � y � L, and z is defined as z ≡ y − L/2.
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In a case of a free complex scalar field, Φ = (ΦR + iΦI )/
√

2, the
variation of the action is given by

δS =
∫

d4x

+L/2∫
−L/2

dz

[
δΦX (PΦX ) + δ

(
z − L

2

)
δΦX (−∂zΦX )

+ δ

(
z + L

2

)
δΦX (+∂zΦX )

]
, (2)

where P ≡ � + ∂2
z . The vacuum expectation value (VEV) of the

scalar field, Φc , is determined by the action principle, δS = 0,
that is, P Φc

X = 0. Assuming unbroken 4D Lorentz invariance, the
general solution of this equation (EOM) is Φc(z) = A + Bz. The un-
determined coefficients A and B can be fixed by taking boundary
conditions (BCs) at z = ±L/2. We obviously have four choices of
combination of Dirichlet and Neumann BCs at z = (−L/2,+L/2),
namely, (D, D), (D, N), (N, D), and (N, N), where D and N denote
Dirichlet and Neumann BCs, respectively. These BCs are written as
δΦ(x, z)|z=ξ = 0 for the Dirichlet BC, and ∂zΦ(x, z)|z=ξ = 0 for the
Neumann BC, where ξ is taken as +L/2 or −L/2 in each case.
A different choice of BCs corresponds to a different choice of the
theory. The theory is fixed once one chooses one of the four condi-
tions. In this Letter, we suppose that all SM particles are localized
on z = +L/2 brane and focus on a Dirichlet BC at the brane. There-
fore, the discussed BCs are restricted to (D, D) or (N, D). The most
general BCs for each case can be written as(
Φ(x, z)|z=−L/2,Φ(x, z)|z=+L/2

) = (v−, v+), (3)(
∂zΦ(x, z)|z=−L/2,Φ(x, z)|z=+L/2

) = (0, v+), (4)

for (D, D) and (N, D), respectively, where v− and v+ are con-
stants of mass dimension [3/2]. The BCs (3) and (4) fix the VEV
to be the value v+ on z = +L/2 brane, while requiring the quan-
tum fluctuation to be vanishing at the boundary. These BCs also
determine the coefficients A and B , that is, the VEV profile in the
extra-dimensional direction as

Φc(z) =
{ v++v−

2 + v+−v−
L z for (D, D),

v+ for (N, D).
(5)

It is easily seen that the resultant VEV profile for (N, D) case be-
comes flat in the extra dimension due to the Neumann BC at the
z = −L/2 brane while the one for (D, D) case linearly depends on
the extra-dimensional coordinate. In a case of v− = v+ , the profile
for (D, D) BCs also becomes flat, Φc(z) = v+ .

Next, let us consider the profile of quantum fluctuation of the
scalar field. We utilize the background field method, separating the
field into the classical field and quantum fluctuation:

Φ(x, z) = Φc(z) + 1√
2

[
φ(x, z) + iχ(x, z)

]
. (6)

We put separation (6) into (1) and expand up to the quadratic
terms of the field φ as2

Sφ =
∫

d4x

+L/2∫
−L/2

dz

[
1

2
φ
(� + ∂2

z

)
φ + δ(z − L/2)

2
φ(−∂zφ)

+ δ(z + L/2)

2
φ(∂zφ)

]
. (7)

2 The same expansion is taken for χ(x, z). See e.g. Appendix B in [11] for the
derivation of the action.
Fig. 1. The wave function profiles of n = 0,1, and 2 modes in (12) and (13): The
solid and dashed curves correspond to the (D, D) and (N, D) cases, respectively.

Hereafter we focus on only φ(x, z) field for our purpose. The KK
expansion for φ(x, z) is given by

φ(x, z) =
∞∑

n=0

f φ
n (z)φn(x), (8)

where fn(z) is eigenfunction of differential operator in the free
action (7):

∂2
z f φ

n (z) = −μ2
φn f φ

n (z). (9)

The general solution of this equation for each nth mode is writ-
ten as f φ

n (z) = αn cos(μφnz) + βn sin(μφnz). In total there are now
three unknown constants for each nth mode, αn , βn , and μφn . Two
of the three are fixed by the two BCs at z = ±L/2 while the last
one is fixed by the normalization

∫ +L/2
−L/2 dzf φ

n (z) f φ
m(z) = δnm . In the

following we are focusing on two specific choices of BCs, namely
the (D, D) and (N, D) cases. Then, the EOM under such BCs deter-
mines the VEV profiles given in (5) and expansion (6) leads to the
following BCs for quantum fluctuation (substituting both (5) and
(6) to (3) and (4)),

(
f φ
n (z)|z=−L/2, f φ

n (z)|z=+L/2
) = 0, (10)(

∂z f φ
n (z)|z=−L/2, f φ

n (z)|z=+L/2
) = 0, (11)

for (D, D) and (N, D), respectively. Therefore, we can obtain the
wave function profile of the quantum fluctuations as

f φ
n (z) =

⎧⎨
⎩

√
2
L cos

(
(n+1)π

L z
)

for even n,√
2
L sin

(
(n+1)π

L z
)

for odd n,

(12)

f φ
n (z) =

√
1

L

[
cos

(
(2n + 1)π

2L
z

)
− (−1)n sin

(
(2n + 1)π

2L
z

)]
(13)

for (D, D) and (N, D) BCs, respectively. The wave function pro-
files of n = 0,1, and 2 modes in the extra dimension are shown in
Fig. 1. They mean that a flat zero-mode profile in the Neumann BC
case is deformed to the cosine function of f φ

0 (z) = √
2/L cos(π z/L)

through the Dirichlet BCs at z = ±L/2 for the (D, D) case. The
profiles are described by a combination of the sine and cosine
functions due to the Neumann BC at z = −L/2 and the Dirichlet
at z = +L/2 for the (N, D) case.
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The nth scalar mass is calculated to be

m2
φn

=
{(

(n+1)π
L

)2
for (D, D),(

(2n+1)π
2L

)2
for (N, D).

(14)

which shows the lowest (n = 0) mode has a KK mass, mKK ≡ π/L,
for the (D, D) case. On the other hand, the mass of the lowest
mode for the (N, D) case becomes a half of KK mass, mKK/2. These
features are just results from the Dirichlet BC, that is, the lowest
mode mass is pushed up to the KK mass in the case of Dirichlet
BCs at both boundaries, and the mass is pushed up to only a half
of KK mass when the Dirichlet BC is taken at one boundary. The
above discussions can be similarly applied to the χ field. The im-
portant point of this type of setup is that with the Dirichlet BC(s)
the wave function profile of the physical field is vanishing at the
boundary while the VEV of the scalar field can be obtained due to
the Dirichlet BC without contradiction to the action principle. The
mass of this physical field is of the order of the compactification
scale as massless modes are forbidden by the BCs.

Next, we propose an implementation of this setup. We investi-
gate an identification of the bulk scalar field with a flavon. The ori-
gin of the three generations of the SM fermions and their Yukawa
couplings determining the masses and mixings is one of the most
important problems in the particle physics. An introduction of fam-
ily symmetries is a common approach in order to explain the
origin of fermion masses and mixings. Such symmetries must be
broken at a high energy scale, and additional scalar fields, the so-
called flavons, are required to break the symmetries. Then effective
Yukawa couplings can be induced from non-renormalizable oper-
ators, which generates hierarchical Yukawa structures through the
Froggatt–Nielsen (FN) mechanism [15].

In the FN mechanism, scalar fields (flavons) are introduced that
are charged under a family symmetry which acts on the differ-
ent generations of SM fermions. Once the symmetry is broken at
a high energy scale, the effective Yukawa coupling can be deter-
mined by the charges of fields and the VEV of flavons. Here, we
investigate a case that the flavons are bulk scalar fields described
by the above setup (1) with the Dirichlet BC (3) or (4) and the SM
fermions are localized at the z = +L/2 brane. When we introduce
an abelian family symmetry and one flavon for simplicity, the ef-
fective mass term for the SM fermions in four dimensions is given
by

+L/2∫
−L/2

dz δ

(
z − L

2

)
ci j

(
Φ

Λ3/2

)Nij

F̄ Li F R j H + h.c., (15)

where ci j is a dimensionless coupling of order one and Nij are
determined by the charges of flavon and SM fermions. After ex-
panding Φ as in (6) and integrating the five-dimensional direction,
we obtain

ci jε
Nij F̄ Li F R j H + h.c., (16)

where ε ≡ v+/Λ3/2. This is the usual result of the FN mechanism
except for the different mass dimension of the VEV in ε . How-
ever, notice that the lowest modes of the physical fields φ0(x) in
the KK expansion (8) certainly exist with the KK (a half of KK)
mass induced from the bulk kinetic term (1) with (D(N), D) BC.
The physical states do not have any couplings with the brane lo-
calized SM fields because the wave function profiles are vanishing
at boundary while the VEV can be obtained due to the Dirich-
let BC. Therefore, the lowest mode of the flavon remains as a stable
particle. The physical state of flavon becomes only Gravitationally
Interacting Massive Particle (GIMP) which can be a candidate for
the dark matter.
One should note, however, that the stability of the dark matter
candidate would be spoilt by the introduction of terms of the type∫

d5x δ(z − L/2)(∂5φ) × SM fields (17)

which would couple the KK modes to the SM fields. Any bulk in-
teractions will generally induce such disastrous brane interactions
[18]. The interpretation of the lightest KK mode of the scalar as
the dark matter particle therefore requires that there must not be
any bulk interactions of the scalar, meaning a free theory in the
bulk. It is clear that since the KK sector is completely decoupled
from the SM, there will be no interactions between the two sectors
induced by quantum corrections and the lightest KK mode is there-
fore stable. The stability is due to a ‘superselection rule’ between
the two decoupled sectors whose decoupling is a consequence of
the Dirichlet BCs even in the presence of Yukawa-type brane inter-
actions. The relevant observation in this Letter is thus the fact that
the brane interactions might lead to a non-vanishing VEV of the
field, which together with the Froggatt–Nielsen type interactions
will lead to an explanation of the fermion mass hierarchy without
the introduction of an FN field in the 4D spectrum of the theory.
The stable lightest KK mode is an only gravitationally interacting
dark matter candidate.

In the above implementation of Dirichlet BCs, the family sym-
metry is broken by the BC. The VEV related with the symmetry
breaking scale and the cutoff scale could be taken as arbitrary
high energy scales as long as ε � 1 is satisfied. The variant of
the FN mechanism discussed above is only one example of this
setup with the bulk flavon with Dirichlet BC and it can be applied
to practically any flavour models with non-SM Higgs fields [16,17].
The implementation gives the fields a role as the GIMP. In some
cases, constraints on flavour models from the electroweak preci-
sion measurements would be relaxed because the wave functions
of non-SM bulk Higgs fields vanish at boundary.

Finally, we comment on other extra-dimensional backgrounds
which make it possible to identify our stable particle as a dark
matter candidate. Our stabilization was based on a flat five-
dimensional spacetime. If we extend the setup with the Dirich-
let BC(s) to a larger number of extra dimensions such as a six-
dimensional model [1] or to a warped extra-dimension model [2],
the hierarchy problem can be solved. A realistic model, which
does not suffer from the hierarchy problem, must be constructed
on such backgrounds in studies of extra dimensions. To get a vi-
able DM candidate from our stabilization, we also have to extend
the mechanism to a model with larger number of extra dimen-
sions. Our KK-flavon, which has only gravitational interactions, has
survived until the present epoch, and its energy density can dom-
inate but must not exceed the present DM one. Thus, we need
Ωφ � ΩDM, where Ωφ and ΩDM are density parameters of KK-
flavon and DM, respectively. The interaction rate of the KK-flavon
can be roughly estimated as Γφ ∼ T 5/M4

pl with four-dimensional
Planck mass, Mpl. The decoupling and non-exceeding conditions
for KK-flavon constrain the KK-flavon mass to be smaller than
O (keV), mφ ∼ Ωφh2 g (4.4 eV) � O (keV), where h and g are the
current dimensionless Hubble constant and degrees of freedom of
order a few hundred at the decoupling temperature. This means
that we require a larger number of extra dimensions3 in order
to obtain a correct energy density of KK-flavons and to solve the
gauge hierarchy problem without contradiction with the current
cosmological observations and experimental limits for a deviation

3 Notice the KK scale in 4 + δ dimensions corresponds to mφ ∼ O(10−1) meV,
O(10) keV, O(10) MeV for δ = 2,4,6 with (4 + δ)-dimensional Planck mass of or-
der O (TeV), respectively.
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of the Newton’s law. More detailed phenomenological predictions
of this scenario should be compared with a DM model of ster-
ile (lightest right-handed) neutrino with keV mass scale, and such
discussions will be given in a separate publication.

We have studied a scalar field theory in a flat five-dimensional
setup with the Dirichlet type BC at z = +L/2 brane. The wave-
function profiles of the physical field are deformed by the Dirichlet
BC(s) in the setup. As the results, the physical field profiles vanish
at the brane while a finite VEV can generally be obtained without
contradiction to the action principle. The lowest mode masses of
these fields are pushed up to a KK (a half of KK) scale by the
(D(N), D) BC.

We have also proposed an implementation of this setup to
flavon physics. The bulk scalar and all SM fields have been as-
sumed to be a flavon in the FN mechanism and brane localized
fields, respectively. It has been shown that all couplings of the
physical field of the flavon with the SM particles are vanishing due
to the Dirichlet BC while realizing the usual FN mechanism in the
free theory on the bulk. However, the physical field of the flavon
with a KK mass induced from the bulk kinetic term certainly exist
in the theory. This setup gives the flavon a role as an only Gravi-
tationally Interacting Massive Particle (GIMP), which is a candidate
for dark matter. This mechanism can be implemented in a num-
ber of flavor models with non-SM Higgs fields apart from the FN
mechanism presented here.
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