A Generalization of a Theorem of Diderrich in Additive Group Theory to Vertex-transitive Graphs

ISABELLE SALAÜN

Let X_1, X_2, \ldots, X_h be a family of vertex-transitive graphs without triangles on the same vertex-set. We consider the set Λ of vertices which can be reached from a given vertex a by a path $e_1 \cdots e_t$, where e_t is an edge of $X_{i(t)}$ with $1 \leq j(1) < j(2) < \cdots < j(t) \leq k$ and $0 \leq t \leq k$ (for $t = 0$, Λ is equal to the singleton (a)).

We prove the following:

Let k be a positive integer and let $(X_i = (V, E_i))_{1 \leq i \leq k}$ be a family of vertex-transitive graphs without triangles. Let a be an element of V. We denote by Λ_k the set of vertices of

$\{a\} \cup \bigcup_{i=1}^{k} \bigcup_{1 \leq j_1 < j_2 < \cdots < j_t \leq k} \Gamma_{j_t}^+(\Gamma_{j_{t-1}}^+(\cdots \Gamma_{j_1}^+(a)))$,

where $\Gamma_{i}^+(A) = \Gamma_{X_i}(A)$ for any subset A of V.

Then, either $|\Lambda_k| \geq 1 + \sum_{t=1}^{k} d^+(X_t)$ or Λ_k contains one of the connected components $C_i(a)$ of a in X_i.

0195-6698/96/070673 + 03 $18.00/0 © 1996 Academic Press Limited
As a corollary, we obtain the following result in additive group theory:

Let G be an arbitrary group written multiplicatively. Let A and B be two non-empty subsets of G. We denote by AB the set of products ab, where $a \in A$ and $b \in B$, and by $\langle A \rangle$ the subgroup generated by A. A subset S of a group G is said to be product-free if $SS \cap S = \emptyset$.

We prove the following result:

Let G be an arbitrary finite group. Let k be a positive integer and let S_1, S_2, \ldots, S_k be non-empty product-free subsets of G. We denote by S_k the set of products $a_1a_2\cdots a_t$, where $1 \leq i_1 < i_2 < \cdots < i_t = k$, $1 \leq t \leq k$, and $a_i \in S_i$. Then, only two cases are possible:

- either there exists i with $\langle S_i \rangle \subseteq S_k$ or $|S_k| + 1 > \sum_{i=1}^{k} |S_i|$.

This is Diderrich’s theorem [2] when all the subsets S_i’s are singletons. However, our result is more precise, because we know the form of the subgroup. Moreover, our proof is easier.

2. Proof of the Theorem

Lemma 2.1. Let X be a finite vertex-transitive connected graph without triangles. Then, $\kappa(X) = d^+(X)$.

Proof. It is well-known that a finite vertex-transitive connected graph is strongly connected. Therefore $\kappa(X) > 0$. Let A be an atom of X (a graph has always an atom which is positive of negative): $A \neq \emptyset$ because $\kappa(X) > 0$. We suppose A to be positive (if not, we work on the inverse graph of X).

Let x be a vertex of A.

- **Case 1.** $N^+(x) \subseteq N^+(A)$. In this case, $\kappa(X) = |N^+(A)| \geq d^+(x) = d^+(X)$.

- **Case 2.** There exists y in $N^+(x) \cap A$.

We have $\Gamma^+(x) \cup \Gamma^+(y) \subseteq A \cup N^+(A)$. As X has no triangle, we have $\Gamma^+(x) \cap \Gamma^+(y) = \emptyset$. Therefore, $2d^+(X) \leq |A| + \kappa(X)$. Moreover, $|A| \leq \kappa(X)$ [4, 5], and thus $d^+(X) \leq \kappa(X)$.

As we trivially have $\kappa(X) = d^+(X)$, we obtain finally $d^+(X) = \kappa(X)$. \qed

The following lemma is well-known:

Lemma 2.2. A connected component of a finite vertex-transitive graph is a vertex-transitive graph.

Theorem 2.3. Let k be a positive integer and let $(X_i = (V, E_i))_{1 \leq i \leq k}$ be a family of finite vertex-transitive graphs without triangles. Let a be an element of V. Then, either $|\Lambda_k| \geq 1 + \sum_{i=1}^{k} d^+(X_i)$ or Λ_k contains one of the connected components $C_i(a)$ of a in X_i.

Proof. We prove the theorem by induction on k. Suppose that Λ_{k+1} does not contain any of the $C_i(a)$’s. By the induction hypothesis, $|\Lambda_k| \geq 1 + \sum_{i=1}^{k} d^+(X_i)$.

We will apply Lemma 2.1 on $C_{k+1}(a)$, which is vertex-transitive by Lemma 2.2.

We set $A_k = \Lambda_k \cap C_{k+1}(a)$.

$A_k \neq \emptyset$ because $a \in A_k$. We have $A_k \neq C_{k+1}(a)$ because Λ_{k+1} does not contain any
of the $C_i(a)$’s. For the same reason, $\Gamma_k^+(A_k) \cup \Lambda_k \neq C_{k+1}(a)$. Therefore, by Lemma 2.1 applied on $C_{k+1}(a)$,

$$|\Gamma_k^+(A_k) - A_k| \geq d^+(C_{k+1}(a)) = d^+(X_{k+1}).$$

As $\Lambda_k \cap (\Gamma_k^+(A_k) - A_k) = \emptyset$, we obtain $|\Lambda_{k+1}| \geq 1 + \sum_{i=1}^{k+1} d^+(X_i)$. □

Corollary 2.4. Let G be an arbitrary finite group. Let k be a positive integer and let S_1, S_2, \ldots, S_k be non-empty product-free subsets of G. Then, either there exists i with $\langle S_i \rangle \leq S_k$ or $|S_k| \geq 1 + \sum_{i=1}^{k} |S_i|$.

Proof. We apply Theorem 2.3 on the family $X_i = \text{Cay}(\langle S_i \rangle, S_i) = \langle \langle S_i \rangle, E_i \rangle$, where $E_i = \{(x, y) : x^{-1}y \in S_i\}$ with $a = 1$. It is easy to see that the graphs are vertex-transitive and that $C_i(1) = \langle S_i \rangle$. □

Corollary 2.5. Let G be a finite group of order n ($n > 1$) and let a_1, a_2, \ldots, a_n be a sequence of non-unit elements of G. The set S of products $a_{i_1} \times \cdots \times a_{i_t}$, where $1 \leq i_1 < \cdots < i_t \leq n$ and $1 \leq t \leq n$ must contain a non-trivial subgroup H of G of the form $\langle a_i \rangle$.

Proof. This is Corollary 2.4 for $S_i = \{a_i\}$. This is Theorem B of Diderrich [2], but our result is more precise, because we know that H is one of the $\langle a_i \rangle$’s. □

References

Received 11 October 1990 and accepted in revised form 11 July 1995

Isabelle Salaün

Université Paris 6, Case 189—Combinatoire, 4 place Jussieu, 75005 Paris, France