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SUMMARY

Telomere maintenance by the telomerase reverse
transcriptase requires a noncoding RNA subunit
that acts as a template for the synthesis of telomeric
repeats. In humans, the telomerase RNA (hTR) is a
non-polyadenylated transcript produced from an
independent transcriptional unit. As yet, the mecha-
nism and factors responsible for hTR 30 end process-
ing have remained largely unknown. Here, we show
that hTR ismatured via a polyadenylation-dependent
pathway that relies on the nuclear poly(A)-binding
protein PABPN1 and the poly(A)-specific RNase
PARN. Depletion of PABPN1 and PARN results in
telomerase RNA deficiency and the accumulation
of polyadenylated precursors. Accordingly, a defi-
ciency in PABPN1 leads to impaired telomerase ac-
tivity and telomere shortening. In contrast, we find
that hTRAMP-dependent polyadenylation and exo-
some-mediated degradation function antagonisti-
cally to hTR maturation, thereby limiting telomerase
RNA accumulation. Our findings unveil a critical
requirement for RNA polyadenylation in telomerase
RNA biogenesis, providing alternative approaches
for telomerase inhibition in cancer.
INTRODUCTION

In most eukaryotes, the ends of chromosomes (telomeres)

cannot be fully duplicated as a consequence of incomplete

replication of the lagging strand by the conventional DNA repli-

cation machinery. To cope with this end-replication problem,

many species use a specialized ribonucleoprotein (RNP) com-

plex with reverse transcriptase activity, known as telomerase,

to synthesize tandem DNA repeats at chromosomal ends.

Accordingly, telomeric DNA progressively shortens after each

cell division in the absence of telomerase, ultimately causing

the collapse of the DNA-protein structure that caps chromo-

some ends and the activation of DNA damage checkpoints
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(Webb et al., 2013). Such checkpoints ultimately lead to growth

arrest via the activation of cellular senescence or apoptosis

pathways (Artandi and DePinho, 2010). Because critically short

telomeres lead to terminal cell-cycle arrest, human telomerase

is strongly associated with cellular immortalization and tumori-

genesis. Specifically, whereas a vast majority of human

somatic cells exhibit low or undetectable levels of telomerase

activity, telomerase is active in most human cancers (Kim

et al., 1994).

Human telomerase activity can be reconstituted in vitro

(Beattie et al., 1998) by the minimal combination of the human

telomerase reverse transcriptase (hTERT) and the human telo-

merase RNA (hTR), which serves as a template for the reverse

transcription reaction. In vivo, however, biogenesis of the telo-

merase holoenzyme requires a variety of interacting partners

that play important roles in assembly, maturation, localization,

and stabilization of the telomerase complex (Egan and Collins,

2012). In contrast to the telomerase catalytic subunit, which is

highly conserved, the noncoding RNA subunit of telomerase is

remarkably divergent among eukaryotic species, varying in

nucleotide sequences and length (Egan and Collins, 2012). In

humans, hTR is a 451-nt-long non-polyadenylated RNA tran-

scribed by RNA polymerase II (Pol II). In addition to a template

region that serves in the synthesis of telomeric repeats, verte-

brate telomerase RNAs contain a box H/ACA domain at their

30 end, which is not required for telomerase activity in vitro

(Bachand and Autexier, 2001) but for RNA accumulation in vivo

(Mitchell et al., 1999a). The box H/ACA motif is an evolutionarily

conserved region found in small nucleolar RNAs (snoRNAs) and

small Cajal body-specific RNAs (scaRNAs) that serve as guide

for the pseudouridylation of rRNAs and spliceosomal small nu-

clear RNAs (snRNAs), respectively (Kiss et al., 2010). As for

H/ACA RNPs, the box H/ACA domain of hTR folds into a struc-

ture recognized by a set of evolutionarily conserved proteins,

including Dyskerin, Nop10, Nhp2, and Gar1 (Egan and Collins,

2012). Accordingly, a deficiency in any of these proteins results

in reduced levels of telomerase RNA and shorter telomeres

(Mitchell et al., 1999b; Vulliamy et al., 2008). Despite the pres-

ence of a snoRNA-like H/ACA box at its 30 end, hTR synthesis

contrasts to most mammalian snoRNA genes. Indeed, whereas

the majority of human snoRNAs are expressed as part of pre-

mRNA introns and processed from intron lariats into mature
thors
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snoRNAs (Dieci et al., 2009), hTR is expressed from an inde-

pendent transcriptional unit. However, the RNA-processing

pathway involved in the 30 end maturation of hTR remains

poorly understood.

In contrast to humans, most yeast snoRNAs are synthesized

from independent transcriptional units using factors and path-

ways that have been relatively well characterized. Specifically,

yeast snoRNAs are matured via two alternative pathways: a

mechanism that depends on the activity of the Nrd1-Nab3-

Sen1 (NNS) complex and another that is independent of the

NNS complex. In S. cerevisiae, the NNS complex promotes

a transcription termination pathway that involves recruitment

of TRAMP, a nuclear polyadenylation complex that includes

the non-canonical poly(A) polymerases (PAPs) Trf4/5, the

RNA-binding proteins Air1/2, and the RNA helicase Mtr4 (Por-

rua and Libri, 2015). By adding short oligo(A) tails, the TRAMP

complex provides an unstructured extension to the 30 end of

RNAs, which promotes processing or degradation by the

RNA exosome (Schmidt and Butler, 2013). The exosome con-

sists of a barrel-like structure that contains ten core subunits,

including the 30–50 exonuclease and endonuclease Dis3/Rrp44

(Chlebowski et al., 2013). In the nucleus, the core exosome

also associates with an additional 30–50 exonuclease, Rrp6,

which has redundant and complementary functions to Dis3.

Thus, termination of transcription by the NNS complex can

promote 30 end trimming of snoRNAs by the exosome (Tudek

et al., 2014). Alternatively, we and others have shown that

yeast snoRNAs also can be matured via a polyadenylation-

dependent pathway that involves the canonical mRNA 30 end
processing machinery (Grzechnik and Kufel, 2008; Lemay

et al., 2010). In the fission yeast S. pombe, this maturation

pathway involves polyadenylation of 30-extended precursors

by the canonical PAP and 30 end maturation via the activity

of a nuclear poly(A)-binding protein, Pab2, and the exonucleo-

lytic activity of Rrp6. Accordingly, S. pombe pab2 mutants

accumulate polyadenylated snoRNA precursors, whereas

levels of mature box H/ACA snoRNAs are reduced (Lemay

et al., 2010). Interestingly, the homolog of S. pombe Pab2,

PABPN1, also has been shown to promote RNA turnover in

human cells (Beaulieu et al., 2012; Bresson and Conrad,

2013).

Given that NNS-like transcription termination does not

appear to be conserved in mammalian cells (Porrua and Libri,

2015), it remains unclear how independently transcribed hu-

man snoRNAs, such as hTR, acquire their mature 30 end. In
this study, we found a polyadenylation-dependent 30 end

maturation pathway for the human telomerase RNA that relies

on the nuclear poly(A)-binding protein PABPN1 and the

poly(A)-specific RNase PARN. We demonstrated that PABPN1

is bound to polyadenylated telomerase RNA precursors and

copurifies with hTERT and Dyskerin. PABPN1-deficient cells

showed reduced levels of hTR, exhibited decreased levels of

telomerase activity, and had shorter telomeres. In contrast,

we found that cells deficient for the RNA exosome and the hu-

man TRAMP polyadenylation complex have increased levels of

hTR. Our findings suggest that PABPN1/PARN-dependent

maturation and hTRAMP/exosome-dependent RNA decay

compete for telomerase RNA precursors and that the equilib-
Cell Rep
rium between decay and maturation of precursors controls

hTR expression.

RESULTS

PABPN1 Is Required for hTR Accumulation and
Telomere Maintenance
To test whether the human homolog of S. pombe Pab2,

PABPN1, functions in the maturation of H/ACA snoRNAs ex-

pressed from independent transcription units, we analyzed

hTR, as the hTR gene is independently transcribed by Pol II

and the resulting RNA processed as anH/ACA box RNA (Mitchell

et al., 1999a). PABPN1 was efficiently depleted from HeLa cells

using a set of independent small interfering RNAs (siRNAs) (Fig-

ure 1A, lanes 2 and 3). We next compared hTR levels between

PABPN1-depleted and control cells by northern analysis. The

levels of hTR were reduced in PABPN1-deficient cells relative

to cells treated with a control siRNA (Figure 1B, compare lanes

2 and 3 to lane 1). Similar results were obtained by knocking

down PABPN1 expression in HEK293 cells (Figures S1A and

S1B). Quantification of northern data from independent deple-

tion experiments revealed a 20%–38% reduction in hTR levels

in cells deficient for PABPN1 (Figure 1C). Given that hTR levels

were reduced in PABPN1-depleted cells, we next examined

whether human telomerase activity was affected. Extracts pre-

pared from HEK293 and HeLa cells that were previously treated

with PABPN1-specific and control siRNAs were analyzed by the

telomerase repeat amplication protocol (TRAP). Telomerase ac-

tivity was significantly reduced in PABPN1-deficient cells (Fig-

ure 1D, lanes 2, 3, 5, and 6; quantification shown in Figure 1E),

consistent with reduced levels of telomerase RNA. From these

results, we conclude that PABPN1 is required for the accumula-

tion of hTR in human cells.

To examine the functional consequence of declining hTR

levels (and telomerase activity) in PABPN1-deficient cells, we

examined telomere length maintenance using a conditional

HEK293 cell line that induces PABPN1-specific small hairpin

RNAs (shRNAs) under the control of the tetracycline promoter.

Addition of the tetracycline derivative, doxycycline, to the culture

media resulted in efficient depletion of PABPN1, reduced hTR

levels, and decreased telomerase activity (Figures S1A–S1C).

We next analyzed telomere dynamics using cells expressing

PABPN1-specific and control shRNAs during serial passages

in doxycycline-supplemented media. As can be seen in Fig-

ure 1F, cells expressing PABPN1-specific shRNAs led to pro-

gressive telomere shortening as compared to cells that

expressed a non-specific control shRNA (compare lanes 7–12

to lanes 1–6). An unbiased analysis of mean telomere length us-

ing a recently described quantitative program that takes into ac-

count signal intensity relative to telomere restriction fragment

(TRF) length (Göhring et al., 2014) revealed gradual telomere

shortening in PABPN1-deficient cells, but not in control cells

(Figure S1D). The stabilization in telomere shortening observed

after �60 cell doublings (Figures 1F and S1D) is likely the result

of residual PABPN1 levels remaining after doxycycline treatment

(Figure S1A, lane 4). Together, these results indicate that

PABPN1 is required for telomere length maintenance in telome-

rase-positive human cancer cells.
orts 13, 2244–2257, December 15, 2015 ª2015 The Authors 2245



Figure 1. PABPN1 Is Required for hTR Accumulation and Telomere Maintenance

(A) Western analysis of extracts prepared from HeLa cells treated with PABPN1-specific and control siRNAs is shown.

(B) Northern blot analysis of hTR using total RNA prepared from PABPN1-depleted and control cells. The 5S rRNA was used as a loading control.

(C) The hTR levels were normalized to the 5S rRNA and expressed relative to cells treatedwith control siRNA. Data and error bars represent themean and SD from

four independent experiments (**p < 0.01 and *p < 0.05, Student’s t test).

(D) TRAP assays used extracts prepared from HeLa (lanes 1–3) and HEK293 (lanes 4–6) cells that were previously treated with PABPN1-specific and control

siRNAs. IC, internal PCR control.

(E) Quantification of telomerase activity from HeLa cells. The intensity of telomerase products was normalized to the intensity of the IC and expressed relative to

cells treated with control siRNA. Data and error bars represent the mean and SD from three independent experiments (***p < 0.001 and **p < 0.01, Student’s t

test).

(F) HEK293 cells induced to express PABPN1-specific and non-specific control shRNAs were collected at the indicated population doublings (PDs) and analyzed

for telomere length.

See also Figure S1.
PABPN1-Deficient Cells Accumulate 30-Extended
Polyadenylated Telomerase RNA
The reduction of mature snoRNA levels detected in S. pombe

pab2 mutants is associated with the accumulation of 30-
extended snoRNAs (Lemay et al., 2010). We therefore examined

PABPN1-depleted cells for the accumulation of 30-extended hu-

man telomerase RNA. Total RNA was extracted from cells

treated with PABPN1-specific and control siRNAs and analyzed

by RT-PCR using a forward primer positioned in hTR (Figure 2A,

see primer F2) and reverse primers positioned 159- and 445-nt

downstream of the 30 end of mature hTR (Figure 2A, see R1

and R2 primers, respectively). RT-PCR analysis detected

increased levels of 30-extended telomerase RNA in PABPN1-

deficient cells relative to control cells (Figure 2B, F2+R1 and

F2+R2; compare lanes 2 and 3 to lane 1). No robust signal was

detected in the absence of reverse transcription (lanes 4–6), indi-

cating that the observed amplifications were not due to the pres-

ence of residual genomic DNA. Notably, the use of a forward
2246 Cell Reports 13, 2244–2257, December 15, 2015 ª2015 The Au
primer located upstream of mature hTR sequences (Figure 2A,

see F1 primer) did not result in the detection of hTR 30 extensions
in PABPN1-depleted cells (Figure 2B, see F1+R1 and F1+R2).

This result indicates that the 30-extended telomerase RNA spe-

cies detected in cells deficient for PABPN1 derive from transcrip-

tion events that were initiated at the hTR promoter, rather than

the consequence of defective transcription termination events

that were initiated upstreamof the hTR gene. The qRT-PCR anal-

ysis using primer sets complementary to sequences located

downstream of the hTR gene confirmed the accumulation of

30-extended telomerase RNA in PABPN1-depleted cells

(Figure 2C).

Next, we sought to obtain evidence for the accumulation of 30-
extended telomerase RNA using an approach that did not

depend on PCR amplification. Northern blot analyses of total

RNA prepared from PABPN1-depleted cells using strand-spe-

cific RNA probes complementary to sequences downstream of

mature hTR did not result in the detection of a clear signal,
thors



Figure 2. Accumulation of 30-Extended and Polyadenylated Telo-

merase RNA in PABPN1-Deficient Cells

(A) Schematic of hTR-specific primers used to analyze hTR 30 extenstions by

RT-PCR is shown.

(B) Total RNA prepared from PABPN1-depleted (lanes 2 and 3) and control

(lane 1) HeLa cells was reverse transcribed (+RT, lanes 1–3) into cDNA and

analyzed for hTR 30 extensions by PCR using the indicated combination of

forward and reverse primers. Primers specific for GAPDH were used as in-

ternal PCR amplification control.

(C) qRT-PCR analysis of hTR 30 extensions using RNA from PABPN1-depleted

and control cells. Three independent regions downstream of the hTR gene

were analyzed, as demonstrated on the schematic above the graph. Data were

normalized to the 28S rRNA and expressed relative to cells treated with control

siRNA. Data and error bars represent themean and SD from three independent

experiments (**p < 0.01 and *p < 0.05, Student’s t test).

(D and E) Schematic of the RNase H cleavage assay used to detect 30 ex-
tensions of the telomerase RNA. Total RNA prepared from PABPN1-depleted

and control cells was treated with RNase H in the presence of DNA oligonu-

cleotides complementary to sequences located downstream of the annotated

hTR 30 end (D). The 30-extended (30-ext) hTR was detected using a strand-

specific riboprobe complementary to the RNase H-cleaved product. The 5S

rRNA was used as a loading control (E).

(F) Total RNA from PABPN1-depleted and control cells was reverse tran-

scribed using an oligo(dT) primer and analyzed by qPCR using two indepen-

dent hTR-specific regions (see schematic), as demonstrated on the schematic

above the graph. Data were normalized to the PABPC1 mRNA and expressed

relative to cells treated with control siRNA. Data and error bars represent the

mean and SD from three independent experiments.

Cell Rep
suggesting heterogeneity in 30 end distribution. Because 30-
extended telomerase RNA appeared to have heterogeneous 30

ends, we designed an RNase H assay that would cleave the het-

erogeneous population of 30-extended hTR molecules into a

discrete 180-nt cleavage product (Figure 2D). Analysis of RNase

H cleavage reactions by northern blotting detected a single

180-nt product in PABPN1-depleted cells (Figure 2E, lane 2);

yet, this cleavage product was barely detectable in control cells

(lane 1). These results indicate that a deficiency in PABPN1 leads

to the accumulation of telomerase RNAwith genome-encoded 30

extensions.

Recently, RNA ligase-mediated rapid amplification of cDNA

ends (RLM-RACE) coupled to deep sequencing was used to

analyze the 30 end status of various noncoding RNAs, including

the human telomerase RNA (Goldfarb and Cech, 2013). Surpris-

ingly, it was found that �30% of hTR molecules include oligo(A)

addition at the 30 end. To examine whether polyadenylated telo-

merase RNA accumulates in PABPN1-deficient cells, we used

an oligo(dT) primer to reverse transcribe total RNA prepared

from PABPN1-deficient and control cells, and we analyzed the

resulting cDNAs by qPCR using two independent hTR-specific

regions. As can be seen in Figure 2F, a deficiency in PABPN1 re-

sulted in an�3-fold increase in the levels of polyadenylated telo-

merase RNA. We conclude that polyadenylated versions of the

human telomerase RNA accumulate in cells deficient for

PABPN1.

PABPN1 Interacts with Polyadenylated Telomerase RNA
and Associates with hTERT and Dyskerin in an RNA-
Dependent Manner
The aforementioned results showing reduced levels of hTR

together with the accumulation of polyadenylated telomerase
orts 13, 2244–2257, December 15, 2015 ª2015 The Authors 2247



RNA in PABPN1-deficient cells suggest a role for PABPN1 in hTR

30 end maturation. To address whether PABPN1 is directly

involved in hTR synthesis, we asked whether PABPN1 is bound

to polyadenylated telomerase RNAs. For this, we used HEK293

cells that stably express a Flag-tagged version of PABPN1 at

levels similar to endogenous PABPN1 (Figure S2A). Extracts

from this stable cell line were subjected to anti-Flag affinity puri-

fication and analyzed by oligo(dT)-primed qRT-PCR using

primers positioned at the 50 end of hTR (see region 1 in Figure 2F).

We also analyzed immunoprecipitates prepared from control cell

lines, which recovered only background levels of polyadenylated

hTR relative to Flag-PABPN1 (Figure S2B). Given the specific as-

sociation between PABPN1 and polyadenylated hTR, we next

analyzed the global distribution of hTR 30 ends associated

to PABPN1 by RLM-RACE coupled to high-throughout

sequencing. In parallel, we analyzed the 30 end distribution of

hTR associated to Flag-tagged versions of hTERT and Dyskerin.

In total, we obtained 2,716,342; 3,152,013; and 3,077,395 hTR-

specific reads for the PABPN1, hTERT, and Dyskerin purifica-

tions, respectively.

Given that our focus was oligoadenylated versions of hTR,

only reads with at least three consecutive non-genomic adeno-

sines (R3) adjacent to genome-encoded hTR termini were

analyzed. We also excluded reads with hTR termini upstream

of the annotated 30 end, as these truncated forms likely corre-

spond to degradation products. We found that the majority of

polyadenylated telomerase RNA recovered in the PABPN1,

hTERT, and Dyskerin purifications had poly(A) tails starting

immediately after the annotated hTR 30 end (Figure 3A). How-

ever, a greater proportion of poly(A) tails were found on

genome-encoded 30 extensions in the PABPN1-bound fraction

compared to the population of hTR that was copurified with

hTERT and DKC1 (Figure 3A, sum of the five categories with

genomic extensions): 15.5% for PABPN1, 6.9% for hTERT,

and 6.5% for Dyskerin. Notably, the population of polyadeny-

lated telomerase RNA recovered with PABPN1 was significantly

different in terms of poly(A) tail length compared to polyadeny-

lated hTR retrieved in the hTERT- and Dyskerin-bound fractions

(p value = 5.551e�16, Kolmogorov-Smirnov test), showing a ten-

dency toward longer poly(A) tails in the PABPN1-bound fraction

(Figure 3B). In general, we did not find any specific trend be-

tween hTR genomic addition length and poly(A) tail retention

(Figure S2C). The enrichment of telomerase RNA with long

poly(A) tails in the PABPN1-bound fraction is consistent with a

role of PABPN1 in a maturation pathway that depends on hTR

30 end polyadenylation. Moreover, our results indicate that frac-

tions of hTERT and Dyskerin are associated with polyadenylated

versions of hTR.

Given the association of PABPN1 and hTERT with polyadeny-

lated versions of hTR, we examined whether PABPN1 can cop-

urify with the telomerase catalytic subunit by analyzing immuno-

precipitates prepared from extracts of HEK293 cells that

expressed Flag-hTERT as well as Flag-tagged controls. As can

be seen in Figure 3C, the immunoprecipitation (IP) of Flag-hTERT

also pulled down endogenous PABPN1 (lane 8). In contrast, anti-

Flag precipitates prepared from extracts of control cells did not

copurify appreciable levels of PABPN1 (Figure 3C, lanes 5–7).

Consistent with these data, the reciprocal IP of GFP-PABPN1
2248 Cell Reports 13, 2244–2257, December 15, 2015 ª2015 The Au
specifically recovered Flag-hTERT (Figure S2D). Next, we tested

whether the association between PABPN1 and hTERT was

dependent on RNA by treating Flag-hTERT immunoprecipitates

with a cocktail of RNases. RNase treatment abolished the asso-

ciation between hTERT and PABPN1 (Figure 3D, compare lanes

4 and 6), suggesting that the association is mediated by the telo-

merase RNA. Similar results were obtained with Dyskerin.

Endogenous Dyskerin specifically copurified with Flag-PABPN1

(Figure 3E, lane 4), yet the levels of PABPN1-associated Dys-

kerin were strongly reduced after RNase treatment (Figure 3F,

compare lanes 4 and 6). To control for the lack of proteolysis dur-

ing our RNase treatment, we confirmed that the direct interaction

between PRMT3 and RPS2 (Bachand and Silver, 2004) was

resistant to the RNase treatment (Figure S2E). We conclude

that a fraction of PABPN1-bound polyadenylated telomerase

RNA is associated with hTERT and Dyskerin. Because PABPN1

interacts specifically with hTR, hTERT, and Dyskerin, three

known components of active human telomerase, we also exam-

ined whether catalytically active telomerase was associated with

PABPN1. Eluates of Flag-PABPN1 purifications pulled down

only a small percentage of telomerase activity compared to elu-

ates prepared from Flag-hTERT purifications (Figures S2F and

S2G), suggesting that PABPN1 is not a stable component of

the telomerase holoenzyme but rather of a pre-telomerase

complex.

The RNA Exosome Controls Human Telomerase RNA
Levels
In fission yeast, Pab2 promotes the maturation of polyadeny-

lated snoRNA precursors via the 30–50 exonucleolytic activity of

Rrp6, whereas the core exosome (Dis3) targets defective

snoRNAs for complete degradation (Larochelle et al., 2012; Le-

may et al., 2010). To test the involvement of the human exosome

in telomerase RNA expression, we knocked down hRRP40

(EXOSC3), a subunit of the core exosome complex, as well as

the exosome-associated 30–50 exonuclease hRRP6 (EXOSC10).

We also knocked down the evolutionarily conserved RNA heli-

case hMTR4 (SKIV2L2), which is part of two distinct cofactors

for the human exosome: (1) the nucleolar-enriched hTRAMP pol-

yadenylation complex (Fasken et al., 2011; Lubas et al., 2011),

and (2) the nuclear exosome targeting (NEXT) complex (Lubas

et al., 2011). Western blot validations confirmed robust depletion

efficiencies (Figure 4A).

As can be seen in Figure 4B, depletion of hMTR4 resulted in

the greatest increase in the levels of 30-extended telomerase

RNA, while siRNAs specific to the hRRP40 mRNA resulted in

an �10-fold increase in the levels of hTR 30 extension. Accumu-

lation of 30-extended hTR also was noted in hRRP6-depleted

cells, but the levels were lower than those of cells deficient for

hRRP40 (Figure 4B). The accumulation of 30-extended telome-

rase RNA in exosome- and hMTR4-deficient cells was confirmed

by RNase H cleavage assays. Consistent with the qRT-PCR

data, northern analysis of RNase H cleavage reactions detected

the greatest accumulation of 30-extended telomerase RNA in

hMTR4-depleted cells (Figure 4C, lane 2). A clear cleavage prod-

uct also was detected in hRRP40-deficient cells (Figure 4C, lane

3). However, the RNase H cleavage assay was not sufficiently

sensitive to readily detect hTR 30 extensions in hRRP6-depleted
thors



Figure 3. PABPN1 Binds to Polyadenylated hTR and Copurifies with hTERT and Dyskerin

(A) The 30 end distribution of polyadenylated hTR associated to DKC1, hTERT, and PABPN1. The population of polyadenylated hTR was divided into six cat-

egories, where the top sequence listed is the annotated hTR 30 end and genome-encoded extended 30 termini are shown in red.

(B) Cumulative distribution plots comparing poly(A) tail length frequency (%) across the set of polyadenylated hTR molecules associated to DKC1, hTERT, and

PABPN1 are shown.

(C) Western analysis of whole-cell extract (Input, lanes 1–4) and FLAG immunoprecipitates (IP; lanes 5–8) prepared from HEK293 cells that were previously

transfected with the empty vector or constructs that expressed Flag-tagged versions of PLZF, PDCD2L, and hTERT. Western blot analysis was performed using

antibodies specific to Flag (upper panel) and PABPN1 (bottom panel).

(D)Similar to (C)with theexception thatanti-Flagprecipitateswere treated (lanes5and6)ornot treated (lanes3and4)withacocktailofRNasesbeforewesternanalysis.

(E) Western analysis of whole-cell extract (Input; lanes 1 and 2) and FLAG immunoprecipitates (IP; lanes 3 and 4) prepared from HEK293 cells that stably express

Flag-PABPN1 or control vector. Western analysis was performed using antibodies specific to PABPN1 (upper panel) and DKC1 (bottom panel). Asterisks indicate

the positions of denatured heavy (*) and light (**) anti-Flag IgG chains detected during the DKC1 western analysis.

(F)Similar to (E)with theexception thatanti-Flagprecipitateswere treated (lanes5and6)ornot treated (lanes3and4)withacocktail ofRNasesbeforewesternanalysis.

See also Figure S2.
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Figure 4. The Human RNA Exosome Promotes Telomerase RNA Degradation

(A) Western blot analysis shows efficient depletion of hMTR4, hRRP6, and hRRP40 from HeLa cells.

(B) qRT-PCR analysis of hTR 30 extensions using RNA from hMTR4-, hRRP40-, and hRRP6-depleted and control cells, as described in Figure 2C. Data and error

bars represent the mean and SD from four independent experiments (**p < 0.01 and *p < 0.05, Student’s t test).

(C) Northern analysis of RNase H cleavage assay to detect hTR 30 extensions (30-ext) used RNA from hMTR4-, hRRP40-, and hRRP6-depleted cells as well as

control cells.

(D) Northern blot analysis of hTR using total RNA prepared from HeLa cells treated with the indicated siRNAs. The 5S rRNA was used as a loading control.

(E) The hTR levels were normalized to the 5S rRNA and expressed relative to cells treatedwith control siRNA. Data and error bars represent themean and SD from

six independent experiments (****p < 0.0001, ***p < 0.001, and **p < 0.01, Student’s t test).

(F and H) Total RNA prepared from cells treatedwith the indicated siRNAswas subjected to northern blot analysis using probes complementary to hTR sequence.

The 5S rRNA was used as a loading control.

(G and I) The hTR levels were normalized to the 5S rRNA and expressed relative to cells treated with control siRNA. Data and error bars represent the average and

SD from three independent experiments.

See also Figure S3.
cells (Figure 4C, lane 4). The greater effects seen in hMTR4-

depleted cells relative to exosome subunit deficiencies are

entirely consistent with data probing different exosome targets

(Lubas et al., 2011), and they may be related to the pleiotropic

roles of hMTR4 (Lubas et al., 2011) and/or the difficulty to effi-

ciently deplete components of the nuclear exosome (van Dijk

et al., 2007). Similarly, the smaller impact of hRRP6 depletion

on hTR 30 extensions compared to hRRP40 also agrees with pre-
2250 Cell Reports 13, 2244–2257, December 15, 2015 ª2015 The Au
vious studies of exosome targets (Lubas et al., 2011; Preker

et al., 2008) and likely reflects the redundancy between hRRP6

and hDIS3 exonucleases (Tseng et al., 2015).

Next, we measured the impact of a deficiency in hMTR4 and

the RNA exosome on the levels of mature hTR by northern blot

analysis. In contrast to PABPN1, depletion of hMTR4, hRRP40,

and hRRP6 showed increased levels of mature hTR (Figure 4D).

Quantification of northern blot data from independent
thors



Figure 5. 30-Extended hTR Localizes to the Nucleolus

(A) Deconvoluted images of HeLa (a–f) and VA13 (g–l) cells that were previously transfected with hMTR4-specific (d–f and j–l) or control (a–c and g–i) siRNAs were

analyzed by FISH using Cy3-labeled probes for 30-extended hTR (b, e, h, and k). DNA stained with DAPI shows the nucleus of each cell (a, d, g, and j). Scale bars,

20 mm.

(B) HeLa (a–h) and VA13 (i–l) cells that were previously transfected with hMTR4-specific (e–l) or control (a–d) siRNAs were simultaneously analyzed by FISH using

Cy3-labeled probes for 30-extended hTR (b, f, and j) and immunostaining for the nucleolar marker fibrillarin (c, g, and k). Insets (d, h, and l) show higher mag-

nifications of nucleoli. Scale bars, 20 mm.
knockdown experiments revealed that a deficiency in hMTR4 re-

sults in an almost 2-fold increase in hTR levels (Figure 4E),

whereas deficiencies in hRRP40 and hRRP6 result in 1.5- and

1.2-fold increases, respectively (Figure 4E). Interestingly, the

accumulation of hTR detected in hMTR4- and hRRP40-depleted

cells did not appear to affect total human telomerase activity

(Figure S3). Collectively, the concomitant accumulation of both

30-extended and mature forms of the telomerase RNA in exo-

some- and hMTR4-deficient cells is consistent with roles in a

degradation pathway that limits hTR accumulation.

Although the aforementioned data support a role for the exo-

some and hMTR4 in human telomerase RNA metabolism, our re-

sults suggest that they function in a pathway that contrasts to that

ofPABPN1,whichpromoteshTRsynthesis. Todeterminewhether

PABPN1 is required for the accumulation of hTR observed in

hMTR4-andhRRP40-depletedcells,weanalyzedhTRexpression

fromcells inwhichPABPN1wasco-depletedwitheitherhMTR4or

hRRP40. The absence of PABPN1 reproducibly suppressed the

accumulation of mature hTR detected in cells deficient for

hRRP40 (Figure 4F, lanes 3 and 4; Figure 4G) and hMTR4 (Fig-

ure 4H, lanes 3 and 4; Figure 4I), suggesting that PABPN1-depen-

dent hTRmaturationgenerally functions in anantagonisticmanner

to hMTR4-dependent exosome-mediated degradation.

30-Extended Telomerase RNAs Are Enriched in Nucleoli
Analysis of telomerase RNA localization by fluorescence in situ

hybridization (FISH) indicates that hTR is sequestered in Cajal
Cell Rep
bodies (CBs) for the majority of the cell cycle (Jády et al., 2004;

Zhu et al., 2004). To get insight into the subcellular distribution

of 30-extended telomerase RNA, a set of 20-nt-long oligonucleo-

tide probes was designed to specifically detect the 30-extended
form of hTR by FISH. Analysis of this set of Cy3-labeled probes in

HeLa cells produced punctate signals that were mainly concen-

trated in the nucleus (Figure 5A, b and c). As a control, we

analyzed the same FISH probes using VA13 human fibroblasts,

which is a telomerase-negative cell line with undetectable levels

of hTR (Bryan et al., 1997; Xi and Cech, 2014). Punctate nuclear

signals were not detected in VA13 cells (Figure 5A, h and i), indi-

cating that the nuclear signal produced in HeLa cells is specific

to hTR expression. Accordingly, the signal detected with FISH

probes targeting hTR 30 extensions clearly increased in cells

deficient for hMTR4 (Figure 5A, compare e and f to b and c),

consistent with results obtained by qRT-PCR and RNase H as-

says (Figures 4B and 4C). In contrast, knockdown of hMTR4 in

VA13 cells produced background signal (Figure 5A, k). These re-

sults indicate that 30-extended telomerase RNAs mainly localize

to specific regions of the nucleus.

The nuclear distribution pattern of hTR 30 extensions detected
in HeLa cells was reminiscent of a nucleolar staining, which are

sites of H/ACA snoRNA maturation (Darzacq et al., 2006). To

test this possibility and further characterize the localization of

30-extended hTR in the nucleus, the FISH analysis was combined

with an immunostaining procedure for endogenous fibrillarin,

which is a nucleolar marker protein. Comparison of the different
orts 13, 2244–2257, December 15, 2015 ª2015 The Authors 2251



Figure 6. Poly(A)-Specific RNase and PAPs Are Required for hTR Synthesis

(A) Western blot validation shows depletion of PARN from HeLa cells.

(B) Northern blot analysis of hTR using total RNA prepared from PARN-depleted and control cells. The 5S rRNA was used as a loading control.

(C) TRAP assays used extracts prepared from HeLa cells that were previously treated with PARN-specific and control siRNAs. IC, internal PCR control.

(D) qRT-PCR analysis of oligo(dT)-primed cDNA prepared using RNA from PARN-depleted and control cells. Two independent hTR-specific regions (one and

two, see Figure 2F) as well as U2 and U16 RNAs were analyzed. Data were normalized to the PABPC1 mRNA and expressed relative to cells treated with control

siRNA. Data and error bars represent the mean and SD from three independent experiments.

(E) Western analysis of total extracts (Input, lanes 1 and 2) and anti-GFP immunoprecipitates (IP, lanes 3 and 4) from cells that stably express GFP and GFP-

PABPN1 is shown.

(F) Northern blot analysis of hTR using total RNA prepared from HeLa cells treated with the indicated siRNAs. The 5S rRNA was used as a loading control.

(G) The hTR levels were normalized to the 5S rRNA and expressed relative to cells treated with control siRNA (****p < 0.0001 and *p < 0.05, Student’s t test). Data

and error bars represent the average and SD from three independent experiments.

See also Figure S4.
staining methods showed that 30-extended telomerase RNAs

were concentrated in nuclear regions that colocalized with

anti-fibrillarin staining (Figure 5B, b–d). Such a specific colocali-

zation between hTR 30-extended species and fibrillarin also was

detected in hMTR4-depleted HeLa cells (Figure 5B, e–h). In

contrast, VA13 cells did not show Cy3-labeled nuclear staining

that specifically colocalized with fibrillarin (Figure 5B, i–l). From

these FISH experiments, we conclude that 30-extended telome-

rase RNAs primarily localize to the nucleolus.

The polyA-Specific RNase Is Required for hTR Synthesis
The increased level of mature hTR detected in exosome-defi-

cient cells, which contrasts to the hTR deficiency seen in

PABPN1-depleted cells, suggested a role for the RNA exosome

in telomerase RNP surveillance rather than in 30 end trimming of

polyadenylated hTR precursors. Interestingly, two recent studies

reported telomere dysfunction in cells with mutations in the

PARN gene (Stuart et al., 2015; Tummala et al., 2015), which co-
2252 Cell Reports 13, 2244–2257, December 15, 2015 ª2015 The Au
des for a poly(A)-specific RNase (PARN) that has been shown to

be involved in the 30 end trimming of intronic H/ACA box

snoRNAs (Berndt et al., 2012). To examine whether PARN is

involved in hTR 30 end maturation, we depleted PARN mRNAs

from HeLa cells. After validating PARN depletion by western

blotting (Figure 6A), we analyzed hTR levels by northern blot us-

ing total RNA prepared from cells treated with PARN-specific

and control siRNAs. PARN depletion resulted in decreased

levels of telomeraseRNA (Figure 6B; quantification in Figure S4A)

and reduced telomerase activity (Figure 6C; quantification in Fig-

ure S4B) compared to control cells. Similar results were obtained

by depleting PARN in HEK293 cells (Figures S4C and S4D). Cells

deficient for PARN also accumulated polyadenylated versions of

hTR, as determined by oligo(dT)-primed RT-qPCR (Figure 6D).

As controls, polyadenylated versions of U2 snRNA and C/D

boxU16 snoRNAwere not affected by a deficiency in PARN (Fig-

ure 6D), consistent with results showing that C/D box snoRNAs

are not PARN substrates (Berndt et al., 2012). The shared
thors



phenotypes resulting from PARN and PABPN1 loss of functions,

including reduced levels of hTR and telomerase activity, as well

as telomere shortening, suggested a functional relationship be-

tween these two proteins in hTR 30 end maturation. Accordingly,

comparison of PABPN1 and PARN single depletions to

PABPN1/PARN double depletions showed similar levels of hTR

reduction (Figures S4E–S4G), suggesting that both proteins

function in a common pathway such that when cells are deficient

for PABPN1, depletion of PARN exerts no further defects in hTR

maturation. Consistent with the idea that PABPN1 and PARN

function in a common pathway of telomerase RNA maturation,

endogenous PARN was specifically enriched after affinity purifi-

cation of GFP-PABPN1 relative to a control GFP purification (Fig-

ure 6E, lanes 3 and 4). The association between PABPN1 and

PARNwas found to be partially resistant to RNases (Figure S4H).

Together, these data suggest that PARN is required for PABPN1-

dependent processing of polyadenylated telomerase RNA.

We also set out to characterize the complex responsible for

hTR polyadenylation. Two major polyadenylation machineries

are responsible for RNA oligoadenylation in the nucleus of hu-

man cells: (1) the canonical PAPs that catalyze mRNA polyade-

nylation (Shi and Manley, 2015), and (2) the hTRAMP complex

(Fasken et al., 2011; Lubas et al., 2011) that targets transcripts

for decay by the nuclear exosome. Via RNAi-mediated gene

silencing, we depleted the catalytic subunit of these two poly-

adenylation complexes: hTRF4-2 (PAPD5) for the hTRAMP

complex and both PAPa and PAPg for the canonical polyade-

nylation machinery. Consistent with roles in promoting hTR

polyadenylation, oligo(dT)-primed qRT-PCR analysis of

hTRF4-2- and PAPa/PAPg-deficient cells both resulted in lower

levels of polyadenylated hTR compared to cells treated with

control siRNAs (Figure S4I). However, contrasting effects

were observed at the levels of mature hTR. Depletion of

hTRF4-2 resulted in increased levels of mature hTR (Figure 6F,

lane 2; Figure 6G), a result consistent with the increased hTR

accumulation observed after depletion of hMTR4 (Figures 4D

and 4E), which forms the hTRAMP complex via associations

with hTRF4-2 and the RNA-binding proteins ZCCHC7 (Fasken

et al., 2011; Lubas et al., 2011). In contrast, co-depletion of

PAPa and PAPg elicited a telomerase RNA deficiency (Fig-

ure 6F, lane 3; Figure 6G). These results suggest that polyade-

nylation by the canonical PAPs promotes hTR maturation,

whereas hTRAMP-dependent polyadenylation triggers telome-

rase RNA decay.
DISCUSSION

In this study, we identified an unexpected role for the nuclear

poly(A)-binding protein PABPN1 in the biogenesis of hTR and

in telomere maintenance, disclosing a polyadenylation-depen-

dent step in the 30 end maturation of hTR. We also found evi-

dence that the RNA exosome functions antagonistically to

PABPN1-dependent hTR maturation, thereby limiting telome-

rase RNA accumulation. In addition to providing novel insights

into the mechanism of telomerase RNA 30 end processing, our

results establish a critical role for RNA polyadenylation in telome-

rase-mediated telomere maintenance.
Cell Rep
A Polyadenylation-Dependent Pathway Promotes 30 End
Maturation of the hTR
While evidence for oligoadenylated telomerase RNA was re-

ported previously (Goldfarb and Cech, 2013), the functional rele-

vance of hTR polyadenylation had remained unknown. Here we

show that a deficiency in PABPN1 results in reduced levels of

mature hTR together with the accumulation of polyadenylated

versions of the telomerase RNA, providing strong evidence for

the role of PABPN1 in a 30 end maturation pathway that leads

to the production of mature telomerase RNA. The functional

importance of PABPN1 in hTR production is further demon-

strated by a deficiency in telomere maintenance in PABPN1-

depleted cells (Figure 1). Because RNA sequencing (RNA-seq)

analysis of poly(A)+ RNA from PABPN1-depleted cells indicates

that close to 96% of detected mRNAs are normally expressed

(Beaulieu et al., 2012), the negative impact of a PABPN1 defi-

ciency on hTR levels, telomerase activity, and telomere length

is likely to reflect the direct role of PABPN1 in telomerase RNA

maturation. Accordingly, the expressions of hTERT, DKC1,

NHP2, NOP10, NAF1, GAR1, and RUVBL1/L2 mRNAs are not

affected in cells deficient for PABPN1 (Beaulieu et al., 2012).

Importantly, the direct role of PABPN1 in the polyadenylation-

dependent maturation of hTR is supported by (1) the enrichment

of telomerase RNA with long poly(A) tails in the PABPN1-bound

fraction (Figure 3B), and (2) the copurification of hTERT and Dys-

kerin with PABPN1 (Figure 3). These findings, together with our

previous work on S. pombe snoRNA 30 end processing (Laro-

chelle et al., 2012; Lemay et al., 2010), support the existence

of an evolutionarily conserved role for Pab2/PABPN1 in the

maturation of independently transcribed H/ACA box RNAs.

The nature of the PAP activity associated with PABPN1-

dependent maturation of hTR also appears to be conserved.

Indeed, whereas the canonical nuclear PAP Pla1 is associated

to Pab2-dependent snoRNA maturation in S. pombe (Lemay

et al., 2010), Cid14, the catalytic subunit of the fission yeast

TRAMP polyadenylation complex, promotes the turnover of

nonproductive snoRNPs (Larochelle et al., 2012). Accordingly,

mature snoRNAs accumulate in cid14 S. pombe mutants, anal-

ogous to the increased levels of mature hTR detected after the

depletion of the human Cid14 homolog hTRF4-2 (Figure 6). In

contrast, the targeted knockdown of the canonical human

PAPs, PAPa and PAPg, resulted in hTR deficiency (Figure 6),

consistent with a pathway leading to mature telomerase RNA.

Although we cannot exclude the possibility that the hTR defi-

ciency observed in PAPa/PAPg-depleted cells is the conse-

quence of secondary effects, the fact that almost half of the poly-

adenylated telomerase RNA associated to PABPN1 have poly(A)

tails longer than 15 nt (Figure 3B) is consistent with the involve-

ment of canonical PAPs in PABPN1-dependent maturation. In

contrast, the distribution of RNAs polyadenylated by TRAMP

peaks at four to five adenosines (Schmidt and Butler, 2013).

Our study identified the poly(A)-specific RNase PARN as an

exoribonuclease that functions with PABPN1 to promote hTR

30 end processing. This conclusion is based on the following

clearly detectable effects of PARN depletion (Figure 6): reduced

hTR accumulation and a robust increase in polyadenylated

forms of the telomerase RNA. Consistent with our findings, a

role for PARN in the 30 end maturation of intronic H/ACA box
orts 13, 2244–2257, December 15, 2015 ª2015 The Authors 2253



Figure 7. Model for Polyadenylation-

Dependent Telomerase RNA Maturation

Transcription of nascent hTR by RNA polymerase

II (Pol II) is associated with the co-transcriptional

recruitment of H/ACA RNP assembly factors

(H/ACA snoRNPs). Termination of hTR transcrip-

tion is coupled to two antagonistic pathways that

actively compete for nascent hTR precursors:

PABPN1/PARN-dependent 30 end maturation and

hTRAMP/exosome-dependent decay. The equi-

librium between decay and maturation of telome-

rase RNA precursors thus controls hTR expres-

sion.
snoRNAs has been demonstrated previously, whereby knock-

down of PARN resulted in the accumulation of polyadenylated

versions of SNORA63 and SNORA65 together with reduced

levels of their mature forms (Berndt et al., 2012). Quite remark-

ably, two recent studies in fact documented PARN mutations

in human disorders linked to telomere dysfunctions, dyskerato-

sis congenita (Tummala et al., 2015) and idiopathic pulmonary

fibrosis (Stuart et al., 2015), further supporting the role of

PARN in hTR synthesis. The ability of PABPN1 to stimulate

PAP-dependent poly(A) tail synthesis (Bresson and Conrad,

2013; Wahle, 1991) may promote the generation of a high-affinity

substrate for PARN, which is a poly(A)-specific 30–50 exonu-

clease (Körner and Wahle, 1997). Physical interactions between

PABPN1 and PARN (Figure 6) also may contribute to recruiting

PARN at the 30 end of polyadenylated hTR precursors. The iden-

tification of PARN and PABPN1, two proteins with high speci-

ficity for poly(A) tails, as factors promoting hTR synthesis

strongly supports a polyadenylation-dependent 30 end matura-

tion pathway for the human telomerase RNA.

Our results support a model in which mature hTR is produced

via 30 end trimming of polyadenylated precursors in a process

that requires PABPN1 and PARN (Figure 7). According to this

model, the polyadenylated telomerase RNA accumulating in

PABPN1- and PARN-deficient cells corresponds to pre-hTR

stalled or delayed in 30 end processing, thereby resulting in

reduced hTR accumulation. To explain the accumulation of

mature hTR in cells deficient for the human TRAMP complex

(knockdown of hMTR4 and hTRF4-2), we propose that

hTRAMP-dependent polyadenylation promotes a degradation

pathway that actively competes with PABPN1/PARN-depen-

dent telomerase RNA maturation (Figure 7). Consistent with

this model, hTR accumulation also was observed upon knock-

down of hRRP40 and hRRP6 (Figure 4), components of the hu-

man RNA exosome, which is known to be stimulated by the poly-

adenylation activity of the hTRAMP complex (Lubas et al., 2011).
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The increased accumulation of hTR in

exosome/hTRAMP-deficient cells sup-

ports the view that a fraction of telome-

rase RNA produced in normal cells is

constantly discarded before entering

functional pathways, suggesting that ki-

netic competition between degradation

and maturation determines the efficiency
and accuracy of hTR processing (Figure 7). Although it remains

possible that TRAMP/exosome-dependent decay also influ-

ences the turnover of mature hTR independently of hTR precur-

sors, the fact that 30-extended telomerase RNA accumulated in

exosome- and hTRAMP-deficient cells (Figures 4B and 4C) ar-

gues that the nuclear exosome does not act exclusively on

mature hTR.

The connection between the two types of hTR 30 extension re-

ported here, the near-mature polyadenylated versions of hTR

and the longer 30-extended species, remains to be determined

and likely will be enlightened by elucidating the mechanism of

hTR transcription termination. One possible scenario is the influ-

ence of a transcription termination pathway that promotes termi-

nation of Pol II transcription at the annotated hTR 30 end, or a few
nucleotides downstream, as reported for NNS-dependent termi-

nation of independently transcribed yeast snoRNAs (Kim et al.,

2006; Steinmetz et al., 2001) and the S. cerevisiae telomerase

RNA (Noël et al., 2012). Such transcription termination would

be coupled to two antagonistic pathways that actively compete

for nascent hTR precursors (Figure 7): PABPN1/PARN-depen-

dent maturation and hTRAMP/exosome-dependent decay. In

this scenario, the long and heterogeneous 30-extended hTR spe-

cies are non-functional products resulting from read-through

transcription and targeted for RNA decay via exosome-depen-

dent surveillance mechanisms (Lemay et al., 2014; West et al.,

2006). However, as redundant transcription termination path-

ways can converge for the production of functional noncoding

RNAs (Grzechnik and Kufel, 2008; Lemay et al., 2010; Noël

et al., 2012), it remains possible that the long 30-extended hTR

species may be processed sporadically into mature hTR.

Nucleolar Localization of 30-Extended hTR
Previous localization studies in immortalized human cell lines

indicate that the telomerase RNA accumulates in a nuclear struc-

ture (Cajal Body; CB) and that hTR localization to the CB is



important for telomere maintenance by telomerase (Cristofari

et al., 2007; Jády et al., 2004; Theimer et al., 2007; Zhu et al.,

2004). In contrast, little is known about the subnuclear localiza-

tion of the maturation steps that occur before routing of hTR to

the CB and whether only 30 end-processed hTR accumulates

in the CB. Our localization analyses of 30-extended telomerase

RNA by FISH suggest that part of hTR 30 end processing takes

place in the nucleolus. This conclusion is supported by previous

localization studies that used ectopically expressed hTR in telo-

merase-negative VA13 cells, which showed that mutations in the

CB-targeting signal results in the accumulation of processed

hTR in nucleoli (Theimer et al., 2007), arguing for nucleolar 30

end processing steps prior to CB localization. Similarly, deple-

tion of TCAB1, which targets hTR to the CB, results in the accu-

mulation of hTR in the nucleolus (Freund et al., 2014). The detec-

tion of endogenous 30-extended hTR in the nucleolus (Figure 5) is

also consistent with the nucleolar localization of the human

TRAMP complex and of exosome subunits (Lubas et al., 2011).

Remaining to be determined is the localization of near-mature

polyadenylated versions of hTR, as it is currently challenging to

distinguish these polyadenylated forms from mature hTR by

FISH. However, as immunostaining studies suggest that both

PARN and PABPN1 include nucleolar targeting elements (Berndt

et al., 2012; Calado et al., 2000), it is tempting to speculate that

final trimming of polyadenylated telomerase RNA precursors

also occurs in the nucleolus.

Although hTR biogenesis can occur in the absence of hTERT

(Yi et al., 1999), the mechanism and localization of hTERT-hTR

assembly remain poorly understood. The identification of polya-

denylated versions of hTR in affinity-purified hTERT prepara-

tions, together with the RNase-sensitive copurification of

PABPN1 and hTERT, suggests that a fraction of polyadenylated

hTR precursors include hTERT during terminal 30 end maturation

steps (Figure 7). Although the functional significance of these as-

sociations remains to be determined, the idea that hTERT

recruitment occurs prior to terminal hTR 30 end maturation is

consistent with results showing that hTERT expression can pro-

mote hTR accumulation (Yi et al., 1999).

In summary, our study identified key factors critical for the 30

end maturation of the independently transcribed hTR, and, by

doing so, it provides evidence for the unsuspected role of RNA

polyadenylation in telomerase-mediated telomere maintenance.

As mutations in PARN have been linked to human diseases of

telomere dysfunction (Stuart et al., 2015; Tummala et al.,

2015), our findings suggest that mutations in PABPN1 also

may be found in patients with dyskeratosis congenita, aplastic

anemia, and pulmonary fibrosis, as the causal mutations in

many families afflicted by these syndromes of telomere short-

ening remain to be determined.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfections

HeLa and HEK293 cells were cultured in DMEMwhile WI38-VA13 cells (ATCC)

were grown in Eagle’s minimal essential medium (EMEM). Stable cell lines that

conditionally induced GFP- and Flag-tagged fusions were maintained in

DMEM containing 10% tetracycline-free fetal bovine serum (FBS), Hygromy-

cine (75 mg/ml), and Blasticidin (15 mg/ml). Expression from the tetracycline-

sensitive promoter was induced using 500 ng/ml doxycycline. The siRNAs
Cell Rep
were transfected at 20 nM using lipofectamine 2000 (Life Technologies) and

maintained for 72–96 hr. Sequences of siRNAs used in this study are listed

in Table S1.

Protein Analyses

Preparation of cell lysates for western blotting and IPs was as previously

described (Beaulieu et al., 2012). For IPs with RNase treatment, the beads

were incubated 30 min at 25�C with 7.5 U RNase A and 300 U RNase T1.

Immunoblotting signals were detected using an Odyssey infrared imaging sys-

tem (LI-COR Biosciences) and quantified by Image Studio version 3.1 soft-

ware. A list of antibodies used in this study is provided in the Supplemental

Experimental Procedures.

RNA Analyses

Total RNA was extracted with TRIzol (Life Technologies) and analyzed by

northern blotting and qRT-PCR, as described previously (Beaulieu et al.,

2012). RNase H cleavage assays were previously described (Lemay et al.,

2014) and are explained in detail in the Supplemental Experimental Proce-

dures. Conditions for the semiquantitative RT-PCR analyses (Figure 2) and

the sequences of probes used for northern blotting are described in the Sup-

plemental Experimental Procedures. Primers are listed in Table S2.

TRAP

TRAP assays from total cell extracts were as described previously (Bachand

et al., 2002).

Analysis of hTR 30 End
RNA co-immunoprecipitation (RIP) assays and extraction of RNA from beads

were as previously described (Bergeron et al., 2015). Preparation of hTR-spe-

cific libraries using immunoprecipitated RNA was based on the RNA ligase-

mediated 30 RACE approach described by Goldfarb and Cech (2013), using

the primers listed in Table S3. Barcoded libraries were combined and analyzed

on an Illumina MiSeq instrument. Data analysis was based on a custom python

script, which is described in detail in the Supplemental Experimental

Procedures.

TRF Assay

TRF analyses were done as previously described (Kimura et al., 2010) with mi-

nor modifications. Briefly, 3 mg genomic DNA was digested with RsaI and HinfI

and resolved on 0.5% agarose gels. The gel was transferred onto nylon mem-

branes, cross-linked, and incubated with 32P-labeled telomere-specific probe

(CCCTAA)3 at 55
�C overnight. The radioactive signal was detected and quan-

tified using a Typhoon Trio instrument. Mean TRF lengths were analyzed using

TeloTool (Göhring et al., 2014).

FISH and Immunofluorescence Detection

The FISH signals were detected using Cy3-labeled Stellaris probes (Biosearch

Technologies), as recommended per the manufacturer’s instructions. A

detailed description can be found in the Supplemental Experimental

Procedures.
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The accession number for the RNA-seq data reported in this paper is GEO:

GSE74186.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.11.003.
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