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In the present study we analyzed the oligomerization state of the serotonin 5-HT1A receptor and studied
oligomerization dynamics in living cells. We also investigated the role of receptor palmitoylation in this
process. Biochemical analysis performed in neuroblastoma N1E-115 cells demonstrated that both
palmitoylated and non-palmitoylated 5-HT1A receptors form homo-oligomers and that the prevalent
receptor species at the plasma membrane are dimers. A combination of an acceptor-photobleaching FRET
approach with fluorescence lifetime measurements verified the interaction of CFP- and YFP-labeled wild-type
as well as acylation-deficient 5-HT1A receptors at the plasma membrane of living cells. Using a novel FRET
technique based on the spectral analysis we also confirmed the specific nature of receptor oligomerization.
The analysis of oligomerization dynamics revealed that apparent FRET efficiency measured for wild-type
oligomers significantly decreased in response to agonist stimulation, and our combined results suggest that
this decrease was mediated by accumulation of FRET-negative complexes rather than by dissociation of
oligomers to monomers. In contrast, the agonist-mediated decrease of FRET signal was completely abolished
in oligomers composed by non-palmitoylated receptor mutants, demonstrating the importance of
palmitoylation in modulation of the structure of oligomers.
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1. Introduction

Until recently, G-protein coupled receptors were assumed to exist
and function as monomeric entities that interact with the correspond-
ing G-protein at a 1:1 stoichiometry. However, biochemical, structural
and functional evidence obtained in the last decade suggests that
some GPCRs can form homo- and hetero-oligomers [1]. Initial clues for
the existence of receptor dimers and oligomers came from the
appearance of high molecular weight SDS-resistant complexes on
SDS-PAGE [2]. In addition, trans-complementation assays not only
confirmed the existence of receptor–receptor interactions but also
specified their functional implications. In these experiments, it was
demonstrated that co-expression of two mutant receptors, which
were not able to transduce signals individually, restored signal
transduction [3,4]. Recently, GPCR dimers were directly visualized
under physiological conditions when rhodopsin dimers in murine rod
outer segments were imaged by atomic force microscopy [5]. Dimers
were also found in crystal structure of rhodopsin [6].
9 551 396031.
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Although there is evidence suggesting that oligomeric complexes
may represent the preferred state of GPCRs [7], no general principle
defining the regulation of oligomerization has been elucidated. There
are two general models describing the mechanisms of GPCR
oligomerization. Onemodel proposes that GPCR oligomers are formed
early after receptor synthesis and that oligomeric state does not
change upon ligand treatment [8]. A well-known example of such
constitutive oligomerization is the GABABB receptor, for which
oligomerization between GABABR1 and GABAB2 has been shown to
be necessary for the proper trafficking and functioning at the cell
surface [9–11]. The other model, which has been documented for
several GPCRs by using biochemical as well as biophysical approaches
describes receptor oligomerization as a ligand-dependent process
[12,13].

A variety of biochemical, functional and biophysical techniques has
beenutilized to demonstrate the existenceof receptor complexeswithin
the GPCR family. Cross-linking and co-immunoprecipitation assays
represent classical methods for the analysis of GPCR oligomerization.
However, these methods are not applicable to living cells and therefore
can not provide information about the dynamic changes upon agonist
stimulation. An additional drawback is that the biochemical treatment
could possibly result in artificial receptor aggregation. The development
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of new approaches, such as Förster Resonance Energy Transfer (FRET)
techniques either based on fluorescence or on bioluminescence was
therefore essential for the studies of GPCR oligomerization under
physiological conditions [14]. FRET signals can be obtained when an
acceptor fluorophore is located within close enough proximity of an
excited donor fluorophore to initiate a dipole-dipole interaction, which
can result in a non-radiative energy transfer from the donor to the
acceptor fluorophore. This non-radiative transfer of energy can occur
onlywhen (i) the donor possesses an emission spectra overlappingwith
the excitation spectra of the acceptor, [4] (ii) both fluorophores are
located within 1 to 10 nm of each other and (iii) their transition dipole
moments are appropriately oriented [15].

In this study, we examined the oligomerization state of the
serotonin 5-HT1A receptor and analyzed its dynamics in living cells.
The 5-HT1A receptor can couple to a variety of effectors via the
pertussis-toxin sensitive heterotrimeric G-proteins of the Gi/o families
[16–18] and is the most extensively characterized member of the
serotonin receptor family. Activation of the 5-HT1A receptor results in
the inhibition of adenylate cyclase and subsequent decrease of
intracellular cAMP levels. In addition to the effects mediated by the
Gαi/o subunit, activation of the 5-HT1A receptor leads to a Gβγ-
mediated activation of a K+ current, inhibition of a Ca2+ current,
stimulation of the phospholipase C, as well as an activation of the
mitogen-activated protein kinase Erk2 [19–22]. With respect to its
physiological functions, it is noteworthy that the 5-HT1A receptor is
involved in manifold processes including the regulation of neurogen-
esis [23], respiratory control [24,25], cardiovascular control [26],
neuroendocrine regulation [27], temperature control [28] and regula-
tion of sleep [29]. Considerable interest in this receptor has been
raised due to its involvement in regulation of depression and anxiety
states [28,30,31].

Previously, we have demonstrated that the 5-HT1A receptor is
stably palmitoylated at its C-terminal cysteine residues Cys417 and
Cys420. Characterization of acylation-deficient 5-HT1A mutants
revealed that palmitoylation of the 5-HT1A receptor is critical for Gi-
protein coupling and effector signaling [32]. The covalent attachment
of palmitic acid to the cysteine residue(s) located within the C-
terminus represents a very commonpost-translational modification of
GPCRs [33]. Moreover, palmitoylation of several GPCRs has been
shown to play a central role in the regulation of the receptor's
functions. Recent studies on rhodopsin indicate that its depalmitoyla-
tion enhances light-dependent GTPase activity of Gt and strongly
decreases the light-independent activity of opsin-atr [22,34]. The
functional characterization of non-palmitoylated β2-adrenergic and
endothelin-B (ETB) receptors has revealed that palmitoylation is
essential for agonist-stimulated coupling to Gs and to both Gq- and Gi-
proteins, respectively [35–37]. Analysis of the non-palmitoylated ETA
receptor mutant demonstrated that ligand-induced stimulation of Gs

was unaffected by the lack of palmitoylation, whereas signaling
through Gq was prevented [36]. Recent data on chemokine CCR5 and
prostacyclin receptors also demonstrated that receptor palmitoylation
is involved in the activation of intracellular signaling pathways
[38,39].

All receptors mentioned above have also been found to undergo
oligomerization. However, the relationship between receptor palmi-
toylation and oligomerization has not yet been investigated. There-
fore, in the present study, in addition to providing evidence for
oligomerization of wild-type 5-HT1A receptors, we investigate
whether a palmitoylation state of 5-HT1A receptor may affect its
oligomerization.

2. Materials and Methods

2.1. Recombinant DNA procedures

The construction of HA-tagged 5-HT1A and 5-HT1A receptors fused to different
spectral variants of the green fluorescence proteins as well as their palmitoylation-
deficient counterparts has been described previously [32,40]. The plasmids encoding
for Gαi2, Gβ1 and Gγ2 subunits of heterotrimeric G-protein from mice were kindly
provided by Dr. Tatyana Voyno-Yasenetskaya (University of Illinois, Chicago).

2.2. Adherent cell culture and transfection

Mouse N1E-115 neuroblastoma cells from the American Type Culture collection
(ATCC) were grown in Dulbecco's modified Eagle's medium (DMEM) containing 10%
fetal calf serum (FCS) and 1% penicillin/streptomycin at 37 °C under 5% CO2. For
transient transfection, cells were seeded at low-density in 60-mm dishes (1×106) or on
10-mm cover-slips (5×105) and transfected with appropriate vectors using Lipofecta-
mine2000 Reagent (Invitrogen) according to the manufacturer's instruction. Four hours
after transfection, cells were serum starved over night before analysis.

The amount of expressed receptor was measured in membrane preparations of
transfected cells by using radioactive ligand binding assay with [3H]8-OH-DPAT as a
specific ligand and non-radioactive 5-HT as a competitor.

2.3. Immunoprecipitation and immunoblotting

Twenty-four hours post-transfection cells were washed in PBS and lysed in 500 µl
RIPA-buffer (20 mM Tris–HCl pH 7.4, 150 mM NaCl, 10 mM EDTA, 10 mM iodacetamide,
1% Triton X-100, 1% deoxycholic acid, 0.1% SDS, 1 mM PMSF, 5 µg/ml aprotinin, 2 µg/ml
leupeptin) for 30 min on ice. The lysate was cleared by centrifugation at 13.000 rpm for
20 min at 4 °C. The receptors were immunoprecipitated from the supernatant by
incubation with rabbit anti-HA antibody (Santa Cruz) or anti-GFP antibody (Abcam) for
4 h at 4 °C, followed by incubation of lysates with protein A-sepharose (Sigma) for 2 h.
The immunoprecipitation-sepharose complexes were washed with RIPA-buffer, eluted
with 40 µl Laemmli loading buffer, and 15 µl of each sample were separated by 10% SDS-
PAGE under reducing conditions. Proteins were transferred to Hybond nitrocellulose
membrane (Amersham) and probed either with antibodies against HA-tag (Santa Cruz;
1:5000 diluted in PBS/Tween20) or against GFP (Eusera; diluted 1:20.000 in PBS/
Tween20). Proteins were detected using the AceGlow detection reagents (Peqlab).

2.4. Chemical cross-linking

Transiently transfected cells were resuspended in PBS (150 mM NaCl, 20 mM
NaH2PO4, pH 7.4) and mixed with the indicated concentrations of cross-linker 1,11-bis-
Maleimidotriethyleneglycol (BM[PEO]3, Pierce) diluted in PBS for 10 min at room
temperature. The reaction was stopped by addition of dithiothreitol to a final
concentration of 10 mM followed by incubation on ice for 10 min. After two washes
with PBS, cells were lysed and proteins were immunoprecipitated and subjected to the
SDS-PAGE and immunoblot analysis.

2.5. Confocal imaging and single-cell acceptor-photobleaching FRET analysis

Images of N1E-115 cells expressing 5-HT1A-CFP and 5-HT1A-YFP fusion proteins
were acquired with an LSM510-Meta confocal microscope (Carl Zeiss Jena) equipped
with a 40×/1.3 NA oil- immersion objective at 512×512 pixels. The 458 nm line of a
40 mW argon laser was used at 15% power. Fluorescence emission was acquired from
individual cells over fourteen lambda channels, at 10.7 nm steps, ranging from 475 to
625 nm. For each measurement a series of 8 images was acquired over a duration of
124 s. After the 4th image acquisition, bleaching of the acceptor (YFP) was performed in
a selected 20×20 pixel region of interest in the plasma membrane. For that the 514 nm
line of the Argon laser set at 50% power and 100% transmission for 300 scanning
interactions using a 458nm/514nm dual dichroic mirror was used. Linear unmixing was
performed by the Zeiss AIM software package using CFP and YFP reference spectra
obtained from images of cells expressing only 5-HT1A-CFP or 5-HT1A-YFP acquired
with acquisition settings mentioned above. Apparent FRET efficiency was calculated
offline using the equation,

EfD ¼ 1� FDA
FD

� �
ð1Þ

where fD is the fraction of donor participating in the FRET complex (i.e. ratio of FRET
complexes over a total donor concentration, [DA] / [Dt]), FDA and FD are the background
subtracted and acquisition bleaching corrected pre- and post-bleach CFP fluorescence
intensities, respectively. The acquisition bleaching corrected post-bleach CFP intensities
were calculated as

FD ¼ FB;postD þ FR;preD � FR;postD

FR;preD

 !
FB;preD ð2Þ

where FD
B and FD

R refer to CFP intensities of the bleach and reference region of interest,
and pre and post refer to pre-bleach and post-bleach measurements.

2.6. Spectral FRET analysis in living cells

Mouse N1E-115 neuroblastoma cells were co-transfected with plasmid DNAs
encoding for wild-type and/or acylation-deficient 5-HT1A receptors fused with CFP and
YFP. Sixteen hours after transfection, cells were resuspended in PBS. All measurements
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were performed in 5 mm pathway quartz cuvettes using a spectrofluorometer
(Fluorolog, Horiba JobinYvon) equipped with xenon lamp (450 W, 950 V). The cell
suspension was stirred with a magnetic stirrer while the temperature was maintained
at 37 °C during the experiment.

For calibration measurements, cells were co-transfected with plasmid encoding a
single fluorophore- tagged 5-HT1A receptor together with an equal amount of plasmid
encoding HA-tagged 5-HT1A receptor. During the time-course experiments, two
emission spectra were obtained for each time point by exciting at 458 nm and 488 nm
with 5 nm spectral resolution for excitation and emission and 0.5 s integration time. The
spectral contributions due to light scattering and non-specific fluorescence of the cells
were taken into account by subtracting the emission spectra of non-transfected cells
(background) from each measured spectra. Before each measurement, the spectro-
fluorometer was calibrated for the xenon-lamp spectrum and Raman scattering peak
position. Stimulation of 5-HT1A receptors was carried out using serotonin (Sigma) at a
final concentration of 10 µM. For antagonist treatment, WAY 100135 (Tocris) at a final
concentration of 1 µM was used. Cholesterol depletion was carried out by treating cells
with 2% methyl-ß-cyclodextrin (MßCD) in serum-free D-MEM for 45 min at 37 °C.

2.7. Apparent FRET efficiency calculations

To determine changes in apparent FRET efficiency due to 5-HT1A receptor
activation by serotonin we used a recently developed method described in detail by
Wlodarczyk et al. [41]. Calibrationmeasurements were carried out with cells expressing
only donor [Dref] (5-HT1A-CFP) or acceptor [Aref] (5-HT1A-YFP) using two excitation
wavelengths ki (i=1,2) as described in the previous section.

Calibration measurements allowed us to obtain the concentration related
extinction coefficient ratio (ri=εDi [Dref] /εAi [Aref]). This was done by fitting the curve
resulting from acceptor reference spectramultiplied by the quantumyield and emission
characteristics of the donor (i.e. emission spectra normalized to unit area) to that of
donor reference spectra multiplied by the quantum yield, and emission characteristics
of the acceptor [41].

We also performed reference measurements with cells co-expressing 5-HT1A-CFP
and 5-HT1A-YFP receptors. Combinations of the acceptor and donor reference spectra
were fitted to the measured spectra of cells co-expressing 5-HT1A-CFP and 5-HT1A-YFP
and the apparent relative acceptor and donor concentrations αi and δi, respectively,
were obtained as the weights of those fits. The quantities αi, δi obtained together with
two scaling factors (ri) reflecting the excitation ratios of two fluorophores at a given
excitationwavelength ki, allow for a calculation of the total concentration ratio [At] / [Dt]
of donor and acceptor as well as the apparent FRET efficiencies EfA and EfD, where fA and
fD are the fractions of acceptors and donors in complexes.

EfDuE
DA½ �
Dt� � ¼ 1� rex;1 þ Rt

rex;1 þ a1=d1
and ð3Þ

EfAuE
DA½ �
At
h i ¼ Dref

h i
Aref
h i Da

a1rex;2 � a2rex;1
; ð4Þ

where Rt is a concentration ratio calculated as,

Rtu
At
h i

Dref
h i

Dt� �
Aref
h i ¼ a1rex;2 � a2rex;1

Drd1 þ Da
ð5Þ

with the definitions Δα=α1−α2 and Δr=rex,1− rex,2. Where fD≡ [DA] / [Dt] and fA≡ [DA]/
[At] representing the fractions of donor and acceptor participating in complexes.

2.8. Analysis of specific vs. random receptor–receptor interactions

In order to distinguish between receptors interacting randomly from those with
specific interaction, apparent FRET efficiencies were obtained for various acceptor to
donor ratios by keeping the total concentration of fluorophores constant. It has been
proposed that the dependency of EfD on [At] / [Dt] for dimers differs from that of EfD
resulting from random interaction [42]. The apparent FRET efficiency EfD obtained from
our experimental datawas plotted as a function of the total acceptor to donor ratio [At] /
[Dt] and fitted by least square minimization to the following equation, as proposed
previously by Veatch and Stryer [42] and later modified by James et al [43] to the form

EfD ¼ 1� 1

1þ At
h i

= Dt� �� �
0
@

1
AE; ð6Þ

where E is the characteristic FRET efficiency. It is also notable, that the above equation
was derived for the case of high-affinity dimerization reaction [42].

2.9. Fluorescence lifetime FRET measurements

Fluorescence intensity decays were obtained by time-correlated single photon-
counting measurements of fluorescence using a Fluorolog-3 spectrofluorometer
(Horiba Jobin Yvon, München, Germany). Samples were placed in 10-mm pathway
quartz cuvettes (10×10 mm2) and continuously stirred with a magnetic stirrer.
Emissionwas collected in right angle geometry. Excitationwas performedwith a 460 nm
nanoLED with a 440/40 nm transmission filter (Semrock, Tuebingen, Germany).
Fluorescence intensitywasmeasured in thewavelength band from468 nm to 482 nm to
avoid acceptor fluorescence. Typical fluorescence decays were fitted with the resulting
sum of one, two, or three exponentials, interatively convolved with the instrument
response function using the standard DataStation analysis software provided by Horiba
Jobin Yvon and CFS_LS software (available from Center for Fluorescence Spectroscopy at
http://cfs.umbi.umd.edu/cfs/software/). The quality of the fits was evaluated by the
structure observed in the plots of residuals and by the reduced chi-square values. The
mean fluorescence lifetimes were calculated as the amplitude-weighted life-times. In
several experiments cholesterol depletion was carried out by treating cells with 2%
methyl-β-cyclodextrin (MßCD) in serum-free D-MEM for 45 min at 37 °C before the
analysis.

2.10. Gradient centrifugation

Separation of detergent-resistant membranes derived from transfected N1E-115
cells (1×106) growing on 35 mm dishes was performed as recently described [40]. Cells
were lysed in TNE buffer (25 mM Tris–HCl, pH7.4, 150 mMNaCl, 5 mM EDTA, 1 mMDTT,
10% sucrose, 1% Triton X-100, 1 mM PMSF, 10 µM Leupeptin, 2 µg/ml Aprotinin) and
lysates (1.2 mg protein/ml) were mixed with the double volume of 60% Optiprep™
gradient medium (Sigma). The resulting 40% Optiprep™ mixture was transferred into
the ultracentrifuge tube and overlaid with steps of each 35%, 30%, 25%, 20% and 0%
Optiprep™ in TNE. The gradients were centrifuged for 5 h at 50.000 rpm in the TLS-55
rotor of the ultracentrifuge TL-100 (Beckman). Six fractions were collected from the top
of the gradient and TCA-precipitated. The protein pellets were analyzed by SDS-PAGE
followed by immunoblot analysis with appropriate antibodies. In several experiments
chemical cross-linking with BM[PEO]3 together with 5-HT treatment (10 µM) was
performed before ultracentrifugation.

3. Results

3.1. Biochemical analysis of 5-HT1A receptor oligomerization

In order to determine whether the 5-HT1A receptor undergoes
oligomerization, we applied a co-immunoprecipitation assay to N1E-
115 mouse neuroblastoma cells co-expressing HA- and YFP-tagged
receptors. The HA-tagged 5-HT1A receptor has a molecular weight of
approximately 48 kDa (Fig.1, upper panel), while themolecularweight
of YFP-tagged receptors is shifted to 74 kDa (Fig.1, lower panel). Fig.1A
also shows that after immunoprecipitation with an antibody against
HA-tag, YFP- immunoreactive receptor bands were identified only in
samples derived from cells co-expressing both HA- and YFP-tagged
receptors. Equal results were obtained after initial immunoprecipita-
tion of cell lysateswith an anti-YFP antibody followed by immunoblot-
ting with an anti-HA-tag antibody (Fig. 1A). To exclude the possibility
that the identified bands represent artificial protein aggregates, cells
expressing only one type of receptor (HA- or YFP-tagged) were mixed
prior to lysis and analyzed in parallel as a control. As shown in Fig. 1,
individual receptors can be precipitated and detected by the same
antibody, whereas co-immunoprecipitation did not occur, supporting
specificity of 5-HT1A receptor oligomerization.

We have recently shown that the 5-HT1A receptor is modified by
covalently attached palmitate [32] Therefore, we analyzed the impact
of palmitoylation on receptor oligomerization. Fig. 1B and C demon-
strate that differently tagged 5-HT1A receptors were efficiently co-
immunoprecipitated independently of their acylation state.

To investigate 5-HT1A receptor oligomerization in a physiological
environment, N1E-115 cells expressing either wild-type or acylation-
deficient HA-tagged receptors were treated with chemical cross-
linker BM[PEO]3. This homobifunctional cross-linker interacts with
sulfhydryl groups on polypeptides to form stable thioether linkages
that induces an irreversible cross-linking of proteins located within
close proximity (approximately 15 Å) of each other. It is notable that
the plasma membrane is impermeable for BM[PEO]3, allowing
oligomerization analysis of the receptors localized on the cell surface
of intact cells. Immunoblotting analysis of N1E-115 cells expressing
the wild-type or the palmitoylation-deficient receptors revealed that,
in the absence of cross-linker, the majority of 5-HT1A receptors is
detectable as monomers, while only a minor fraction migrates as a
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Fig. 1. Analysis of 5-HT1A receptor oligomerization by co-immunoprecipitation. Interactions between HA- and YFP-tagged wild-type receptors (A), palmitoylation-deficient mutants
(B) as well as YFP-tagged wild-type and HA-tagged palmitoylation-deficient receptors (C) were analyzed. Neuroblastoma N1E-115 cells co-expressing HA- and YFP-tagged receptors
(co-transf.), a mixture of cells expressing each receptor individually (Mix) or non-transfected cells (Mock) were subjected to immunoprecipitation followed by SDS/PAGE (10%) and
immunoblot. IP refers to the antibodies used for immunoprecipitation, while IB defines the antibody used for immunoblot. The immunoblots shown are representative of at least 4
independent experiments.
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band with molecular weight of app. 95 kDa, which is the molecular
weight predicted for a dimer (Fig. 2A). Treatment of intact cells with
increasing concentrations of cross-linker leads to a decline of the
amount of monomers that is accompanied by an increase in the dimer
population. Similar results were also obtained for the acylation-
deficient mutant (Fig. 2B).

To analyze effect of agonist stimulation on receptor oligomeriza-
tion, N1E-115 cells expressingwild-type or acylation-deficient 5-HT1A
receptors were treated with 5-HT at 10 µM concentration followed by
co-immunoprecipitation or cross-linking analysis. Fig. 3A demon-
strates that stimulation of either wild-type or non-palmitoylated
receptors with agonist does not change amount of co-immunopreci-
pitated receptors. Similar results were also obtained after application
of cross-linker BM[PEO]3 to the simulated and non-stimulated cells
(Fig. 3B), demonstrating that the oligomerization state of 5-HT1A
receptor is not modulated upon agonist stimulation.

3.2. Acceptor-photobleaching analysis of 5-HT1A receptor oligomerization

Förster Resonance Energy Transfer (FRET) is a powerful biophysical
approach for the quantitative analysis of protein-protein interactions
[15]. To determine whether FRET could be measured in the plasma
membrane of living cells co-expressing 5-HT1A-CFP and 5-HT1A-YFP
Fig. 2. Chemical cross-linking ofwild-type and acylation-deficient 5-HT1A receptors. Intact N1E
treatedwith increasing concentrationsof cross-linker BM[PEO]3 and subjected to immunoprecip
monomers, species migrating with the expected size of a dimer are visible. The immunoblots s
fusion proteins, a confocal microscopy-based acceptor-photobleach-
ing method was applied to transfected N1E-115 cells.

To avoid artefacts resulting from overexpression, we adjusted the
total expression level for the CFP- and YFP-tagged receptor to 1.000–
1.200 fmol/mg proteins in all following FRETexperiments, which allows
for quantitative analysis of results obtained in different experiments.
Moreover, similar amounts of endogenous 5-HT1A receptors has been
obtained in hippocampus under physiological conditions [44,45].

CFP and YFP were excited simultaneously with a 458 nm laser line.
Fluorescence emission was acquired at multiple wavelengths using
the LSM510-Meta detector allowing for the linear unmixing of the CFP
and YFP emission spectra. Confocal microscopy performed after the
transfection of N1E-115 cells revealed that the majority of YFP- and
CFP-tagged 5-HT1A receptors were localized in the plasma mem-
branes with only a minor fraction existing in the intracellular
compartments (Fig. 4A).

To perform acceptor photobleaching, a defined region of plasma
membrane was selectively illuminated using a 514 nm laser line. A
458/514 nm dual dichroic mirror was used to allow rapid image
acquisition before and immediately after photobleaching. Fig. 4A
shows the bleached region of interest with a loss of YFP intensity as
well as a reference region of interest from which the acquisition
bleaching rate was determined for correct FRET calculation. Fig. 4B
-115 cells expressing either HA-taggedwild-type (A) ormutant 5-HT1A receptors (B)were
itation, SDS/PAGEand immunoblot analysiswithanti-HAantibody. Apart fromthe receptor
hown are representative of at least 4 independent experiments.



Fig. 3. Agonist stimulation does not change amount of 5-HT1A oligomers. (A) Neuro-
blastoma N1E-115 cells co-expressing HA- and YFP-tagged receptors were treated
with 5-HT (10 µM) or with vehicle (PBS) for 15 min and then subjected to co-
immunoprecipitation. The intensity of protein bands was assessed by densitometry of
immunoblots. The value for PBS treated cells was set to 100%. Bars represent means+
S.E.M. (n=3; top). The representative immunoblot is shown where IP refers to the
antibodies used for immunoprecipitation, while IB defines the antibody used for
immunoblot (bottom). WT, wild-type 5-HT1A receptor; Mut, acylation-deficient
mutant. (B) N1E-115 cells expressing either HA-tagged wild-type or non-palmitoy-
lated 5-HT1A receptors were treated with 5-HT (10 µM) or with vehicle (PBS) for
15 min with cross-linker BM[PEO]3 (5 µM) and then subjected to immunoprecipita-
tion and immunoblot analysis with anti-HA antibody. The intensity of protein bands
corresponding to dimers was assessed by densitometry of immunoblots. The value for
PBS and BM[PEO]3 treated cells was set to 100%. Bars represent means+S.E.M. (n=3;
top). A representative immunoblot is shown (bottom).

1507F. Kobe et al. / Biochimica et Biophysica Acta 1783 (2008) 1503–1516
illustrates the changes in emission intensities of donor and acceptor
fluorescence in the bleached region of interest demonstrating that
with the loss of acceptor fluorescence there is a corresponding increase
of donor emission intensity that is characteristic of FRET. In contrast,
intensities of both CFP and YFP fluorescence of non-bleached regions
undergo onlyminor decrease, reflecting acquisition bleaching (Fig. 4C).

Finally, apparent FRET efficiency EfD was calculated according to
Eq. (1), where FDA is the pre-bleach and FD is the corrected post-bleach
donor fluorescence according to Eq. (2). Data were background
subtracted and corrected for acquisition bleaching using the measure-
ments from the reference region of the plasma membrane (Fig. 4D).
The wild-type receptor fusion proteins from cells with similar donor
to acceptor ratios were found to have a mean apparent FRET efficiency
of 16.4%±0.7%. For the negative controls obtained after co-transfection
of cytosolic CFP and YFP an apparent FRET efficiency was 5.5%±3.8%.
To examine whether oligomerization may depend on palmitoylation
state of the receptor, we made acceptor-photobleaching trials in cells
expressing non-palmitoylated mutants. The palmitoylation-deficient
5-HT1A receptors exhibited apparent FRET efficiency with a mean EfD
of 23.6%±2.9%. In addition, we analyzed the interaction betweenwild-
type receptors coupled to YFP andmutant receptors coupled to CFP. In
this case a mean EfD value of 29.8%±5.6% was estimated. These results
indicate that 5-HT1A forms oligomers and that the FRET efficiency
depends on the palmitoylation status of the complex-forming units.

3.3. Analysis of receptor oligomerization by fluorescence lifetime FRET
measurements

In addition to acceptor photobleaching, we quantified the FRET
efficiency (E) in living cells by measuring fluorescence lifetime of
tagged 5-HT1A receptors. N1E-115 cells were transfected either with
5-HT1A receptor fused to CFP or co-transfected with wild-type (WT)
and acylation-deficient (Mut) receptors fused to CFP and YFP to create
appropriate donor/acceptor pair at the ratio 1:1 in following
combinations: WT-YFP/WT-CFP, Mut-CFP/Mut-YFP and WT-CFP/
Mut-YFP. The fluorescence decays of donor fusion proteins were
measured by time-correlated single photon counting (TCSPC) as
described in Materials and Methods. Experimental decay curves were
analyzed and mean value of fluorescence lifetime was calculated. The
averaged fluorescence lifetime value calculated for CFP fused with
receptor was found to be sD=2.01±0.05 ns. The decay kinetic of CFP in
the cells expressing different receptor combinations were strongly
affected by the presence of acceptor (YFP) leading to a shortening of
the lifetime. Fluorescence lifetimes were found to be s=1.67± 0.11 ns,
s=1.56±0.16 ns and s=1.57±0.2 ns for WT-CFP/WT-YFP, Mut-CFP/
Mut-YFP and WT-CFP/Mut-YFP, respectively. FRET efficiency was
calculated from these average lifetimes using the equation E=1−
〈s〉TC / 〈s〉D and was determined to be E=0.17±0.04 for WT-CFP/WT-
YFP, E=0.22±0.06 for Mut-CFP/Mut-YFP, E=0.22±0.05 for WT-CFP/
Mut-YFP (Fig. 5). This confirms acceptor-photobleaching data and
demonstrates that FRET efficiency for oligomers composed by
acylation-deficent mutants as well as for mixed oligomers (i.e.
combined by wild-type and mutant) is increased in comparison to
the wild-type oligomers.

We have recently shown that a significant fraction of the 5-HT1A
receptor resides in membrane rafts, while the yield of the palmitoyla-
tion-deficient receptor in these membrane microdomains is consider-
ably reduced [40]. To analyze the role of lipid raft localization of 5-
HT1A receptor for its oligomerization we measured the fluorescence
lifetime after treatment of transfected cells with methyl-β-cyclodex-
trin (MβCD). The cholesterol-binding reagent MβCD was previously
shown to disrupt the cholesterol-enriched membrane subdomains by
depletion of cholesterol from the plasma membrane [46]. Destroying
of lipid rafts resulted in shortening of fluorescence lifetime only in
case of WT-CFP/WT-YFP (s=1.33±0.05 ns), leading to significant
increase of FRET value to E=0.34±0.02 (Fig. 5). In contrast, FRET
efficiency calculated for Mut-CFP/Mut-YFP and WT-CFP/Mut-YFP was
not affected by cholesterol depletion and was determined to be
E=0.22±0.02 (s=1.56±0.06 ns) and E=0.16±0.03 (s=1.68±0.1 ns),
respectively (Fig. 5).

3.4. Spectrometric detection of FRET between 5-HT1A receptors in living
cells

We further examined FRET occurrence between fluorophore-
labeled 5-HT1A receptors in living cells by analysis of emission spectra
collected with a spectrofluorometer. Fig. 6 shows the typical
fluorescence emission spectra at 420 nm excitation obtained in N1E-
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Fig. 5. Analysis of 5-HT1A oligomerization by fluorescence lifetimemeasurements. N1E-
115 cells were co-transfected with wild-type (WT) and acylation-deficient (Mut)
receptors fused to CFP and YFP in following combinations: WT-YFP/WT-CFP, WT-CFP/
Mut-YFP and Mut- CFP/Mut-YFP. The co-transfected cells were treated with 10 mM
MßCD for 45 min or were left untreated, and the averaged FRET efficiency values were
calculated after fluorescence lifetime analysis as described in Materials and methods
section. Data represent the means±S.E.M. (n=3). A statistically significant difference
between the FRET efficiency obtained in cells co-expressing WT- CFP/WT-YFP before
and after cholesterol depletion is shown (⁎⁎, pb0.01).
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115 cells expressing WT-CFP, WT-YFP or co-expressing WT-CFP and
WT-YFP as a FRET pair. The spectral contaminations due to light
scattering and nonspecific fluorescence of cells were taken into
account by subtracting the emission spectra of HA-tagged receptor
cells (background) from each measured spectra. When cells were
transfected with only CFP-fused receptor, the typical emission
spectrum of CFP with emission peaks at 475 nm and 500 nm was
obtained (Fig. 6A). The emission spectrumobtained for cells expressing
only YFP-fused receptor was similar to that obtained in HA-tagged
receptor cells with only a very weak peak at 525 nm. In contrast, cells
co-expressing WT-CFP and WT-YFP receptors demonstrated a sig-
nificantly larger emission peak at 525 nm concomitant with a smaller
CFP emission, which demonstrates the energy transfer from CFP to YFP
(Fig. 6A). Similar results were also obtained when cells were co-
transfectedwith acylation-deficient 5-HT1Amutant (Fig. 6B). This data
confirms the oligomerization of 5-HT1A receptors in living cells.

3.5. Specificity of 5-HT1A receptor oligomerization

The apparent FRET efficiency, EfD, measured by acceptor photo-
bleaching is inherently dependent on fD, the fraction of donor
participating in FRET complexes. This is in turn dependent upon the
ratio of intact donor concentration to intact acceptor concentration
present in the sample. It has been therefore suggested that the
dependence of EfD on [At]/[Dt] may be useful in differentiating FRET
resulting from specific vs. random interactions [43,47,48]. In the case of
random interaction,EfDhas beenpredicted to be independentof the total
donor to acceptor ratio at a fixed surface density above a certain ratio.
Fig. 4. Acceptor-photobleaching FRET analysis of 5-HT1A oligomerization. (A) Confocal micr
membrane of N1E-115 cells. Fluorescence spectra were collected from a 2 µm optical slice
fluorescence image of the CFP channel (green), the YFP channel (red) and composite channel
interest, while the box 2 corresponds to the non-bleached region of interest. Scale bar, 10 µm.
[41] and CFP [41] during the whole trial are plotted for the bleached region of interest (right).
[41] and CFP [41] during the whole trial are plotted for the non-bleached region of interest (r
represent the means±S.E.M. from at least five independent experiments. Cells co- expres
difference between the FRET values obtained in cell co-expressing WT-CFP/WT-YFP and Mut
HT1A mutant.
For receptor dimers, EfD values are expected to be dependent on
the relative donor concentration at a higher [At] / [Dt] threshold,
resulting in a higher asymptotic EfD value. To analyze whether the
measured apparent FRET efficiency reflects specific receptor–receptor
interaction or resulted from random molecular interaction, EfD values
were measured over a range of acceptor to donor ratios, wherein the
combined concentration of plasmids encoding for donor and acceptor
was held constant. Fig. 7A shows EfD values obtained for wild-type 5-
HT1A receptors plotted against the [At] / [Dt] ratio. As a negative
control we used co-transfections of non-interacting cytosolic CFP and
YFP proteins. EfD values obtained for cytosolic CFP and YFP and the
corresponding [At] / [Dt] ratio were fitted according to Eq. (6).
Evaluation of the fit quality clearly shows that data obtained from
the co-transfected cytosolic CFP/YFP (R2=0.37) cannot be properly
characterized by a model assuming specific oligomerization. This
demonstrates that detected FRET resulted from non-specific, random
interactions. Using this as a negative control for oligomerization, we
analyzed the data collected for the cells co-transfected with 5-HT1A-
CFP and 5-HT1A-YFP receptors. In this case, we found that EfD values
were substantially higher (Fig. 7A), and Eq. (6) provides a very good fit
quality of EfD data (R2=0.90). Furthermore, in a proper fit to the
proposed model, experimentally measured EfD value at a donor/
acceptor ratio of 1:1 should represent half of the asymptotic value for
EfD. In the case of receptor we found that the EfD values at a ratio of 1:1
was approximately 0.12, which corresponds to the obtained asymp-
totic value for the fit of approximately EfD=0.24 (Fig. 7A). In contrast,
the EfD value measured for co-transfected CFP and YFP at a ratio of 1:1
was equal to 0.025, which is a clear underestimate when compared to
the fitted curve (Fig. 7A). Similar results were also obtained after
analysis of EfA values (Fig. S1) and for cells co-transfected with Mut-
CFP/WT-YFP and Mut- CFP/Mut-YFP combinations (data not shown).

Interaction specificity may also be analyzed by plotting energy
transfer efficiency as a function of expression level at fixed donor/
acceptor ratio [43]. In the case of random interaction, the energy
transfer between two fluorophores is linearly dependent on expres-
sion level and will diminish to zero at very low concentration of
fluorophores. In the case of completely non-random interaction, the
apparent FRET efficiency should be independent on concentration
with an EfD intercept greater than zero. Fig. 7B shows EfD values
measured in cells co-expressing WT-CFP/WT-YFP receptors and
plotted as a function of estimated total concentration. The analysis
revealed that a linear fit resulted in an EfD intercept at 0.13, confirming
non-random interactions between the receptors. The fit also shows a
slightly positive slope suggesting that in addition to the specific
interactions, there is some contribution of random interaction to the
measured EfD. Finally, two different types of analysis applied here
confirm the specificity of 5-HT1A receptor oligomerization.

Another important aspect which may influence the specificity of
receptor–receptor interaction is changes of 5-HT1A receptor/Gi-
protein ratio in transfected cells. Although the expression level of 5-
HT1A receptor in our experiments was similar to that obtained in
hippocampus, the ratio between receptor and Gi-protein becomes
significantly shifted from the “norm” value. This can lead to artificial
oligomerization resulting from the competition of overabundant
receptor for the limited copies of G-protein. To exclude such scenario,
we analyzed oligomerization in the cells co-expressing wild-type or
oscopy was used to visualize 5-HT1A-CFP and 5-HT1A-YFP co-expressed in the plasma
and unmixed to CFP and YFP components using the Zeiss LSM510-Meta detector. The
before and after bleaching are shown. The box 1 corresponds to the bleached regions of
(B) Enlargement of the box 1 is shown on the left. The 12-bit grayscale intensities of YFP
(C) Enlargement of the box 2 is shown on the left. The 12-bit grayscale intensities of YFP
ight). (D) Apparent FRET efficiency EfD was calculated according to Eqs. (1) and (2). Data
sing cytosolic CFP and YFP were used as a negative control. A statistically significant
- CFP/Mut-YFP or Mut-CFP/WT-YFP is indicated (⁎⁎, pb0.01). Mut, acylation-deficient 5-



Fig. 7. Specificity of 5-HT1A receptor oligomerization. (A) Dependency of apparent FRET
efficiency EfD on donor/acceptor ratio. 5-HT1A receptors labeled either with CFP [41] or
YFP [41] were co-expressed at different ratios in N1E-115 cells, wherein the combined
concentration of donors and acceptors was held constant. N1E-115 cells co-expressing
cytosolic CFP and YFP were used as a control for random interactions. Emission spectra
were obtained and analyzed as described in Material and Methods section. EfD values
were calculated according to Eq. (3). and plotted against the [At] / [Dt] ratio computed
with Eq. (5). Data points were fitted according to Eq. (6). (B) Dependency of apparent
FRET efficiency EfD on expression level at fixed donor to acceptor ratio. The EfD values
were measured in cells co-expressing WT-CFP/WT-YFP receptors and plotted as a
function of estimated total concentration. The data were collected from samples with a
[At] to [Dt] ratio ranging between 8 and 10, and EfD values were calculated according to
Eq. (3).

Fig. 6. Spectral analysis of living N1E-115 cells co-expressing CFP- and YFP-tagged 5-HT1A
receptors. Fluorescence emission spectra of N1E-115 cells transfectedwithwild-type (A) or
acylation-deficient (B) 5-HT1A receptors are shown. In both cases cells were transfected
eitherwith only CFP- (dashed line) or onlywith YFP-tagged (dotted line) receptors orwere
co-transfectedwith bothYFP- and CFP-tagged receptors (solid line). Emission spectrawere
collected at excitationwavelengthλexc=420 nm. Spectrawere normalized to that obtained
in cells transfected HA-tagged 5HT1A receptor. The data shown are representative of at
least 3 independent experiments.
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acylation-deficient receptor together with Gαi2, Gβ1 and Gγ2
subunits. Measurements of apparent FRET efficiency revealed that
EfD values obtained after overexpression of Gi-protein fit perfectly to
the curve shown in Fig. 7A (data not shown).

3.6. Quantitative analysis of oligomerization dynamics in living cells

To investigate the effect of receptor activation on 5-HT1A
oligomerization, we applied a novel FRET approach named lux-FRET
(linear unmixing of FRET spectral components) [41], which allows
quantitative measurements of oligomerization during receptor sti-
mulation with agonist. To evaluate time- and activation-correlated
changes in receptor interaction, apparent FRET efficiencies measured
from N1E-115 cells co-expressing 5-HT1A fusion proteins were
monitored over time before and during incubation with agonist and/
or antagonist. Cells were co-transfected with donor (5-HT1A-CFP) and
acceptor (5-HT1A-YFP) proteins at a 1:1 ratio and emission spectra
were recorded every 2 min using excitation wavelengths of 458 nm
and 488 nm. For each time point, two quantities were determined, i.e.
the product of characteristic FRET efficiency (E) and the fraction of
donor participating in complexes (fD) as well as the corresponding
quantity describing the product of E and the fraction of acceptor
participating in complexes (fA). Both values characterize the stoichio-
metry of fluorescently labeled receptors and are used to verify the data
obtained.

In the absence of receptor stimulation we obtained only slight
fluctuations of EfD around the initial values in cells expressing wild-
type 5-HT1A receptors. After treatment with serotonin at 10 µM, the
values of EfD continuously decreased reaching a plateau after 10 min
(Fig. 8A). In contrast, cells treated with PBS, did not show any
significant changes of EfD values (Fig. 8A). The treatment of co-
transfected cells with the selective 5-HT1A receptor antagonist,
WAY100635 at 1 µM concentration blocked the agonist-mediated
decrease of EfD (Fig. 8A). In order to quantify agonist-mediated
changes of EfD, we chose a representative time point before adding
serotonin (5 min before) and compared its value with that of a
representative time point after agonist stimulation (15 min after 5-HT
application) (Fig. 8B). This comparison revealed that stimulation of the
5-HT1A receptor with agonist results in a significant decrease of the
EfD value by 12%±2.1%.

We also analyzed, whether the localization of receptor in lipid rafts
may influence agonist-mediated decrease of EfD. Fig. 8B demonstrates
that depletion of cholesterol by treatment of cells expressing wild-



Fig. 8. Time course of FRET efficiency EfD upon receptor stimulation. The graphs on the left show the time course of EfD values calculated according to Eq. (1) for N1E-115 cells co-
expressing WT-CFP/WT-YFP (A), Mut-CFP/Mut/YFP (C) or Mut-CFP/WT-YFP (E) receptors as FRET pairs. The cells were treated at zero time point with serotonin (10 µm), PBS, with
serotonin together with WAY (1 µM) or with serotonin together with MßCD. All time-course values were normalized to unity at start for better visualization of differences.
Data points represent mean±S.E.M. (n=6). The graph on the right shows percentage of changes of apparent FRET efficiency (EfD) obtained 5min before and 15min after treatment for
WT-CFP/WT-YFP (B), Mut- CFP/Mut-YFP (D) or Mut-CFP/WT-YFP (F). A statistically significant difference between values is noted (⁎⁎, pb0.01).
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type receptor with methyl-β-cyclodextrin abolished this effect,
suggesting importance of lipid rafts for the agonist-mediated changes
in receptor oligomerization.

Analysis of the time course of the apparent FRET efficiency in cells
expressing acylation-deficient 5-HT1A receptor demonstrated that
non-palmitoylated receptors do not produce any significant changes
of EfD values after agonist stimulation (Fig. 8C and D). When the wild-
type receptor was co-expressed with the acylation-deficient receptor,
the agonist-mediated decrease of EfD value was also completely
abolished, demonstrating the dominant-negative effect of non-
palmitoylated receptor on the dynamic changes in receptor–receptor
interactions (Fig. 8E and F).

We also performed a time-course analysis of EfA values for the
wild-type and the acylation-deficient mutant. Similar to the results
obtained for EfD, we observed a significant decrease of EfA values by
15.2%±2.9% after adding 10 µM serotonin to the cells expressing wild-
type 5-HT1A receptors (Fig. S2). The EfA values obtained for the
acylation-deficient receptor mutant as well as for the combination of
wild-type and non-palmitoylated mutant were not affected by the
agonist treatment (Fig. S2).
Fig. 9. Agonist stimulation does not change distribution of the 5-HT1A receptor in the d
expressing the wild-type 5-HT1A receptor fused to GFP were treated with 5-HT (10 µ
ultracentrifugated in an Optiprep™ density gradient. The gradient fractions were analyzed by
was used as the non-DRM marker. (B) Relative amount of the 5-HT1A receptors, Gαi and tr
density fractions (20%+30%) is shown. Quantitative analysis of the protein distributionwas p
fractions. Data points represent mean±S.E.M. (n=3).
3.7. Agonist stimulation and lipid rafts localization of the 5-HT1A
receptor

Results obtained in the present study suggested the importance of
cholesterol-enriched membrane subdomains for receptor oligomeriza-
tion (Figs. 3 and 8). Therefore, we compared themembrane distribution
of thewild-type receptor before and after stimulationwith agonist using
density gradient centrifugation. N1E-115 cells expressing the 5-HT1A
receptorwere solubilized in cold Triton X-100 (TX-100) and subjected to
centrifugation in Optiprep™ density gradient in order to isolate
detergent- insoluble membrane fractions. Immunoblot analysis of
gradient fractions revealed that 38%±7.8% (n=3) of the wild-type 5-
HT1A receptor floated with the detergent-resistant low-density frac-
tions along with the αi3-subunit of heterotrimeric G-protein (Fig. 9).
After treatment of cells with 10 µM of 5-HT, the yield of receptor in the
light Triton X-100-resistant membrane fraction was not significantly
changed and was found to be 34.6%±4.9% (n=3; Fig. 9). Chemical cross-
linking performed before the TX-100 treatment and gradient centrifu-
gation revealed that amount of receptor oligomers in lipid rafts was not
changed upon agonist stimulation (data not shown). It is also notable
etergent-resistant membrane fractions (DRMs). (A) The neuroblastoma N1E-115 cells
M) or PBS (control). Cells were lysed with cold 1% Triton-X100 and lysates were
immunoblotting. Gαi proteinwas used as DRMmarker while transferrin receptor (TfR)
ansferrin receptor (TfR) in the high density fractions (35%+40%) and the buoyant low-
erformed by densitometry and calculated in percentage of the total protein amount in all
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that distribution of the Gαi3 protein and the transferrin receptor, which
were used as rafts and non-rafts markers, respectively, did not change
after agonist treatment (Fig. 9).

4. Discussion

During the last decade, a growing body of biochemical and
biophysical evidence indicated that GPCRs can form oligomeric
complexes. Although the existence of GPCR oligomers has now become
generally accepted, their physiological incidence innative tissues aswell
as functional importance are still a matter of debate and in some cases
remain even controversial [49,50]. It has been clearly documented that
homo- and hetero-oligomerization of class C GPCRs such as metabo-
tropic glutamate aswell asGABABB receptors is essential for the receptor
trafficking to the cell surface, for ligand-induced receptor activation as
well as for G-protein coupling [51,52]. In contrast, no general consensus
is yet achieved for the functional importance of oligomerization for class
AGPCRs. In the case of opioid receptor, heterodimers of kappa and delta
receptors have been shown to form a distinct functional signaling unit in
vivo [53]. Recent data on the heterodimerization between β1A and β2A
receptors also demonstrated importance of oligomerization for the
inhibition of agonist-promoted internalization of the β2A and its ability
to activate the ERK1/2MAPK signaling pathway [54]. On the other hand,
β2Aand rhodopsin receptors,which are often used as amodel GPCRs for
the homooligomerization analysis, can efficiently activate their G-
proteins in monomeric conformation [55]. Similarly, oligomerization of
the neurotensin NTS1 receptor is not required for G-protein activation,
although it seems to alter themode of the receptor-G protein interaction
[56]. These findings show that receptor oligomerization plays differing
functional roles at different receptor-G-protein interfaces, suggesting
that there is no common function applicable to all GPCRs.

In the present study we verified the oligomerization state of the 5-
HT1A receptor and also analyzed its oligomerization dynamics upon
the agonist stimulation by using classical biochemical methods and
different FRET-based approaches. In addition, we investigated the
possible interplay between palmitoylation and oligomerization of the
5-HT1A receptor. A co-immunoprecipitation assay performed in
neuroblastoma N1E-115 cells expressing receptor constructs contain-
ing different epitope tags revealed the presence of immunoreactive 5-
HT1A receptors only in co-transfected cells and not in individually
transfected cells mixed before cell lysis. This strongly suggests that the
5-HT1A receptor forms homo-oligomers. Homooligomerization of 5-
HT1A receptors has been also previously reported for recombinant 5-
HT1A receptor expressed in HEK-293 cells [57], suggesting that
oligomerization is intrinsic to the 5-HT1A itself. In addition, oligomer-
ization experiments using a plasma membrane impermeable cross-
linker BM[PEO]3 applied to intact cells showed that the predominant
receptor species on the plasma membrane are homodimers.

Biochemical methods used in this study represent the classical
approaches used for the detection of GPCR oligomerization. However,
these methods require solubilization and concentration of the
membrane proteins, which could possibly result in artificial aggrega-
tion of receptors [58]. In addition, these techniques do not allow an
analysis of GPCR oligomerization dynamics in living cells. To overcome
these limitations and to analyze the oligomerization behaviour of the
5-HT1A receptor in living cells, we applied different FRET-based
approaches including the acceptor-photobleaching method [59], the
fluorescence lifetime-based FRET measurement as well as a novel lux-
FRET approach [41].

4.1. Verification of oligomerization specificity by a novel FRET-based
approach

In addition to biochemical methods, we analyzed 5-HT1A receptor
oligomerization by FRET using receptors fused to enhanced CFP or YFP
as donor and acceptor, respectively. It is notable that CFP- and YFP-
fused receptors demonstrated subcellular distribution, pharmacolo-
gical profiles and signaling properties similar to that of their non-
fluorescent wild-type or acylation-deficient counterparts [40] indicat-
ing that these fluorescent constructs can be used in functional studies.

By using both acceptor-photobleaching and the fluorescence
lifetime FRET methods, we measured FRET between CFP- and YFP-
tagged 5-HT1A receptors expressed at the surface of N1E-115 cells. A
valid interpretation of FRET data is, however, not trivial because the
FRET signal depends on several factors such as interaction affinity and
stoichiometry of fusion proteins, their folding probability and their
mutual orientation, [60,61]. Moreover, positive FRET signals may
result not only from specific protein interactions including receptor
oligomerization, but also from randomly distributed proteins, as may
be the case after overexpression of donors and acceptors [62]. Based
on critical analysis of BRET data, it has been recently considered that
the contribution of non-specific interactions measured by resonance
energy transfer may be even larger than previously thought [43].
Therefore, the analysis of FRET data over different donor to acceptor
ratios and/or over different expression levels have been proposed as
important prerequisite to discriminate between specific versus non-
specific interaction [43].

Hence, using a novel lux-FRETapproach, we obtained and analyzed
apparent FRET efficiency as a function of the acceptor to donor ratio,
[At] / [Dt] with the aim to distinguish between these two cases (i.e.
specific vs. non-specific interaction). By measuring the emission
spectra at two different excitation wavelengths and applying linear
unmixing, lux-FRET method allowed us to determine the stoichio-
metry of interacting fluorescently labeled receptors. Artifacts like
bleed-through and cross-talk, which occur by using the filter channel
based methods, do not affect such analysis. Moreover, this approach is
more easily implemented than methods proposed previously [63,64].
Our data demonstrated that apparent FRET values obtained for
different receptor combinations agreed with the model prediction
for non-random interaction. In addition, the analysis of the energy
transfer efficiency as a function of expression level at fixed donor to
acceptor ratio demonstrates that FRET obtained for 5-HT1A receptors
was largely independent of expression level. This observation further
confirms specificity of oligomerization in case of the 5-HT1A receptor.

Further evidence for the specificity of 5-HT1A receptor oligomer-
ization was obtained from the analysis of recently published data on
receptor pharmacology [32]. The Hill coefficient value calculated for
HA-tagged 5-HT1A receptor was found to be 0.50±0.17, which
indicates negative cooperativity. According to the theory [65], the
Hill coefficient value in negatively cooperating systems can be used to
estimate the minimal number of receptor subunits in complex, and
the Hill slope of 0.5 indicates that 5-HT1A exists as a dimer or higher-
order oligomer.

4.2. Regulation of oligomerization by agonist; role of lipid rafts and
receptor palmitoylation

In several biophysical studies investigating the effect of agonists on
receptor oligomerization, changes in the resonance energy transfer
were obtained after receptor stimulation [66]. This has often been
interpreted as an agonist-induced change in oligomerization state.
Since FRET efficiency highly depends on the relative distance and
orientation between the donor and acceptor, such agonist- mediated
changes in energy transfer may also reflect alterations in the pre-
existing receptor conformation [67]. In the majority of studies,
addition of agonist resulted in an increase of the FRET/BRET signal.
However, agonist-dependent reduction of the signal has been
reported for four GPCRs including cholecystokinin, neuropeptide Y4,
thyrotropin TSH and somatostatin SSTR2 receptors [68–71]. Based on
different tag combinations and positions (cholecystokinin receptor),
on the FRAP technique (TSH receptor) as well as on biochemical
analysis (neuropeptide Y4 and SSTR2 receptors), authors proposed
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agonist-induced dissociation of oligomers rather than a conforma-
tional change as a possible reason for the decrease of the energy
transfer efficiency. In the present study, we analyzed the time course
of the apparent FRET efficiency for 5-HT1A receptor oligomerization
and found that receptor stimulation with agonist leads to significant
decrease of the FRET signal. On the other hand, the amount of 5-HT1A
oligomers was not affected upon agonist stimulation as revealed by
co-immunoprecipitation and cross-linking analysis. This result was in
contrast to examples mentioned above and suggests that ligand-
mediated decrease of FRET obtained for the 5-HT1A receptor does not
arise from the dissociation of oligomers to monomers and is rather
achieved by the conformational changes of pre-existing FRET-positive
complexes to FRET-negative orientations.

A more intriguing finding was the dependence of 5-HT1A
oligomerization efficiency and dynamics on the palmitoylation state
of receptors. The results of the biophysical studies revealed that the
removal of palmitoylation sites resulted in increased FRET efficiency.
On the other hand, agonist-mediated decrease of FRET signal obtained
for the wild-type receptor was completely abolished in cells
expressing of acylation-deficient mutants. Combined with the fact
that agonist stimulation does not change the amount of oligomers
composed by non-palmitoylated receptor, this suggests that lack of
palmitoylation does not directly affect the extent of oligomerization
rather influences orientation of C-terminal CFP and YFP leading to
increased FRET efficiency.

What could be a possible mechanism bywhich palmitoylationmay
influence oligomerization and functions of the 5-HT1A receptor? We
have recently shown that a significant fraction of the 5-HT1A receptor
resides in lipid rafts, while the non-acylated mutants (which also do
not couple to Gi-proteins) are excluded from these membrane
microdomains [32,40]. Based on these data in combination with
results presented here, we propose the existence of two populations
of 5-HT1A receptors. One population consists of receptor oligomers
localized outside of lipid rafts. This population seems to be partly
“non-functional” in terms of efficient signaling and needs raft
localization to coincide with raft-resided Gi-proteins [72,73]. Another
receptor population resides in lipid rafts and plays an important role
in an efficient receptor-mediated signaling. This is also in line with the
current view on the functional role of lipid rafts. Lipid rafts and
caveolae have been shown to be involved in the regulation of various
cell functions including the intracellular sorting of proteins and lipids
[74], the establishment of cell polarity [74] and the fine tuning of
signaling processes [75]. The detection of numerous signaling proteins
within the detergent-resistant membrane fractions led to the
assumption that lipid rafts represent scaffold platforms which
facilitate signal transduction by spatially recruiting signaling compo-
nents and by preventing an inappropriate cross-talk between path-
ways [76,77]. Several members of the serotonin receptor family,
including 5-HT2A and 5-HT7 receptors have also been shown to be
highly enriched in lipid rafts and caveolae [78,79], suggesting general
importans of this membrane subdomains for the serotonergic
signaling. Similar enrichment in lipid rafts/caveolae has also been
reported for other member of GPCR superfamily, including GnRH,
endothelin ETB and ETA and chemokine CCR5 receptors [80–83].

In the case of 5-HT1A receptor, stimulation with agonist results in
changing FRET-positive to FRET-negative orientation of oligomers
residing in lipid rafts. This may originate from amore tight association
of palmitoylated receptor C-terminus with raft-specific lipids [84,85]
or from increased coupling of receptor with raft-resided Gαi proteins,
particularly upon agonist stimulation. Both raft as well as non-raft
populations seem to exist in dynamic equilibrium, which is important
for the fine tuning of receptor-mediated signaling. In this model
palmitoylation does not directly modulate oligomerization of 5-HT1A,
but rather serves as a targeting signal responsible for the retention of
the 5-HT1A receptor in defined membrane microdomains. The fact
that the FRET efficiency for the oligomers composed by wild-type
receptors was lower than that for non-functional, acylation-deficient
mutants is also in line with this model. Combined with the fact that
cholesterol depletion resulted in the significant increase of FRET signal
only in case of wild-type receptor, these data suggest that receptors
residing in lipid rafts consist of oligomers in FRET-negative conforma-
tion. In addition, abolishing the agonist-mediated changes in the FRET
efficiency obtained in cells expressing wild-type oligomers after
cholesterol depletion further confirms the importance of lipid rafts in
5-HT1A-mediated signaling. Further experimentation will be neces-
sary to validate this model and elucidate molecular mechanisms
regulating interplay between palmitoylation and oligomerization.
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