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Abstract

We study inflationary solutions in the M-theory. Including the fourth-order curvature correction terms, we find three gener-
alized de Sitter solutions, in which ourspace expands exponentially. Taking one efgblutions, we propose an inflationary
scenario of the early universe. This provides us a natural explanation for large extra dimensions in a brane world, and suggests
some connection between the 60 e-folding expansion of inflation and TeV gravity based on the large extra dimensions.

0 2004 Elsevier B.VOpen access under CC BY license,

1. Introduction such a model from the fundamental theories of particle
physics that incorporate gravity. The most promising
candidate for such theories are the ten-dimensional su-
perstrings or eleven-dimensional M-theory, which are
hoped to give models of accelerated expansion of the
universe upon compactification to four dimensions.

It has been shown that models with certain period

Recently there has been renewed interest in ob-
taining accelerating univeefrom higher-dimensional
gravitational theories. The study of this subject gets its
urgency from the recent discovery of the accelerated

expansion of the present universe as well as the confir- ¢ lerated expansion can be obtained from th
mation of the existence of the early inflationary epoch ot accereraled expansion can be obtained 1ro c
higher-dimensional vacuum Einstein equation if one

[1]. Though it is not difficult to construct cosmologi- . . T
cal models with these features, it is desirable to derive Fakes th_e internal space hyperbolic and |t§ size depend-
ing on time[2]. It has been showj3] that this class of
models is obtained from what are known as S-branes
E-mail addresses: maeda@gravity.phys.waseda.ac.jp [4,5] in the limit of vanishing flux of three-form fields

(K. Maeda) ohta@phys.sci.osaka-u.ac(jg. Ohta). (see alsd6]). It is found that this wider class of so-
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lutions gives accelerating universes for internal spacesto examine how these corrections in the fundamen-
with zero and positive curvatures as well if the flux is tal theories modify the above cosmological models
introduced. Further discussion of this class of models and whether we can get interesting cosmological sce-
has been given in Reffr-9]. nario with large e-folds. We focus on the solutions to
It turns out, however, that the model thus obtained the vacuum Einstein equations with these higher order
does not give enough e-folds necessary to explain the corrections in this Letter since the basic feature can be
cosmological problems such as horizon and flatness obtained in this simple setting.
problemd3,7]. Some efforts to overcome this problem We find interesting models with power law as well
were made in the present framework in H6i- as exponential expansions. These seem to give enough
We note that the scale when the acceleration oc- e-folds, and the solutions suggest that the fundamen-
curs in this type of models is basically governed by the tal Planck scale is rather small gs10° TeV and the
Planck scale in the higher (ten or eleven) dimensions. size of internal space grows rather large with the scale
With phenomena at such high energy, it is expected < 10 TeV-1. These may provide the models of large
that we cannot ignore higher order corrections in the extra dimensions discussed by Arkani-Hamed et al.
theories at least in the early universe. In fact there are [15]. We have found similar results for several super-
terms of higher orders in the curvature to the lowest ef- strings and M-theory, but here we present only the
fective supergravity action coming from superstrings results of exponential expansions for M-theory, leav-
or M-theory. In four dimensions, many studies have ing other details to a separate pafis].
been done with such correction terfi§)].
The cosmological models in higher dimensions
were also studied intensively in the 80s by many au- 2. Vacuum Einstein equationswith R* corrections
thors[11,12] Among them, the model with Gauss—
Bonnet term is very interesting for the above reason  We consider the low-energy effective action for the
[12]. It was shown that there are two exponentially ex- M-theory:
p:_;mdmg so_Iut|on_s, which may be call_ed generalized de S = Sep+ Sa. Q)
Sitter solutions since the size of the internal space de-
pends on time (otherwise there is no solution of this Where
type). In both solutions, the external space inflates, _ 1 11
while the internal space shrinks exponentially. (There EH = ffl dx V=g R, 2)
are also two time-reversed solutions, i.e., the external 1 B B
space shrinks exponentially but the internal space in- S4 = > d*x /=gy Jo+ 2B Es]. €)
flates.) One solution is stable and the other is unstable. K11
Since the present universe is not in the phase of de Sit- _ 1
ter expansion with this energy scale, we cannot use the £8 = — > 3] OPYIVL VA g o oaos
stable solution for a realistic universe. If we adopt the % RP1O1 ' ... RPA%4 (4)
unstable solution, on the other hand, we may not find _ v fava>
sufficient inflation unless we fine-tune the initial val- 40 = R Rayuup R"7* R” poic

ues. The higher-order curvature terms called Lovelock n }R“““R R, PO pB ©)
gravity were also considered in higher-dimensional 2 apuv r pak:
cosmology[13]. Here we have dropped contributions from formag,

However, most of the work considered powers of g an eleven-dimensional (11D) gravitational constant,
scalar curvature or Lovelock gravity, which are not gnqwe leave the coefficientsandy free although we

the types of corrections arising in type Il superstrings ,now them for the M-theorj14] as
or M-theory. In particular, it is known that the coeffi-

. : i 2
cient of the Gauss—Bonnet terms vanishes and the first , _ _ kT2
higher order corrections start witf* terms (one is the 32 x 210 x (2m)’
fourth order Lovelock gravity and the other contains K12172

higher derivatives[14]. The purpose of this Letteris ¥ = =33 %4 . 27)%" (6)
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where T = (272/k2)Y/3 is the membrane tension.
Type Il superstring has the same couplings in 10 di-

mensions, so we can discuss this case if we keep the

dilaton field constant, but we consider 11D theory in
this Letter. Here we should note that contributions of
the Ricci tensorR,,, and scalar curvatur® are not
included in the fourth-order correctiorf8) because
these terms are not uniquely fixed.

Since we are interested in a cosmological time-

dependent solution, we take the metric of our space-

time as
3
dsfl = —e20() g2 4 2u1(1) X:(ciyc")2
i=1
11
4 g2u2(0) Z(dya)z’ @
a=5

where we assume that the external 3-space and the in-

ternal 7-space are flat. Talg variation of the action
with respect toug, 11, anduz, we obtain three ba-
sic equations, whose explicit forms will be given in
a forthcoming pap€fi16].

2.1. Generalized de Sitter solutions

In cosmology, de Sitter inflationary expanding
spacetime is the most important solution in the early
universe. Hence, let us first look for such solutions.
Assuming the metric form of a generalized de Sitter
spacetime as

©)

where andv are some constants, we obtain three
algebraic equations:

ug=0, u1 = jut, us = vt,

/LZ + 7uv + 72+ 20160,3;u§[7p,2 + 7Ty + UZ]
-7y [12,11,8 + 7;1,2\12(“2 +12 4 ;1,\1)2 + 1687
+ 7uh?@u + )% + 211204 (0 + 21))2]

+ 4y (3u+7v)

X [6/,L7 + 4207

+ TP+ v) (P + v+ )] =0, (9)

312 + 14pv+ 2812
+2016087[61> + 2442 + 14p1? + v
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+3y[1218 + TuPv?(u? + 1% + ,uv)z +168.8
+ 7,u4v2(2u +v)2+ 21u2v4(u + 21))2]
—2ypnBu+1v)
X [48,11,6 + 7\12(3;1,2 + 2uv + vz) (,uz +12+ ;w)
+ 144202 (2p + v) (B + v)
+ 4204w+ 20) (i +v)]
+ 2y (B + 7v)?
X [12,u5 + 72+ v) (;1,2 +12 4 ;w)] =0, (10)

2,uz + 6uv + 702
+ 288081543 + 46,2 + 38u1” + 617
+y[1208 + TP (1 + 0% + ,uv)2 +168,°
+ 7;1,4v2(2,u + v)2 + 21,u,2v4(u + 2\1)2]
—2yv@u+7v)
x [961° + 112(1? + 21 + 3v?) (12 + 1% + )
+2u*2p +v) (e +v)
+ 6,u2v2(u +2v)(u + 31))]
+2yv(3u + Tv)?

x [120° + 12w +v) (u® +v2 + wv)] =0, (11)

Since these equations are very complicated, we
have solved them numerically. }f does not vanish,
rescalings, y, © andv as

B=8B/lyl
= ulyVe,

we can always sey to —1 if it is negative (or 1

if positive). We also have to rescale time coordinate
as7 = |y| 8. The typical dynamical time scale is
then given by|y|%/6 ~ 0.181818ni;, wheremi; =
Kl’lz/g is the fundamental Planck scale. After this scal-
ing, we have only one free parametgr In Fig. 1,

we depict numerical solutions;Ni;, v;) (i = 1-5)
with fi; > 0 with respect to8 for the case ofy < 0.
We note that there are always time-reversed solutions
N (i;, V) (i = 1-5) obtained byi;, ) = —(ft;, ;)
which are not shown explicitly. We find that M-theory
(7 =—1,8=Bs = —1/(3 x 2%) ~ —0.0052083) has
three solutions

y=v/lyl (=lor =1,

b =v|y|Ve, (12)

N2(ft2, v2) = (0.45413,0.45413),
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Fig. 1. Five generalized de Sitter solutions(N;, ;) (i = 1-5) with j1; > 0 with respect tg for y < 0. Each pair of pointgi;, 7;) with the
same value of gives one solution. Number of solutions changes with the valyg @here is another set of time-reversed SO|UtiOIIﬁSI\Nh

i <0.

N3z(ft3, v3) = (0.79802,0.10781),

Na(fta, v4) = (0.50754,0.43025). (13)

If ¥ > 0, we find three solutions;P(i = 1-3) for
B < 0, while just one R for g > 0. We depict these
solutions inFig. 2 (for = 1). There is no solution for
B =0. InTable 1 we summarize their properties.

If y =0 and B+ 0, we can always set to —1
if it is negative (or 1 if positive), by rescaling, u
andv asp = g/|B| (=1or — 1), i = plp|"/°, and
b = v|B|Y6. We then find two solutiong(jt, V) =
(0.22046,—0.28771), (0.19168,0.19168)] for 8 =
—1, while just one[(jz, V) = (0.04467,—0.45111)]
for = 1. There is no solution fof =y = 0.
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Fig. 2. Four generalized de Sitter solutions/B, 7;) (i = 1-4) with ; > 0 with respect tg for y > 0. Each pair of pointsi;, ;) with the
same value off gives one solution. Number of solutions changes with the valyg dhere is another set of time-reversed solutiolhsvﬁh
f; < 0. No solution exists fop > 0 and g=0.

Table 1

Generalized de Sitter solutiong 0f;, ;) (i = 1-5) and P(jz;, ;) (i = 1-4) with ji; > 0 for various values of in the cases of = —1 and

of y =1, respectively. The solution q\lis the partner of the solution Nwith ji4 < 0, which is found when it is extended to the range of
B > 0.025668. Five eigenmodes for linear perturbations are also shoven:({) means that there are stable modes and unstable modes.
The solution has many stable modes if its 10-volume expansion rate (@) is positive

y Solution Property Range Stability 3+ 70
7=-1 Ny jig>0> iy B < —0.04342 (1s, 4u) —
N» fp=7y>0 B < —0.00418 (4s, 1u) +
—0.00418< B < 0.0004464 (5s, 0u) +
N3 fiz>i3>0 —0.202867< 8 < 2.141 (4s, 1u) +
Ny fia>Ps>0 —0.202867< f < —0.00418 (5s,0u) +
D4 > jig>0 —0.00418< 8 < 0.025668 (4s, 1u) +
N, fiy>0> 7, B > 0.025668 (1s, 4u)
N5 ji5 > 0> g 0.025668< 8 < 0.09247 (1s, 4u) -
7=1 Py jig>0> iy B<0 (1s, 4u) —
P> o =173 >0 (4s,1u) +
P3 fa1>0>vq (4s, 1u) +
P4 iy >0> 1y B>0 (1s, 4u) -
2.2. Sability du1/dt = ji; + A;e° andduy/di = v; + B;e°", where

|Ail, |Bi| < 1, we write down the perturbation equa-

Since the solutions obtained above correspond to tions. There are five modes & oé’), a=12,...,5)
fixed points in our dynamical system, we have to an- because the basic equations for and iz are two
alyze their stabilities in order to see which solutions third-order differential equations plus one constraint
are more generic. We have performed a linear per- which is second order. We show the resultSables 1
turbation analysis around those fixed points. Setting and 2 In Table 1, we just give the number of stable
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Table 2
The eigenvalues of linear perturbation equations/fer —1. We show two cases @ § = B and one for which we find an interesting scenario
B Solution L i Five eigenvalueSoni), a=12,..., 5)
—0.0052083 N 0.45413 045413 (—4.5893,—4.5413,—3.6670,—0.87426,0.048032)

N3 0.79802 010781 (—4.1012,—3.1488,—2.3823,—0.76653,0.95268)

A 0.50754 043025 (—4.5344,—4.4768,—3.6344,—0.89998,—0.057629)
—0.2025 N1 0.28195 —0.39104 (—10.2506,0.9457+ 1.8339,1.8914,12.1421)

N2 0.25005 025005 (—5.0572,—2.5005,—1.2502+ 5.7723i,2.5567)

N3 0.71567 012395 (—3.0268,-3.0147,—1.5073+ 3.0912,0.01217)

(7 0.70803 012661 (—3.01038,—2.9986,—1.5052+ 3.2449,—0.011765)

and unstable modes. For example, there are one stables 79892, For a successful inflation (resolution of
and four unstable modes for the solutioa(N1, v1). flathess and horizon problems), we need at least 60
Hence this solution may not be generic because we e-foldings. Let us assume that inflation will end af-
have many unstable modes. The M-theory has threeter 60 e-foldings, i.e., 39804¢ng~ 60. The inflation
solutions(13). Two solutions (N and Ns) have four will end because Blhas one unstable mode. During in-
stable and one unstable modes. The third solutigf) (N flation the internal space also expands exponentially.
has five stable modes, which means that this solution When inflation ends, its scale becomdg078%end ~.
is stable against linear perturbations (3able 2. 4000 times larger than the initial scale length, which
From this stability analysis, one may conclude that we assume to be the 11D Planck Iengbkgf). Af-
the solution N is most preferable spacetime in this ter inflation, if the internal space settles down to static
model. We have inflationary expansion not only in one, the present radius of extra dimension®Ris~
3D external space but also in 7D internal space. The 4000"71_11- Since this is slightly larger than the funda-
expansion rates in both spacegs, () are, however,  mental scale length, we may adopt the model of large
almost the same. Hence, we would find our present extra dimensions, which was first proposed as a brane
world in which scales of two spaces are not so dif- world by Arkani-Hamed et a[15]. In this model, the
ferent. This solution also predicts that inflation never 4D Planck mass is given by
ends because it is stable. For a realistic cosmological
model, the solution must be unstable because infla- m5 ~ R{m3, ~ 1.6 x 10°°m3,. (14)
tion should end. On the other hand, we also want such
a solution to be rather generic which requires some
sort of stability. This would be achieved if the solu-
tion contains only one unstable mode, and then the
generic spacetime may first approach this solution and This is our fundamental energy scale. The present
gradually leave it, recovering the present Friedmann scale of extra dimensions is 409911 ~ 7 Tev?,

universe, where we expect the higher order terms be- which could be observed in the accelerators of next
come irrelevant. We find that the solutior fay give generation.

one possible candidate for such a model. We now dis-  we can also put our argument in a different way.

cuss a new scenario obtained from this solution in the Suppose that the e-folding of inflation A, which is

next section. related to the stability of the solution. The 3-space ex-
pands ag" = efiiend, while the internal space becomes
eVlend times larger. It follows from Eq(14) that

We then find

mi1~ 2.5 x 107 3m4 ~ 600 TeV. (15)

3. A scenario for large extra dimensions
v
. ) . mi1~e 24 mag. (16)
Let us discuss the evolution of the early universe
for the solution N(fi3, v3) = (0.79802,0.10781)with Sincem11 2 1 TeV from the present experiments, we

B = Bs. The scale factor of the external space expands have a constraint on the e-folding&s< 10 /v. Then
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if we have TeV gravity angk = 6v (> 0), we can nat- ergy scale is|y|~Y/6 ~ 5mq; ~ 4 TeV. We have to
urally explain why the e-folding of inflation is about invoke other mechanism for density perturbations such
60 and but not so large. Recall that the solution N as a curvaton mod§l8].
with y < 0 gives 572 < /v < 10.22 (corresponding
to 57< N < 102) for any value of.

Although the above solution \Nhas one unstable  Acknowledgements
mode, its eigenvalues(3) is of the same order of mag-
nitude as other eigenvalues of stable modes as seen We would like to thank Y. Hyakutake, T. Shi-
from Table 2and is a little too lage to give enough ~ romizu, T. Torii, D. Wands, M. Yamaguchi and
expansion. If the eigenvalue of the unstable mode is J. Yokoyama for useful discussions. The work was
much smaller than those of other four stable modes, partially supported by the Grant-in-Aid for Scien-
a preferable generalized de Sitter solution is naturally tific Research Fund of the MEXT (Nos. 14540281,
obtained for a wide range of initial conditions. Can 16540250 and 02041) and by the Waseda University
we find such a possibility in superstrings or M-theory? Grant for Special Research Projects and for The 21st
We note that our starting Lagrangian has some am- Century COE Program (Holistic Research and Educa-
biguity, that is, the fourth-order correction tersy is tion Center for Physics Self-organization Systems) at
fixed up to the Ricci curvature tensors. If we include Waseda University.
correction terms including #hRicci curvature tensors,
our basic equations will be modified. We might effec-
tively take their effect into account by changing the References

value of our coefficienty or B after the rescaling. 11 For recent WMAP data. sdeto:/im on ,

Thus we may look for a preferable solution by chang- {2} Pk, '(I?'g\?vnsend, NME, \7\/oh|'13:;1rth,a Igf;s?-Rg\?.al-_gect)t\./ 91 (2003)
ing . We find that the solution jlwith g = —0.2025 061302, hep-th/0303097.

shows interesting behaviors (s&able 2. Four modes [3] N. Ohta, Phys. Rev. Lett. 91 (2003) 061303, hep-th/0303238;
are stable and the eigenvalue of one unstable mode is  N. Ohta, Prog. Theor. Phys. 110 (2003) 269, hep-th/0304172.
very small, i.e.g5(3) —0.01217. Thenthe time scalein  [41 C-M. Chen, D.V. Gal'sov, M. Gutperle, Phys. Rev. D 66

; . . ) (2002) 024043, hep-th/0204071;
which this unstable mode becomes important is eval- N. Ohta, Phys. Lett. B 558 (2003) 213, hep-th/0301095.

= 3)._ . .
uated asys~ (Gé ))~1~ 82. Since the eigenvalues of [5] M. Kruczenski, R.C. Meyers, A.W. Peet, JHEP 0205 (2002)
other stable modes are of order unity, for a wide range 039, hep-th/0204144;

of initial conditions, general solutions first approach V.D. Ivashchuk, Class. Quantum Grav. 20 (2003) 261, hep-
the solution N, which gives us an inflationary stage, th/0208101;

ft d N ical tg ~ o Th yt b|g See also H. Lu, S. Mukherji, C.N. Pope, K.W. Xu, Phys. Rev.
after one dynamica |met£ ~( )). The uns able D 55 (1997) 7935.
mode becomes important at- #,s, and then the in- [6] C.P. Burgess, P. Martineau, F. Quevedo, G. Tasinato, |. Zavala,
flation ends. We may have enough e-folding time of JHEP 0303 (2003) 050, hep-th/0301122;
inflation (N =~ fizfus ~ 5838). In this case, we find ﬁ-/osggggé J. Walcher, JHEP 0305 (2003) 069, hep-

~ —16, ; ; t .
mi1~ 3.3 x 107mg ~ 0.8 TV, which gives us a7 o™ \\ohifarth, Phys. Lett. B 563 (2003) 1, hep-
TeV gravity theor.y. _ th/0304089.
Although we find a successful exponential expan- [8] S. Roy, Phys. Lett. B 567 (2003) 322, hep-th/0304084;

sion and its natural end, this is not enough for a suc- R. Emparan, J. GarrigaJHEP 0305 (2003) 028, hep-

cessful inflation. We need a reheating mechanism and ~ th/0304124;

. . . C.-M. Chen, P.M. Ho, I. Neupane, J.E. Wang, JHEP 0307
have to create a density fluctuation as a seed of cosmic (2003) 017, hep-th/0304177:

sFructure. A g_ravitational 'particle creation may pro- M. Gutperle, R. Kallosh, A. Linde, JCAP 0307 (2003) 001,
vide a reheating mechanisfh7], because the back- hep-th/0304225.

ground spacetime is time dependent and there might [9] C.-M. Chen, P.M. Ho, I. Neupane, N. Ohta, J.E. Wang,
be some oscillation when the internal space settles 0] iHAEPS?;igifS?(?%ﬁjs&I‘;{"g‘g’f?fgzgol)- ..

down to stgtlc one which is rqulred to explgln our K. Maeda, Phys. Lett. B 166 (1986) 59:

present universe. As for a dens'W_ perturbation, our J. Ellis, N. Kaloper, K.A. Olive, J. Yokoyama, Phys. Rev. D 59
model may not give a good scenario because our en-  (1999) 103503, hep-ph/9807482.


http://map.gsfc.nasa.gov/

K. Maeda, N. Ohta / Physics Letters B 597 (2004) 400-407 407

[11] See, e.g., in: T. Appelquist, A. Chodos, P.G.O. Freund I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali,
(Eds.), Modern Kaluza—Klein feories, Addison—Wesley, Phys. Lett. B 436 (1998) 257, hep-ph/9804398.
1987, Chapter VI. [16] K. Maeda, N. Ohta, in preparation.

[12] H. Ishihara, Phys. Lett. B 179 (1986) 217. [17] L.H. Ford, Phys. Rev. D 35 (1987) 2955;

[13] N. Deruelle, L. Farifia-Busto, Phys. Rev. D 41 (1990) 3696. B. Spokoiny, Phys. Lett. B 315 (1993) 40.

[14] A. Tseytlin, Nucl. Phys. B 584 (2000) 233, hep-th/  [18] D.H. Lyth, D. Wands, Phys. Lett. B 524 (2002) 5, hep-ph/
0005072; 0110002;
K. Becker, M. Becker, JHEP 0107 (2001) 038, hep-th/ T. Moroi, T. Takahashi, Phys. Lett. B 522 (2001) 215, hep-
0107044. ph/0110096.

[15] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429
(1998) 263, hep-ph/9803315;



	Inflation from M-theory with fourth-order corrections  and large extra dimensions
	Introduction
	Vacuum Einstein equations with R4 corrections
	Generalized de Sitter solutions
	Stability

	A scenario for large extra dimensions
	Acknowledgements
	References


