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Abstract

We study inflationary solutions in the M-theory. Including the fourth-order curvature correction terms, we find three
alized de Sitter solutions, in which our 3-space expands exponentially. Taking one of the solutions, we propose an inflationa
scenario of the early universe. This provides us a natural explanation for large extra dimensions in a brane world, and
some connection between the 60 e-folding expansion of inflation and TeV gravity based on the large extra dimensions
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Recently there has been renewed interest in
taining accelerating universe from higher-dimensiona
gravitational theories. The study of this subject gets
urgency from the recent discovery of the accelera
expansion of the present universe as well as the co
mation of the existence of the early inflationary epo
[1]. Though it is not difficult to construct cosmolog
cal models with these features, it is desirable to de
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such a model from the fundamental theories of part
physics that incorporate gravity. The most promis
candidate for such theories are the ten-dimensiona
perstrings or eleven-dimensional M-theory, which
hoped to give models of accelerated expansion of
universe upon compactification to four dimensions

It has been shown that models with certain per
of accelerated expansion can be obtained from
higher-dimensional vacuum Einstein equation if o
takes the internal space hyperbolic and its size dep
ing on time[2]. It has been shown[3] that this class o
models is obtained from what are known as S-bra
[4,5] in the limit of vanishing flux of three-form field
(see also[6]). It is found that this wider class of so
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lutions gives accelerating universes for internal spa
with zero and positive curvatures as well if the flux
introduced. Further discussion of this class of mod
has been given in Refs.[7–9].

It turns out, however, that the model thus obtain
does not give enough e-folds necessary to explain
cosmological problems such as horizon and flatn
problems[3,7]. Some efforts to overcome this proble
were made in the present framework in Ref.[9].

We note that the scale when the acceleration
curs in this type of models is basically governed by
Planck scale in the higher (ten or eleven) dimensio
With phenomena at such high energy, it is expec
that we cannot ignore higher order corrections in
theories at least in the early universe. In fact there
terms of higher orders in the curvature to the lowest
fective supergravity action coming from superstrin
or M-theory. In four dimensions, many studies ha
been done with such correction terms[10].

The cosmological models in higher dimensio
were also studied intensively in the 80s by many
thors [11,12]. Among them, the model with Gauss
Bonnet term is very interesting for the above rea
[12]. It was shown that there are two exponentially
panding solutions, which may be called generalized
Sitter solutions since the size of the internal space
pends on time (otherwise there is no solution of t
type). In both solutions, the external space infla
while the internal space shrinks exponentially. (Th
are also two time-reversed solutions, i.e., the exte
space shrinks exponentially but the internal space
flates.) One solution is stable and the other is unsta
Since the present universe is not in the phase of de
ter expansion with this energy scale, we cannot use
stable solution for a realistic universe. If we adopt
unstable solution, on the other hand, we may not
sufficient inflation unless we fine-tune the initial va
ues. The higher-order curvature terms called Lovel
gravity were also considered in higher-dimensio
cosmology[13].

However, most of the work considered powers
scalar curvature or Lovelock gravity, which are n
the types of corrections arising in type II superstrin
or M-theory. In particular, it is known that the coef
cient of the Gauss–Bonnet terms vanishes and the
higher order corrections start withR4 terms (one is the
fourth order Lovelock gravity and the other conta
higher derivatives)[14]. The purpose of this Letter i
to examine how these corrections in the fundam
tal theories modify the above cosmological mod
and whether we can get interesting cosmological s
nario with large e-folds. We focus on the solutions
the vacuum Einstein equations with these higher o
corrections in this Letter since the basic feature can
obtained in this simple setting.

We find interesting models with power law as w
as exponential expansions. These seem to give en
e-folds, and the solutions suggest that the fundam
tal Planck scale is rather small as� 103 TeV and the
size of internal space grows rather large with the sc
� 10 TeV−1. These may provide the models of lar
extra dimensions discussed by Arkani-Hamed et
[15]. We have found similar results for several sup
strings and M-theory, but here we present only
results of exponential expansions for M-theory, le
ing other details to a separate paper[16].

2. Vacuum Einstein equations with R4 corrections

We consider the low-energy effective action for t
M-theory:

(1)S = SEH + S4,

where

(2)SEH = 1

2κ2
11

∫
d11x

√−g R,

(3)S4 = 1

2κ2
11

∫
d11x

√−g [γ J̃0 + 2βẼ8].

Ẽ8 = − 1

24 × 3!ε
αβγµ1ν1...µ4ν4εαβγρ1σ1...ρ4σ4

(4)× Rρ1σ1
µ1ν1 · · ·Rρ4σ4

µ4ν4,

J̃0 = RλµνκRαµνβRλ
ρσαRβ

ρσκ

(5)+ 1

2
RλκµνRαβµνRλ

ρσαRβ
ρσκ .

Here we have dropped contributions from forms,κ2
11

is an eleven-dimensional (11D) gravitational consta
and we leave the coefficientsβ andγ free although we
know them for the M-theory[14] as

β = − κ2
11T2

32 × 210 × (2π)4 ,

(6)γ = − κ2
11T2

4 4 ,

3× 2 × (2π)
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where T2 = (2π2/κ2
11)

1/3 is the membrane tension
Type II superstring has the same couplings in 10
mensions, so we can discuss this case if we keep
dilaton field constant, but we consider 11D theory
this Letter. Here we should note that contributions
the Ricci tensorRµν and scalar curvatureR are not
included in the fourth-order corrections(3) because
these terms are not uniquely fixed.

Since we are interested in a cosmological tim
dependent solution, we take the metric of our spa
time as

ds2
11 = −e2u0(t) dt2 + e2u1(t)

3∑
i=1

(
dxi

)2

(7)+ e2u2(t)
11∑

a=5

(
dya

)2
,

where we assume that the external 3-space and th
ternal 7-space are flat. Taking variation of the action
with respect tou0, u1, andu2, we obtain three ba
sic equations, whose explicit forms will be given
a forthcoming paper[16].

2.1. Generalized de Sitter solutions

In cosmology, de Sitter inflationary expandi
spacetime is the most important solution in the ea
universe. Hence, let us first look for such solutio
Assuming the metric form of a generalized de Sit
spacetime as

(8)u0 = 0, u1 = µt, u2 = νt,

whereµ and ν are some constants, we obtain thr
algebraic equations:

µ2 + 7µν + 7ν2 + 20160βµν5
[
7µ2 + 7µν + ν2]

− 7γ
[
12µ8 + 7µ2ν2(µ2 + ν2 + µν)2 + 168ν8

+ 7µ4ν2(2µ + ν)2 + 21µ2ν4(µ + 2ν)2]
+ 4γ (3µ + 7ν)

× [
6µ7 + 42ν7

(9)+ 7µ2ν2(µ + ν)
(
µ2 + ν2 + µν

)] = 0,

3µ2 + 14µν+ 28ν2

+ 20160βν5
[
6µ3 + 24µ2ν + 14µν2 + ν3]
-

+ 3γ
[
12µ8 + 7µ2ν2(µ2 + ν2 + µν

)2 + 168ν8

+ 7µ4ν2(2µ + ν)2 + 21µ2ν4(µ + 2ν)2]
− 2γµ(3µ + 7ν)

× [
48µ6 + 7ν2(3µ2 + 2µν + ν2)(µ2 + ν2 + µν

)
+ 14µ2ν2(2µ + ν)(3µ + ν)

+ 42ν4(µ + 2ν)(µ + ν)
]

+ 2γµ(3µ + 7ν)2

(10)× [
12µ5 + 7ν2(µ + ν)

(
µ2 + ν2 + µν

)] = 0,

2µ2 + 6µν + 7ν2

+ 2880βµν4
[
15µ3 + 46µ2ν + 38µν2 + 6ν3]

+ γ
[
12µ8 + 7µ2ν2(µ2 + ν2 + µν

)2 + 168ν8

+ 7µ4ν2(2µ + ν)2 + 21µ2ν4(µ + 2ν)2]
− 2γ ν(3µ + 7ν)

× [
96ν6 + µ2(µ2 + 2µν + 3ν2)(µ2 + ν2 + µν

)
+ 2µ4(2µ + ν)(µ + ν)

+ 6µ2ν2(µ + 2ν)(µ + 3ν)
]

+ 2γ ν(3µ + 7ν)2

(11)× [
12ν5 + µ2(µ + ν)

(
µ2 + ν2 + µν

)] = 0.

Since these equations are very complicated,
have solved them numerically. Ifγ does not vanish
rescalingβ , γ , µ andν as

β̃ = β/|γ |, γ̃ = γ /|γ | (= 1 or − 1),

(12)µ̃ = µ|γ |1/6, ν̃ = ν|γ |1/6,

we can always setγ to −1 if it is negative (or 1
if positive). We also have to rescale time coordin
as t̃ = |γ |−1/6t . The typical dynamical time scale
then given by|γ |1/6 ∼ 0.181818m−1

11 , wherem11 =
κ

−2/9
11 is the fundamental Planck scale. After this sc

ing, we have only one free parameterβ̃ . In Fig. 1,
we depict numerical solutions Ni (µ̃i, ν̃i ) (i = 1–5)
with µ̃i � 0 with respect toβ̃ for the case ofγ < 0.
We note that there are always time-reversed solut
N′

i (µ̃
′
i , ν̃

′
i) (i = 1–5) obtained by(µ̃′

i , ν̃
′
i ) = −(µ̃i, ν̃i)

which are not shown explicitly. We find that M-theo
(γ̃ = −1, β̃ = β̃S = −1/(3 × 26) ≈ −0.0052083) has
three solutions

N2(µ̃2, ν̃2) = (0.45413,0.45413),
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Fig. 1. Five generalized de Sitter solutions Ni (µ̃i , ν̃i ) (i = 1–5) with µ̃i � 0 with respect toβ̃ for γ < 0. Each pair of points(µ̃i , ν̃i ) with the
same value of̃β gives one solution. Number of solutions changes with the value ofβ̃. There is another set of time-reversed solutions N′

i with
µ̃i � 0.
r

N3(µ̃3, ν̃3) = (0.79802,0.10781),

(13)N4(µ̃4, ν̃4) = (0.50754,0.43025).

If γ > 0, we find three solutions Pi (i = 1–3) for
β < 0, while just one P4 for β > 0. We depict these
solutions inFig. 2(for γ̃ = 1). There is no solution fo
β = 0. In Table 1, we summarize their properties.
If γ = 0 and β �= 0, we can always setβ to −1
if it is negative (or 1 if positive), by rescalingβ , µ

andν as β̄ = β/|β| (= 1 or − 1), µ̄ = µ|β|1/6, and
ν̄ = ν|β|1/6. We then find two solutions[(µ̄, ν̄) =
(0.22046,−0.28771), (0.19168,0.19168)] for β̄ =
−1, while just one[(µ̄, ν̄) = (0.04467,−0.45111)]
for β̄ = 1. There is no solution forβ = γ = 0.
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Fig. 2. Four generalized de Sitter solutions Pi (µ̃i , ν̃i ) (i = 1–4) with µ̃i > 0 with respect toβ̃ for γ > 0. Each pair of points(µ̃i , ν̃i ) with the
same value of̃β gives one solution. Number of solutions changes with the value ofβ̃. There is another set of time-reversed solutions P′

i
with

µ̃′
i
< 0. No solution exists forγ > 0 and β= 0.

Table 1
Generalized de Sitter solutions Ni (µ̃i , ν̃i ) (i = 1–5) and Pi (µ̃i , ν̃i ) (i = 1–4) with µ̃i � 0 for various values of̃β in the cases of̃γ = −1 and
of γ̃ = 1, respectively. The solution N′4 is the partner of the solution N4 with µ̃4 < 0, which is found when it is extended to the range

β̃ > 0.025668. Five eigenmodes for linear perturbations are also shown. (ms,nu) means that there arem stable modes andn unstable modes
The solution has many stable modes if its 10-volume expansion rate (3µ̃ + 7ν̃) is positive

γ Solution Property Range Stability 3µ̃ + 7ν̃

γ̃ = −1 N1 µ̃1 > 0> ν̃1 β̃ < −0.04342 (1s, 4u) −
N2 µ̃2 = ν̃2 > 0 β̃ < −0.00418 (4s, 1u) +

−0.00418< β̃ < 0.0004464 (5s, 0u) +
N3 µ̃3 > ν̃3 > 0 −0.202867< β̃ < 2.141 (4s, 1u) +
N4 µ̃4 > ν̃4 > 0 −0.202867< β̃ < −0.00418 (5s, 0u) +

ν̃4 > µ̃4 > 0 −0.00418< β̃ < 0.025668 (4s, 1u) +
N′

4 µ̃′
4 > 0> ν̃′

4 β̃ > 0.025668 (1s, 4u) −
N5 µ̃5 > 0> ν̃5 0.025668< β̃ < 0.09247 (1s, 4u) −

γ̃ = 1 P1 µ̃1 > 0> ν̃1 β̃ < 0 (1s, 4u) −
P2 µ̃2 = ν̃2 > 0 (4s, 1u) +
P3 µ̃1 > 0> ν̃1 (4s, 1u) +
P4 µ̃1 > 0> ν̃1 β̃ > 0 (1s, 4u) −
d to
an-
ns
er-

ting

a-

int

le
2.2. Stability

Since the solutions obtained above correspon
fixed points in our dynamical system, we have to
alyze their stabilities in order to see which solutio
are more generic. We have performed a linear p
turbation analysis around those fixed points. Set
du1/dt̃ = µ̃i +Aie
σ t̃ anddu2/dt̃ = ν̃i +Bie

σ t̃ , where
|Ai |, |Bi | � 1, we write down the perturbation equ
tions. There are five modes (σ = σ

(i)
a , a = 1,2, . . . ,5)

because the basic equations foru̇1 and u̇2 are two
third-order differential equations plus one constra
which is second order. We show the results inTables 1
and 2. In Table 1, we just give the number of stab
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Table 2
The eigenvalues of linear perturbation equations forγ̃ = −1. We show two cases of̃β: β̃ = β̃S and one for which we find an interesting scena

β̃ Solution µ̃i ν̃i Five eigenvalues (σ (i)
a , a = 1,2, . . . ,5)

−0.0052083 N2 0.45413 0.45413 (−4.5893,−4.5413,−3.6670,−0.87426,0.048032)

N3 0.79802 0.10781 (−4.1012,−3.1488,−2.3823,−0.76653,0.95268)

N4 0.50754 0.43025 (−4.5344,−4.4768,−3.6344,−0.89998,−0.057629)

−0.2025 N1 0.28195 −0.39104 (−10.2506,0.9457± 1.8339i,1.8914,12.1421)

N2 0.25005 0.25005 (−5.0572,−2.5005,−1.2502± 5.7723i,2.5567)

N3 0.71567 0.12395 (−3.0268,−3.0147,−1.5073± 3.0912i,0.01217)

N4 0.70803 0.12661 (−3.01038,−2.9986,−1.5052± 3.2449i,−0.011765)
table
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and unstable modes. For example, there are one s
and four unstable modes for the solution N1(µ̃1, ν̃1).
Hence this solution may not be generic because
have many unstable modes. The M-theory has th
solutions(13). Two solutions (N2 and N3) have four
stable and one unstable modes. The third solution (4)
has five stable modes, which means that this solu
is stable against linear perturbations (seeTable 2).

From this stability analysis, one may conclude t
the solution N4 is most preferable spacetime in th
model. We have inflationary expansion not only
3D external space but also in 7D internal space.
expansion rates in both spaces (µ,ν) are, however
almost the same. Hence, we would find our pres
world in which scales of two spaces are not so d
ferent. This solution also predicts that inflation ne
ends because it is stable. For a realistic cosmolog
model, the solution must be unstable because in
tion should end. On the other hand, we also want s
a solution to be rather generic which requires so
sort of stability. This would be achieved if the sol
tion contains only one unstable mode, and then
generic spacetime may first approach this solution
gradually leave it, recovering the present Friedma
universe, where we expect the higher order terms
come irrelevant. We find that the solution N3 may give
one possible candidate for such a model. We now
cuss a new scenario obtained from this solution in
next section.

3. A scenario for large extra dimensions

Let us discuss the evolution of the early unive
for the solution N3(µ̃3, ν̃3) = (0.79802,0.10781)with
β = βS . The scale factor of the external space expa
as e0.79802̃t . For a successful inflation (resolution
flatness and horizon problems), we need at leas
e-foldings. Let us assume that inflation will end a
ter 60 e-foldings, i.e., 0.79802̃tend≈ 60. The inflation
will end because N3 has one unstable mode. During i
flation the internal space also expands exponenti
When inflation ends, its scale becomese0.10781̃tend ≈
4000 times larger than the initial scale length, wh
we assume to be the 11D Planck length (m−1

11 ). Af-
ter inflation, if the internal space settles down to sta
one, the present radius of extra dimensions isR0 ∼
4000m−1

11 . Since this is slightly larger than the fund
mental scale length, we may adopt the model of la
extra dimensions, which was first proposed as a b
world by Arkani-Hamed et al.[15]. In this model, the
4D Planck mass is given by

(14)m2
4 ∼ R7

0m9
11 ∼ 1.6× 1025m2

11.

We then find

(15)m11 ∼ 2.5× 10−13m4 ∼ 600 TeV.

This is our fundamental energy scale. The pres
scale of extra dimensions is 4000m−1

11 ∼ 7 TeV−1,
which could be observed in the accelerators of n
generation.

We can also put our argument in a different w
Suppose that the e-folding of inflation isN , which is
related to the stability of the solution. The 3-space
pands aseN = eµ̃t̃end, while the internal space becom
eν̃t̃end times larger. It follows from Eq.(14) that

(16)m11 ∼ e
− 7ν

2µ N
m4.

Sincem11 � 1 TeV from the present experiments, w
have a constraint on the e-folding asN � 10µ/ν. Then
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if we have TeV gravity andµ � 6ν (> 0), we can nat-
urally explain why the e-folding of inflation is abou
60 and but not so large. Recall that the solution3
with γ < 0 gives 5.72< µ/ν < 10.22 (corresponding
to 57� N � 102) for any value ofβ .

Although the above solution N3 has one unstabl
mode, its eigenvalueσ (3)

5 is of the same order of mag
nitude as other eigenvalues of stable modes as
from Table 2and is a little too large to give enough
expansion. If the eigenvalue of the unstable mod
much smaller than those of other four stable mod
a preferable generalized de Sitter solution is natur
obtained for a wide range of initial conditions. C
we find such a possibility in superstrings or M-theor
We note that our starting Lagrangian has some
biguity, that is, the fourth-order correction termS4 is
fixed up to the Ricci curvature tensors. If we inclu
correction terms including the Ricci curvature tensors
our basic equations will be modified. We might effe
tively take their effect into account by changing t
value of our coefficientγ or β̃ after the rescaling
Thus we may look for a preferable solution by chan
ing β̃ . We find that the solution N3 with β̃ = −0.2025
shows interesting behaviors (seeTable 2). Four modes
are stable and the eigenvalue of one unstable mo
very small, i.e.,σ (3)

5 = 0.01217. Then the time scale
which this unstable mode becomes important is e
uated as̃tus≈ (σ

(3)
5 )−1 ∼ 82. Since the eigenvalues

other stable modes are of order unity, for a wide ra
of initial conditions, general solutions first approa
the solution N3, which gives us an inflationary stag
after one dynamical time (t̃ ∼ O(1)). The unstable
mode becomes important att̃ ∼ t̃us, and then the in-
flation ends. We may have enough e-folding time
inflation (N ≈ µ̃3t̃us ∼ 58.8). In this case, we find
m11 ∼ 3.3 × 10−16m4 ∼ 0.8 TeV, which gives us a
TeV gravity theory.

Although we find a successful exponential exp
sion and its natural end, this is not enough for a s
cessful inflation. We need a reheating mechanism
have to create a density fluctuation as a seed of co
structure. A gravitational particle creation may pr
vide a reheating mechanism[17], because the back
ground spacetime is time dependent and there m
be some oscillation when the internal space se
down to static one which is required to explain o
present universe. As for a density perturbation,
model may not give a good scenario because our
ergy scale is|γ |−1/6 ∼ 5m11 ∼ 4 TeV. We have to
invoke other mechanism for density perturbations s
as a curvaton model[18].
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