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ABSTRACT 

In recent years, a number of results on the relationships between the inert& of 
Hermitian matrices and the inert& of their principal submatrices have appeared in 
the literature. In this paper, we study restricted congruence transformations of 
Hermitian matrices A4 that, at the same time, induce a congruence transformation of 
a given principal submatrix A of M. Such transformations lead to the concept of the 
restricted signature normal form of M. In particular, by means of this normal form, 
we obtain new and shorter proofs for several known inertia theorems and also derive 
some new results of this type. For some applications, a special class of “almost” 
unitary restricted congruence transformations turns out to be useful. We show that, 
with such transformations, M can be reduced to a quasi-diagonal form. which, in 
particular, displays the eigenvalues of A. Moreover, this quasi-spectral decomposition 
is used to derive a generalized signature formula and to study Hermitian matrix 
pencils. 
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1. INTRODUCTION 

In recent years, there has been considerable interest [2, 4, 5-7, II, 12, 
14-171 in studying connections between the inertias in M of Hermitian 
matrices M and the inertias of their principal submatrices. Here and in the 
sequel, 

in M := (7~( M), v(M), 6(M)), 

where 7~( M >, v( M 1, and S( M > denote the numbers (counted according to 
their multiplicities) of positive, negative, and zero eigenvalues of M, respec- 
tively. It is one of the objectives of the present paper to demonstrate that 
several known inertia theorems can be easily derived in a uniform manner by 
means of the restricted signature norm&form for Hermitian matrices. This 
normal form was introduced in [B] in connection with extension problems for 
Hermitian Toeplitz matrices (see also [9]). 

Let M E UZnx” be a gi ven Hermitian matrix of order n, 1 < m < n, and 
let A be an arbitrary, but fixed, m X m principal submatrix of M. Since in 
this paper we are only concerned with inertias and spectral properties of A 
and M, we may always assume that the rows and columns of M have been 
permuted so that A is a leading submatrix of M. Hence, M can be 
partitioned in the form 

M= (1.1) 

We call T HMT a restricted congruence transformation of M if T is a 
nonsingular matrix of the form 

T= with T,, E a=“zX’n. (1.2) 

Note that such a restricted congruence transformation induces the congru- 
ence transformation T,: AT,, of A. Because of the zero block in T, in general 
it is not possible to reduce M to a signature matrix by restricted congruence 
transformations. However, M can be transformed into a restricted signature 
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matrix of the type 

Iz= 

Z ml 0 0 0 

0 -I,, 0 0 

0 0 00 

0 0 0 4, 
0 0 Zk 0 

0 0 00 

0 0 00 

0 0 00 

00 0 0 

00 0 0 

Ik 0 0 0 

00 0 0 

00 0 0 

0 L,, 0 0 
0 0 -I,,, 0 

0 0 0 O,,) 

(1.3) 

Here and in the sequel, Zj and Oj denote the j x j identity and zero matrices, 
respectively. Zero matrices whose dimensions are obvious from the context 
[as in (1.3)] are just denoted by 0. Moreover, the lines in (1.3) correspond to 
the partitioning (1.1) of M, i.e., the block to the left of the vertical line and 
above the horizontal line is m x m. 

With this notation, our result on the restricted signature normal form 
reads as follows. 

THEOREM A ([8, Lemma 11). Let M be a Hermitian matrix of the form 
(1.1). Then there exists a restricted congruence transformation T” MT = 2, 

where 2 is a uniquely determined restricted signature matm’x (>f the type 

(1.3). Moreover, the sizes of the blocks in (1.3) are determined by 

Zl = n-(A), v, = v(A), k = rank[A B] - rank A, 

d, = S(A) - k, To = m(M) -g(A) -k, 

vO = v(M) - v(A) - k, d, = 6(M) - cl,. 

The purpose of this paper is twofold. First, we investigate in Section 2 
congruence transformations T HMT with matrices T of the form (1.2) whose 
diagonal blocks are in addition required to be unitary. It turns out that, under 
this restriction, M can still be transformed into a matrix with the same zero 
structure as (1.3). Since such matrices T are “almost” unitary, we refer to the 
resulting factorization as a quasi-spectral decomposition of M. In particular, 
Theorem A is an immediate consequence of Theorem 2.1 on quasi-spectral 
decompositions. 
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Secondly, using the restricted signature normal form or the quasi-spectral 
decomposition, we deduce some new results and also obtain short proofs for 
several known results. More precisely, in Section 3, a recent signature 
formula due to Lazutkin [I51 g is eneralized. In Section 4, we are concerned 
with inertia theorems. Section 5 deals with applications to Hermitian matrix 
pencils. Finally, in Section 6, we derive a few inequalities for inert& of M 
and its submatrices. 

The following notation will be used. As usual, Xt is the Moore-Penrose 
inverse (e.g., [l, p. 71) of the matrix X. Moreover, X > 0 (X > 0) indicates 
that a Hermitian matrix X is positive definite (semidefinite) 

Throughout this paper, M denotes a Hermitian n X n matrix and 1 < m 
< n is a fixed integer. It is always assumed that M is partitioned as in (I.l), 

with A denoting the leading principal m X m submatrix of M. Furthermore, 

M/A := C - B “A+B 

is the generalized Schur complement of A in M (see, e.g., [3]). The following 
integers are used: 

Tl = r(A), 

VI = v(A), 

p, = rank A = rrTT1 

k = rank[A B] 

d, = 6(A) - k, 

TTTo = r(M/A), 

vo = v( M/A), 

+ 

- rank A, 

Vl, 

p. = rank M/A = nT, + v 0’ 

d,, = 6( M/A) - k. 

Finally, throughout the paper, the following matrices will be used: 

U = [U, q,] E C”rXr” is unitary, 
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with blocks U,. E Cm’,1 and U, E C”LX(kir’l), 

v = [ v, v, ] E @(n-m)x(n-nl) is unitary, 

with blocks V, E c(r~-m)Xk and v, E ~:(n-+(~o+~~l,,), 

A, = a nonsingular p, X p, diagonal matrix, 

A,, = a nonsingular pa x p. diagonal matrix, 

D, = a positive definite k x k diagonal matrix. 

2. QUASI-SPECTRAL DECOMPOSITIONS OF 
HERMITIAN MATRICES 

In this section, we investigate transformations THMT of partitioned 

matrices (l.l), where T is of the form 

‘J-z ’ w [ 1 0 V’ (2.1) 

with unitary blocks U E Cmx I” and V E Cc” P17L)x(“-“‘). The spectral theo- 
rem for Hermitian matrices states that there exists a unitary matrix S such 
that SHMS is diagonal. With the restricted class of transformations (2.1), it is 
possible to reduce M to a quasi-diagonal matrix 

A, 0 0 0 0 0 

0 0 0 D, 0 0 

0 0 O,,) 0 0 0 
A= 

0 D, 0 0 0 0 

0 0 0 0 A, 0 

0 0 0 0 0 o,,, 

(2.2) 

where A, E @Plxpl and A, E CPoxPC1 are nonsingular real diagonal matri- 
ces, and D, > 0 is a k x k diagonal matrix. Moreover, here and in the 
sequel, the lines in (2.2) always correspond to the partitioning (2.1) of T, i.e., 
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the block to the left of the vertical line and above the horizontal line is 
m X m. 

After these preliminaries, our result on quasi-spectral decompositions can 
be formulated as follows. 

THEOREM 2.1. Let M be an ‘n X n Hermitian matrix, let m E 

{1,2, , n - 1) be arbitrary, but fixed, and let A, B, and C be the blocks in 

the partitioning (1.1) of M. Then there exists a matrix T of the form (2.1) 
such that 

T”MT = A, (2.3) 

where A is a quasi-diagonal matrix of the type (2.2). The sizes of the 

subblocks in the partitioning (2.2) are unique, and they are g&en by 

p, = rank A, k=rank[A B]-rankA, d, =6(A) -k, 

p,, = rank M/A, d, = 8(M/A) - k. 

The quasi-diagonal matrix A in (2.3) is uniquely determined up to permuta- 
tions of the diagonal entries of A,, D,, and A,, respectively. 

Moreover, the blocks A,, D,, and A, of all quasi-diagonal matrices A 
and the blocks U, V, and VI’ of all transformations T of the form (2.1) that 
satisfy (2.3) are given by 

AU, = U,A,, AU, = 0, u=[u, q, (2.4) 

(2.5) 

W = -A’BV + V,Z, 
z = D,‘(S - fG,.) 

I 

-DklGs 

Z, I Z, ’ 
(2.6) 

with Gj := V,” ( M/A)Vj, j = r,s, 

arbitrary Z, E @diik and Z, E I@X(PO+~~), 

(2.7) 

(2.8) 

and skew-Hermitian S = - S” E ckx k. (2.9) 
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In particular, the diagonal entries of A, and A, are the nonzero eigenvalues 

of A and L’,“( M/A)y,, respectively. The diagonal elements of D, are the 

positive singular values of CJsHB. 

REMARK 2.2. The zero structure of A in (2.3) is identical to that of the 
restricted signature normal form (1.3) of M. In particular, Theorem A is just 
a corollary to Theorem 2.1. 

REMARK 2.3. Since the diagonal blocks U and V in (2.1) are unitary, we 
have 

detT”T = 1 and det M = deth 

for any quasi-spectral decomposition (2.3). 

(2.10) 

Proof of Theorem 2.1. Let T be an arbitrary matrix of the form (2.1). 
Furthermore, let A be any matrix of the type (2.2), where-at the moment 
-the actual sizes pr, k, d,, pO, and d, of the subblocks are still arbitrary 
with pr + k + d, = m and k + p0 + d, = n - m. First, note that (2.3) is 
equivalent to MT = T-HA, where 

T-H = 
[ 

u 0 1 -vw”U v’ 

Therefore, T and A satisfy (2.3) if, and only if, the following four equations 
are fulfilled: 

AU= U (i) 

(ii) 

AW+BV=U D, 0 0, [ 1 
B”W+CV= -V+k ; i,:.,: i. i] 

(iii) 

(iv) 
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Hence, in order to prove the theorem, we need to show that Equations 
(i)-(k) are solvable and that their solutions are given by (2.4)-(2.9). 

Clearly, (i) is equivalent to (2.4), and there always exist matrices U,, U,, 
and A, that fulfill (2.4). From now on, we assume that U and A, already 
satisfy (2.4). 

Next, consider (ii). Using the partition (2.4) of U and V-’ = VH, (ii) can 
be rewritten in the form 

CJ,‘B = 
[ 1 

Dk 'vH 
00’ 

(2.11) 

U;W= -h,'U,HBV(= -U,HA'BV). (2.12) 

Note that, for the relation on the right-hand side of (2.12), we have used that, 
in view of (2.4), A' = U,.h,' U,". Clearly, (2.11) is identical to the first 
relation in (2.5), and there always exist matrices V, and D, that fulfill the first 
relation in (2.5). From now on, we assume that V, and Dk satisfy the first 
equation in (2.5). Now, we turn to (2.12). Since U = [U, Us] is unitary, the 
matrix W satisfies (2.12) if, and only if, W is of the form 

W = -A'BV + U,Z, (2.13) 

where Z is still arbitrary. From now on, we assume that (2.13) holds. 
Note that there always exist matrices V, and A, that satisfy the second 

relation in (2.5). Therefore, it only remains to show that (iii) and (iv) hold if, 
and only if, V, and A, fulfill the second relation in (2.5) and the matrix Z in 
(2.13) is of the form (2.6)-(2.9). First, using (2.4) and (2.13), one easily 
verifies that (iii) is equivalent to 

(Z-U,U;)BV=U, ; ; . 
[ I 

(2.14) 

However, since Z - U,.U,” = U,Ul, ‘, the relation (2.14) is equivalent to (2.11). 
Finally, we turn to condition (iv). Substituting the ansatz (2.13) for W into 
(iv) and using VH V = I, A’U, = 0, and (2.11), one obtains 

(2.15) 
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Next, we partition Z conformally with the matrices on the right-hand side of 
(2.15): 

(2.16) 

A straightforward calculation then shows that (2.15) [and hence (iv)1 is 
satisfied if, and only if, the second identity in (2.5) holds and 

Y, = D,‘(S - +G,), with S= -SH, y, = -D;iG,>. (2.17) 

Here, G, and G, are the matrices defined in (2.7). Note that the blocks Z, 
and Z,s in (2.16) are arbitrary. By (2.13), (2.16), and (2.17), W is indeed of 
the form (2.6)-(2.9) and this concludes the proof. n 

3. A GENERALIZED SIGNATURE FORMULA 

Let sgn X := m(X) - v(X) d enote the signature of a Hermitian matrix 
X. Recently, Lazutkin [15] derived a formula for the signature of nonsingular 
real symmetric matrices &l in terms of the signatures of certain submatrices 
of M and its inverse. In this section, we use the quasi-spectral decomposition 
to generalize Lazutkin’s signature formula to arbitrary Hermitian matrices. 

First, note that the quasi-spectral decomposition (2.3) naturally gives rise 
to a generalized inverse of M. Let T and A be matrices of the form (2.1) and 
(2.2) respectively, such that (2.3) holds. Then, we define 

M# := TA~TH (3.1) 

and we partition it conformally with M: 

MN = with P E @ )'I x "l (3.2) 

Note that Ml depends on the (fixed) integer m that determines the size of 
the blocks in the partitioning (1.1). 

Now, the main result of this section can be stated as follows. 
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THEOREM 3.1. Let M be a Hermitian matrix (1.1) and R be defined by 

(3.1)-(3.2). Then 

sgn M = sgn A + sgn R. 

Proof. First, we remark that, as an immediate consequence of (2.1)- 
(2.31, 

sgn M = sgn A, + sgn A, and sgn A = sgnh,. (3.3) 

Furthermore, with (2.1), (2.21, (3.11, and (3.21, it follows that 

0 0 0 

R=V i 0 Ai1 0 0 OV”. 1 0 

This shows that sgn R = sgn A,, and, in view of (3.31, the proof is complete. 
W 

REMARK 3.2. Obviously, if M is nonsingular, then M# is the usual 
inverse of M. In particular, for nonsingular real symmetric matrices M, 

Theorem 3.1 reduces to Lazutkin’s result [15]. However, our proof of 
Theorem 3.1 is much simpler than the one in [15]. 

It is natural to ask whether the generalized inverse M’ is related to the 
Moore-Penrose inverse M’ of hl. The following example shows that the two 
inverses are different in general. 

EXAMPLE 3.3. Consider the family of 3 X 3 matrices 
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Using Theorem 2.1, it is straightfonvard to show that all quasi-spectral 
decompositions TmHM,T, = A are given by 

T,= ~(::(:;lldiag(u’“,a’m,.‘~), 

with arbitrary u, 4, $ E R. Note that A does not depend on the parameter 
a. The matrix M, has the generalized inverses 

10 11 

Mi=s 1 o o H-1 1 0 0 
which coincide only if (Y = 0. 

In theflfollowing theorem, we collect some properties of the generalized 
inverse M 

THEOREM 3.4. Let M be a Hermitian matrix of the form (l.l), and M# 

be dejned by (3.1). Then: 

(i) MN is an 1,2-inverse of M, i.e., M#MM# = M# and MM# M = M (cf. 

[I, p. 81). 
(ii) M’ is the weighted inverse Mli’$, of Mfor R = TT H and q = Cl-‘, 

i.e., (RMMNjH = SIMMfl and (Q&M)” = TM#M (cf. [l, p. 1231). 

(iii) Let T in (2.3) be chosen such that Z, = Z,s = 0 in (2.6). Then, 

MN = M t if, and only if, 

(3.4) 

with d, defined in (2.2). 

Proof. With (2.3) and (3.1), one readily verifies (i) and (ii). 
We now turn to part (iii). In view of(i) and the usual [I, p. 71 definition, 

M# and Mt are identical if, and only if, MM# and M’M are both Hermitian. 
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From (2.3) and (3.I), it follows that M,&’ = (MUM)“. Therefore, it remains 
to show that the condition (3.4) is equivalent to A4tiM being Hermitian. This 
is verified by a straightforward computation, based on the characterization 
(2.4)-X2.9) of q uasi-spectral decompositions. Details of this computation can 
be found in the extended version [lo] of this paper. n 

4. INERTIA THEOREMS 

Numerous authors have studied connections between the inertias of 
Hermitian matrices and the inertias of their principal submatrices (see, e.g., 
111-14, 161). The most general results of this type are due to Maddocks 1161. 
In this section, we present a different approach, based on the restricted 
signature normal form, to the main results in [16]. In particular, this will lead 
to shorter and more elementary proofs. 

Maddocks [16] considers real symmetric matrices; we will treat general 
Hermitian matrices M E c”x”. Let Y be a linear subspace of @“, and let 
F E C”‘p be any matrix with Y = range F. We stress that p can be arbitrary 
with p > dim Y. Generalizing the corresponding notion [16, Lemma 2.2, 
Corollary 2.3, and Definition 2.21 for real symmetric matrices to Hermitian 
matrices, we define the inertia of the subspace Y as 

in*(Y; M) := in*(FHhilF) := in(FHA4F) - (O,O,dimkerF). (4.1) 

As in [16, pp. 5-i’] f or real symmetric matrices, one easily verifies that the 
inertias in* in (4.1) are well defined. Next, we reformulate and prove the 
main results in 1161 for the general complex case. 

THEOREM B (Maddocks [16, Corollary 4.11). Let M E C”’ n be a Her- 

mitiun matrix, let F E C”‘p, and let G E C”’ Y be any matrix whose range 

is ker(F”M). Then 

in M = in*(FHhilF) + in*(GHMG) + (d,d, -d -f), (4.2) 

where 

d := dim[ range( MF) n ker F”] and f:= dim[range F n ker( FHM)] . 

Proof. Using, for example, the singular-value decomposition of F, one 
readily verifies that F can be written in the form F = RF’S, where R and S 
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are nonsingular matrices and 

z 0 
F’ = m 

[ 1 0 0’ 
with m = rank F. (4.3) 

Then, replacing F, M, and G by F’, M’ := RHMR, and G’ := R-‘G, 
respectively, leaves all the integers in the statement of the theorem un- 
changed. Therefore, without loss of generality, we may assume that F is of 
the form (4.3). For simplicity, we set F := F’, M := M’. and G := G’ in the 
sequel. 

Let M be partitioned as in (1.1) with leading m X m principal submatrix 
A. Note that, in view of (4.3), A = FHMF, and that FHM = [A B]. Next, 
we apply Theorem A and reduce M to the restricted signature matrix T HMT 
of the form (1.3). By grouping the columns of T that correspond to the zero 
columns in the top half of (1.31, one obtains the partitioning 

T=[T, T,IT, q] with T, E Cnxpi, 

Since 

ker( F ‘M ) = ker[ A B ] = range[ Tz 1 T,], 

we can choose G = [T, T4]. It follows that 

Ok 0 0 0 

0 0 0 GHMG = H-1 (41, 
0 0 A, 0 . 

0 0 0 0, ” 

(4.4) 

Furthermore, we obtain 

(4.5) 
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d = dim(range[ $1 n ker[ I,,, 61) 

1) = 
k, (4.6) 

with U,, V, and D, BS defined in Theorem 2.1. Finally, by combining (4.4), 
(4.5), and (4.6), one arrives at (4.2). n 

Following [16], we set, for any subspace Y C C”, 

Y” := (MY)’ ,and c-I”(Y) := dim[M(Y n Y”)]. 

Here, _L indicates the orthogonal complement in C”. Using this notation, 
Theorem B can be rewritten as follows. 

COROLLARY C ([16, Corollary 2.71). Let M = MH E c”Xn, and let Y 

he a linear subspace of C”. Then 

in M = in*(Y; M) + in*(Ybl; M) + (d”(Y),d”(Y), -d’(Y) 

-dim(Y n Y”)). 

We remark that the results of Han and Fujiwara [12, Theorem 2.3; 11, 
Theorem 4.11 and Jongen et al. [14, Theorem 2.11 are special cases of 
Corollary C. As in [16], the formula 

ker( F’M) = M+(ker FH n range M) @ ker M 

(cf. [16, Equation (4.211) yields d = d”(Y >. Furthermore, this formula can be 
used to derive from Theorem B the following result. 

COROLLARY D (cf. [16, Corollary 4.3 and Theorem 3.11). Let M and F 

be as in Theorem B, and let E E Cnx q be such that range E = ker FH n 
range M. Then 

in M = in*(FHMF) + in*(EHMtE) + (d,d,e - Zd), 
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where 

d := dim[range( MF) n kerFH] and 

e := 6( M) - dim(ker M n range F) . 

REMARK 4.1. For special cases, the result in Corollary D was also 
derived by Han and Fujiwara [12, Theorem 4.31 and Lazutkin [15] (cf. 
Theorem 3.1 and Remark 3.2). 

We conclude this section with a result on the relationship of the inertias 
of M, its submatrix A, and the generalized Schur complement M/A of A 

in M. 

THEOREM 4.2. Let M E C”‘” be a Hermitian matrix of the form (1.11, 

let G be any matrix with m rows such that range G = ker A, and let 

k = rank[ A B] - rank A. Then 

in M = in A + in*(ker(GHB); M/A) + (k, k, -k). (4.7) 

Proof. Let G be any matrix with m columns such that range G = ker A. 

Let Us and V = [V, V,] be unitary matrices satisfying the relations (2.4) and 
(2.5) in Theorem 2.1. Furthermore, let AI, D,, and A,, be the blocks in the 
quasi-diagonal matrix (2.2). 

In view of (2.4), we have 

range G = range U, = ker A. (4.8) 

Using, for example, the singular-value decomposition of G, one can deduce 
from (4.8) that 

G = u,[Z,+,, O]R, 

where R is a nonsingular matrix. With (4.9) and (2.5), it follows that 

(4.9) 

and ker( GHB) = ker V,” = range Vs. (4.10) 
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Note that dim ker V, = 0, and by (4.10), (4.11, and (2.5), we obtain 

in*(ker(G”B); M/A) = in(VSn( M/A)V,) = in A,, + (O,O, C-E,). (4.11) 

Moreover, from Theorem 2.1 and the quasi-diagonal form (2.2), it follows 
that 

inM=inh, +inh,,+(k,k,d,+d,), 
(4.12) 

in A = in RI + (O,O, k + d,). 

Finally, combining (4.11) and (4.12) g’ Ives the desired relation (4.7). n 

REMARK 4.3. Consider the special case that the block A in (1.1) is 
nonsingular. Then, in Theorem 4.2, k = 0 and, since ker A = (01, G is a zero 
matrix with m rows. Hence 

in*(ker(GHB); M/A) = in*(@“-“‘; M/A) = in( M/A), 

and Equation (4.7) reduces to the inertia formula 

in A4 = in A + in(C - BHA-‘IS), (4.13) 

which is due to Haynsworth [I3]. It seems that (4.13) is one of the earliest 
results on inertias for partitioned Hermitian matrices. 

5. APPLICATIONS TO HERMITIAN MATRIX PENCILS 

In this section, we are concerned with Hermitian matrix pencils (see, e.g., 
[18, Chapter 151) 

pM - AN, P, A E R, (p, A) f (O,O), (5.1) 

where M = M” and N = NN > 0 are n X n matrices. The essential proper- 
ties of Hermitian matrix pencils (5.1) are invariant under congruence trans- 
formations. Therefore, without loss of generality, in the following it is always 
assumed that N is of the form 

’ 
m = 6(N) (5.2) 
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Let THMT = A be a quasispectral decomposition (2.3) of M with 

matrices T and A of the type (2.1) and (2.21, respectively. Then, by (2.1) and 
(5.2), we have T ‘NT = N. Together with (2.31, this implies that 

TH( FM - AN)T 

1 0 0 0 

0 0 0 

pDk 0 0 

0 0 0 

-h& 0 0 

0 i-4 - q,, 0 
0 0 

(5.3) 

Next, we show that the essential properties of pencil (5.1) can be deduced 
from its normal form (5.3). First, recall that a matrix pencil (5.1) is said to be 
singular if det( pM - AN) = 0 f or all /J, A E IR, and it is called regular 
otherwise. From (5.31, we immediately obtain the following result. 

THEOREM 5.1. The matrix pencil (5.1) is regular if and only q, cl, = 0 

in (5.3). 

In the sequel, it is always assumed that (5.11 is a regular matrix pencil. 
Then, by (5.3) d an since det T HT = 1 [cf. (2.10)1, we get 

det( pM - AN) 

= det( pAi) det 
[ ,_‘oD, ‘?k] det( PA, - A&,) det ( -A&J,) 

where A,, = diag(A,, . , Apll> and Dk = diag(a,, . , ak>. The next theorem 
readily follows from (5.4). 

THEOREM 5.2. All solutions ( p, A) # 0 of det( pM - AN) = 0 are 
given by : 

(i) A = 0, p f 0, $;fa, > 0, 
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The solutions of det( ~.LM - AN) = 0 with Z_L = 1 or with Z-L = 0, A # 0, 
are by definition the eigenvalues of the generalized eigenvalue problem 

Mx = ANx. (5.5) 

For this special case, Theorem 5.2 together with (5.4) leads to the following 
result. 

COKOLLAHY 5.3. The eigenvalues A of (5.5) are given by: 

(i) A = 0 with multiplicity d,, if d,) > 0, 

(ii> A = 3, j = 1, . , po, 
(iii) A = ~0 with multiplicity m + k, if (m, k) # 0. 

As a further application, by means of (5.3) one can easily characterize all 
cases for which /.LM - AN > 0. 

THEOHEM 5.4. Let J_L, A E R and (p, A) # 0. Then the Hermitian 

matrix pencil PM - AN, (5.1)-(5.2), is positive definite if, and only if, the 

following four conditions are satisfied: 

(i) ~1, = k = 0, 

(ii) m = 0 or PA, > 0, 

(iii) p0 = 0 or /J& - A$,, > 0, 
(iv) d, = 0 or A < 0. 

In particular, we obtain the following corollary. 

COROLLARY 5.5. There exist t.~, A E R such that the Hermitian matrix 

pencil PM - AN, (5.1)-(5.2), is positive definite if, and only if, the subma- 

trix A in the partition (1.1) of M is positive or negative definite. 

Finally, we conclude this section with an inertia formula that again 
immediately follows from (5.3). 

THEOREM 5.6. For the matrix pencil (5.1) with A E R, ZL = 1, we have 

in(M - AN) = in Ai + (k, k,d,) + in(h, - AZ) + in( -Aldo). 

REMARK 5.7. Different inertia formulas for matrix pencils (5.1) can be 
found in [I4 Section 41. 
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6. INEQUALITIES FOR INERTIAS OF A HERMITIAN MATRIX 
AND ITS PRINCIPAL SUBMATRICES 

The restricted signature normal form is also a useful tool for obtaining 
simple proofs of many of the known inequalities [2, 4-6, 171 for inert& of 
Hermitian matrices and their principal submatrices. In this section, we 
demonstrate this for two cases. Further examples can be found in the 
extended version [IO] of this paper. 

The first theorem is due to Dancis [6, Theorem 1.21, who proved the 
result in the more general setting of self-adjoint operators on Hilbert spaces. 
Here, we present a simple proof for the following finite-dimensional version 
of Dancis’s theorem. 

THEOREM E. Let M be a Hermitian matrix of the fo,rm (1.1) with 

leading principal submatrix A. Set 6, := S(A), d := dim(ker M f’ ker A), 

A := 6, - d, and A* := S(M) - cl. Then 

rl + A =G r(M) G n - m + rl - A*, (6.1) 

rTTI + S, + A* G rr( M) + 6(M) G r, + 6, + n - m - A, (6.2) 

8, - n + m + 2A* < 6(M) < 6, + n - m - 2A. (6.3) 

Proof. First, note that, by Theorem A on the restricted signature normal 
form of M, we have 

d=d,=6,-k, A=k, and A*=d,. (6.4) 

Furthermore, from (1.3), one immediately obtains the inequalities 

ml + k G r(M) G ml + (n - m - d,), 

which, in view of (6.41, are identical to (6.1). 
From (1.3), it also follows that 

r,+k+S(M)<rr,+k+rr,+6(M) 

= r(M) + S(M) < 7~~ + d, + n - m, 

and, by (6.41, this is just (6.2). 
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Finally, with (1.3) and (6.4), one easily verifies the two relations 

6(M) =d, +&)=a, -A+A* and A+A* =k+d,,<n-m, 

which imply (6.3). n 

The second theorem is concerned with conditions on possible inertias of 
XHMX, where M is given and X is any matrix of prescribed size and rank. 

THEOREM F (Dancis [4, Theorem 3.11 and Marques de Sli [17, Theorem 
11). Let M = MH E CtrXr’ be a given matrix with inertia in M = (rr, v, 8). 
Let m, s > 1 be given integers with m < minis, n), and let r,, v, > 0 be 

given integers. Then there exists a mutrix X E CnxI of rank m such that 

in(X’MX) = (r,, vl, s - 7r, - v,) if, and only if, the following ineyuali- 

ties are satisfied: 

rr+m-nf7r,<T, v + m - n < VI < V, 97, + v1 G m. 

(6.5) 

Proof. Assume that X.E C ‘Ix’ is of rank m and in( X*MX) = (rrl, vl, s 

- ?T, - v,). Clearly, without loss of generality, we may assume that X is of 
the form 

I 0 
x = 111 

[ I 0 0 

Then X”MX is just the m X m leading principal submatrix A of M, 

bordered by s - m rows and columns of zeros, and using Theorem A we 
deduce that 

rr, < rr < 77, + n - m, v1 < v < v, + n - m, 7rTT1 + v, < m 

Hence, the conditions (6.5) are necessary. 
Conversely, assume that or and v, satisfy the inequalities (6.5). Using 

the restricted signature normal form, we can then construct a matrix X E 
CnXs of rank m such that in(XHMX) = (‘rr,, vl, s - rTT1 - v,). To this end, 
set 6, := m - rrl - vr, 

d, := max{O, 6 - S,}, k := max{O, S, - S) , 

TO := TT- rr, -k, VO 
:= v- v1 -k, d, := S, - k, (6.6) 
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and let Z be the restricted signature matrix (1.3) determined by the indices 
and the integers in (6.6). Using (6.5) one readily verifies that 

J;:kv,l;r,, Va, d r 2 0, and hence C is well defined. Furthermore, we have 

d, + d” = 6, 7r, + V, + d, + k = m, m,f u,+d,+k=n-m. 

This shows that in C = in M. Note that the leading m X m principal 
submatrix C, has inertia in Zc, = (‘rr,, vr, S,). Since 2 and M are both 
Hermitian matrices with the same inertia, there exists a nonsingular matrix S 
with SHMS = Z. Finally, by setting 

[ 

1 0 
X := S . “’ 

I 0 O(r,-III)X(S--lII) ’ 

we obtain an n x s matrix of rank m such that XHMX has inertia 
in(XHMX) = in I;, + (O,O, s - m> = (rTT1, v,, s - r1 - v,). n 

We would like to thank an anonymous referee Jilr the careful reading of 

the manuscript and constructive cm’ticism. 
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