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1. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

Since the very beginning the notion of complexity of finite objects was considered
an algorithmic counterpart to the notion of Shannon entropy. Kolmogorov's paper
[4] was called ``Three Approaches to the Quantitative Definition of Information'';
Shannon entropy and algorithmic complexity were among these approaches. Let us
recall the main definitions.

Let : be a random variable with a finite range a1 , ..., an . Let pi be the probability
of the event :=ai . Then the Shannon entropy of : is defined as

H(:)=&:
i

pi log p i .

(All logarithms in the paper are base 2 logarithms.) Using the convexity of the func-
tion p [ & p log p, one can prove that the Shannon entropy of a random variable
does not exceed the logarithm of the cardinality of its range (and is equal to it only
for uniformly distributed variables).

Let ; be another variable with a finite range b1 , ..., bk defined on the same
probabilistic space as : is. We define H(: | ;=bj) in the same way as H(:); the only
difference is that pi is replaced by the conditional probability Pr[:=ai | ;=bj].
Then we define the conditional entropy as

H(: | ;)=:
j

Pr[;=bj] } H(: | ;=bj).

It is easy to check that

H((:, ;) )=H(;)+H(: | ;).

Using the convexity of the logarithm function, one can prove that

H(: | ;)�H(:)

and that H(: | ;)=H(:) if and only if : and ; are independent. This inequality may
be rewritten as

H((:, ;) )�H(:)+H(;).

The mutual information in : and ; is defined as

I(: : ;)=H(;)&H(; | :)=H(:)+H(;)&H((:, ;) ).

The mutual information I(: : ;) is always nonnegative and is equal to 0 if and only
if : and ; are independent. The conditional version of mutual information is defined
as

I(: : ; | #)=H(: | #)+H(; | #)&H((:, ;) | #)
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and is always nonnegative, too. Indeed, for any possible value ci of # we have

H(: | #=ci)+H(; | #=ci)&H((:, ;) | #=ci)�0.

Multiplying this inequality by Pr[#=ci] and summing over i, we get the desired
inequality. All these notions have counterparts in Kolmogorov complexity theory.

The Kolmogorov complexity of a binary string a is defined as the minimal length
of a program that generates a. There are different refinements of this idea (called
simple Kolmogorov complexity, monotone complexity, prefix complexity, decision
complexity; see [6, 7]). However, for our purposes the difference is not important,
since all these complexity measures differ only by O(log m) where m is the length
of a. Therefore, in the following we denote Kolmogorov complexity of a binary
string a by K(a) not specifying which version we use, and all our equalities and
inequalities are valid up to an O(log m) term, where m is the total length of all strings
involved.

The conditional complexity K(a | b) is defined as the minimal length of a program
that produces a having b as input; one can prove that

K(b | a)=K((a, b) )&K(a),

(see [9]). Here (a, b) denotes the encoding of the pair a, b by a binary string
(different computable encodings lead to complexities that differ only by O(log m)).
As always, the O(log m) additive term is omitted; the precise meaning of this
equality is that there exist constants p, q such that

K(b | a)�K((a, b) )&K(a)+ p log( |a|+ |b| )+q,

K((a, b) )&K(a)�K(b | a)+ p log( |a|+|b| )+q

for all binary strings a, b. The mutual information is defined as

I(a : b)=K(b)&K(b | a).

An equivalent (up to an O(log m) term) symmetric definition is

I(a : b)=K(a)+K(b)&K((a, b) ).

As in the Shannon case, the mutual information is always nonnegative (up to
O(log m) term). The conditional version of mutual information is defined as

I(a : b | c)=K(a | c)+K(b | c)&K((a, b) | c).

The inequality

I(a b | c)�0

is valid up to a logarithmic term; that is, I(a : b | c)�&O(log( |a|+ |b|+ |c| )). This
inequality plays an important role in the following.
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2. INEQUALITIES

We have already mentioned several inequalities for Shannon entropy and
Kolmogorov complexity. Some others are known. For example, consider the
inequality

2K((a, b, c) )�K((a, b) )+K((a, c) )+K((b, c) ). (1)

This inequality is equivalent in a sense to the following geometric fact: if V is the
volume of the set A/R3 and Sxy , Sxz , and Syz are areas of its three projections (to
the coordinate planes Oxy, Oxz, and Oyz), then

V 2�Sxy } Sxz } Syz

(see [2]).
It turns out that the inequality (1), as well as all other known inequalities for

Kolmogorov complexity, is a corollary of the inequalities of type

I(P : Q | R)�0 (2)

used together with the equalities

K(Q | P)=K((P, Q) )&K(P), (3)

I(P : Q | R)=K(P | R)+K(Q | R)&K((P, Q) | R) (4)

that express mutual information and conditional complexity in terms of uncondi-
tional complexity. (Here P, Q, R are some tuples (possibly empty) of binary
strings.)

Indeed, (1) is a consequence of the equality

2K((a, b, c) )=K((a, b) )+K((a, c) )+K((b, x) )

&I(a : b | c)&I((a, b): c) (5)

and the inequalities I(a : b | c)�0 and I((a, b): c)�0. To check the equality (5) we
express all the quantities in terms of unconditional complexity. For example, we
replace I(a : b | c) by

K(a | c)+K(b | c)&K((a, b) | c)

=K((a, c) )&K(c)+K((b, c) )&K(c)&K((a, b, c) )+K(c)

=K((a, c) )+K((b, c) )&K((a, b, c) )&K(c),

and so on.
Let us consider another example. Assume that a and b are two binary strings. Let

us prove that the mutual information I(a : b) is an upper bound for complexity
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K(x) of any string x which has negligible conditional complexity K(x | a) and
K(x | b). Indeed, the following inequality holds for any three strings a, b, x:

K(x)�K(x | a)+K(x | b)+I(a : b). (6)

This inequality is a consequence of the equality

K(x)=I(a : b)+K(x | a)+K(x | b)&K(x | (a, b) )&I(a : b | x)

and the inequalities K(x | (a, b) )�0 and I(a : b | x)�0.
The inequalities of type (2) can be written in different equivalent forms:

I(P : Q | R)�0

K(P | R)+K(Q | R)�K((P, Q) | R)

K(P | R)�K(P | (Q, R) )

K((P, R) )+K((Q, R) )�K((P, Q, R) )+K(R).

Here P, Q, and R are strings or tuples of strings; (P, R) denotes the union of
tuples P and R (it does not matter whether we list strings that are in P & R twice
or not, the complexity does not change), etc.

The latter form does not involve conditional complexity. In general, we may
always replace conditional complexity and mutual information by linear combina-
tions of unconditional complexity using (3) and (4). Therefore, in the following we
consider inequalities containing only unconditional complexity. The same applies to
inequalities for Shannon entropy.

We call the inequalities

K((P, R) )+K((Q, R) )�K((P, Q, R) )+K(R) (7)

(for any tuples P, Q, R) basic inequalities. Let us mention two special cases of
inequalities (7). If P=Q, we get an inequality

K((P, R) )+K((P, R) )�K((P, R) )+K(R)

or

K((P, R) )�K(R)

(the bigger tuple has a bigger complexity) or

K(P | R)�0

(conditional complexity is nonnegative).
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Now we see that the inequality K(x | (a, b) )�0 in our second example is also
a corollary of the basic inequalities (7). Another special case is that if R is empty,
we get the inequality

K(P)+K(Q)�K((P, Q) )

or

K(P)�K(P | Q).

These inequalities imply that all unconditional complexities are nonnegative, too.
(Strictly speaking, inequalities imply that complexities are nonnegative up to a
logarithmic term, i.e., K(P)�&O(log n) where n is the length of P.)

All inequalities mentioned in this section have counterparts that involve Shannon
entropy instead of Kolmogorov complexity. We would like to know if (1) the same
linear inequalities are true for Shannon entropy and Kolmogorov complexity and
if (2) all linear inequalities valid for Shannon entropy (or Kolmogorov complexity)
are consequences of basic inequalities. In the next section, we obtain a positive
answer to the first question (for the general case) and a positive answer to the
second question in the case when at most three random variables (binary strings)
are involved.

3. LINEAR INEQUALITIES

Consider n variables a1 , ..., an whose values are binary strings (if we consider
Kolmogorov complexity) or random variables with finite range (for Shannon
entropy). There are 2n&1 nonempty subsets of the set of variables. Therefore, there
are 2n&1 tuples whose complexity (or entropy) may appear in the inequality. We
consider only linear inequalities. Each inequality has 2n&1 coefficients *W indexed
by nonempty subsets W of the set [1, 2, ..., n]; for example, for n=3 the general
form is

*1K(a1)+*2K(a2)+*3K(a3)

+*1, 2K((a1 , a2) )+*1, 3K((a1 , a3) )+*2, 3 K((a2 , a3) )

+*1, 2, 3K((a1 , a2 , a3) )�0.

Here a1 , a2 , a3 are binary strings; for Shannon entropy they should be replaced by
random variables, and K should be replaced by H. For arbitrary n the general form
of a linear inequality is

:
W

*W K(aW)�0, (8)

where the sum is over all nonempty subsets W/[1, 2, ..., n], and aW stands for the
tuple formed by all ai for i # W.
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Now we consider the set of inequalities that are valid (up to an O(log m) term,
as usual) for all binary strings. This set is a convex cone in R2n&1. We want to com-
pare this cone with a similar cone for Shannon entropies (of tuples of random
variables with finite range).

Theorem 1. Any linear inequality that is true for Kolmogorov complexity is also
true for Shannon entropy, and vice versa.

Proof [Kolmogorov � Shannon]. Let an inequality of the form (8) be true for
Kolmogorov complexity (up to an O(log m) term).

Let :=(:1 , ..., :n) be a tuple of random variables. We have to prove that

:
W

*W H(:W)�0,

where the sum is taken over all nonempty subsets W/[1, 2, ..., n] and :W stands
for the tuple formed by all :i for i # W.

Consider a sequence of random variables

:1 = (:1
1 , ..., :1

n) ,

:2 = (:2
1 , ..., :2

n) ,

} } }

:N = (:N
1 , ..., :N

n )

that form the rows of an N_n random matrix. We assume that :1, :2, ... are inde-
pendent and have the same distribution as :.

Now consider the columns of this matrix. We may assume without loss of
generality that all values of :1 , :2 , ... are binary strings of some fixed length (the
same for all variables). Then the columns of this matrix may be considered as
strings whose length is N times bigger. We denote them by

: (N)
1 = :1

1 :2
1 } } } :N

1

} } }

: (N)
n = :1

n:2
n } } } :N

n .

It turns out that the complexities of the columns : (N)
1 , : (N)

2 , ... are proportional to
the entropies H(:1), H(:2), ... More precisely, with a probability close to 1, these
complexities are close to NH(:1), NH(:2), .... The same is true for the pairs, triples,
etc. So we can apply inequality (8) to get its analogue for Shannon entropy.

More formally, for all possible values of the random tuple

:(N)=(: (N)
1 , ..., : (N)

n )
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we have

:
W

*WK((:(N))W)�&c log(N)&c,

for some c that does not depend on N. Now we divide this inequality by N and get

:
W

*W
K((:(N))W)

N
�&O(log N�N).

The right-hand side has limit 0 and N � �. It remains to use the following connec-
tion between Shannon entropy and Kolmogorov complexity.

Lemma 1 ([9], Eq. (5.18)). Let { be a random variable whose values are finite
binary strings of a fixed length. Consider the sequence {1 , {2 , ... of independent ran-
dom variables, where each {i has the same distribution as {. Then

lim
N � �

K({1 } } } {N)
N

=H({)

with probability 1 (i.e., for almost all elements of the sample space where all {i are
defined).

We fix W and apply this lemma to {=:W. It is easy to see that K((:(N))W) is
equal (up to a O(1) term) to K({1 } } } {N). Therefore,

lim
N � �

K((:(N))W)
N

= lim
N � �

K({1 } } } {N)
N

=H(:W)

with probability 1. Hence the inequality �W *W H(:W)�0 is true.
[Shannon � Kolmogorov] Now we have to prove the converse: if the inequality

:
W

*W H(:W)�0

is true for any random variables :1 , ..., :n , then the inequality

:
W

*W K(AW)�&O(log |A| )

is true for any tuple of binary strings A=(a1 , a2 , ..., an) , where AW is a tuple
formed by all ai such that i # W and |A|=|a1|+|a2 |+ } } } +|an | is the total length
of A. (Please note that the constant hidden in O(log |A| ) may depend on n.)

To prove this inequality, for a given A we want to construct random variables
:1 , ..., :n whose entropies are close to the complexities of a1 , a2 , ..., an . We also
want the entropies of all pairs, triples, etc. to be close to the complexities of the
corresponding pairs, triples, etc. of binary strings.
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The following construction achieves this goal. Assume that a tuple A=(a1 ,
a2 , ..., an) is fixed. Consider the set of all tuples B=(b1 , b2 , ..., bn) that satisfy the
following conditions: First, the complexity of each bi does not exceed the com-
plexity of the corresponding ai . Moreover, the same is true for all pairs, triples, etc.
Finally, the same should be true for all conditional complexities. Formally, we con-
sider the set B formed by all tuples B=(b1 , b2 , ..., bn) such that K(BV | BW)�
K(AV | AW) for any two subsets V, W/[1, 2, ..., n]. (Here the inequality is under-
stood literally, without any hidden constants or log-terms.)

The set B contains at least one point, A. This set has a simple description as an
enumerable set: to generate its elements it is enough to know all conditional com-
plexities K(AV | AW), i.e., several integers not exceeding |A|. So the complexity of
the program that enumerates B is O(log |A| ). (The constant hidden in the O-nota-
tion depends on n and grows exponentially, but we assume n to be fixed.) And any
set X having a simple description (as an enumerable set) and having a point x with
high complexity should have many elements. Indeed, any point in X may be iden-
tified by its number (in the enumeration order) and the enumeration program, so
K(x) cannot be high if |X| is small.

More formally, the following lemma gives the lower bound for the cardinality of
B (denoted by |B| ):

Lemma 2. log |B|�K((a1 , ..., an) )&O(log |A| ).

Proof. Consider the program that prints (a1 , ..., an) and works as follows. It
enumerates M; a tuple B=(b1 , ..., bn) is included in the enumeration after we have
found that its complexity is in the required range (looking for all programs that
print B and finding a short one); and, moreover, the conditional complexities are
in the required ranges. The program counts the elements of B that were already
generated; when z elements are found, it prints the z-th element and terminates.
Here z is the number of A (it is a compiled-in constant in the program). The length
of this program does not exceed log z+O(log |A| )+O(1), since the program uses z,
conditional complexities (the total amount of information is O(log |A| )), and a finite
amount of other information. It remains to use that z�|B|. K

Now let :=(:1 , :2 , ..., :n) be a random variable uniformly distributed in B. We
know that

:
W

*W H(:W)�0,

so we get the desired inequality for the complexities of a1 , ..., an , their pairs, triples,
etc., if we show that their complexities are close to the corresponding entropies of
:1 , ..., :n , their pairs, triples, etc. Thus, we have to prove that H(:W) is close to
K(AW) for any nonempty W/[1, 2, ..., n].

Let us fix a set W/[1, 2, ..., n]. The random variable :W is close to the random
variable that is uniformly distributed in the set having 2K(AW) elements. Indeed, the
cardinality of the set

[bW | b # B]
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that is the projection of B onto W-coordinates is at most 2K(AW)+O(1), since all the
elements of this projection have a complexity not exceeding K(AW). Therefore :W

has no more than 2K (AW)+O(1) values and H(:W)�K(AW)+O(1).
To prove the converse inequality, let us note that if Pr[!=x]�p for all possible

values x of a random variable !, then H(!)�&log p. So it suffices to show that
Pr[:W=BW]�2&K(AW)+O(log |A| ) for any B=(b1 , ..., bn) in B. We have

Pr[:W=BW]=|[C # B | C W=BW]|�|B|.

The lower bound for the denominator is provided by the lemma we proved. The
upper bound for the numerator can be obtained as follows. Let cW be the comple-
ment of W:

cW=[1, 2, ..., n]"W.

All the points C counted in the numerator have the same W-projection CW and
differ only by cW-projections C cW. By definition, the complexity K(C cW | CW)
for C # B does not exceed K(AcW | AW). Therefore, the number of those C is
limited; the logarithm of this number does not exceed

K(AcW | AW)=K(A)&K(AW)+O(log |A| ).

Combining this bound with the lower bound for B, we get the desired inequality
for probabilities. K

Our next result is about the inequalities for ranks of finite subsets of linear
spaces.

Assume that a linear space L over a finite field or over R is given. Let :1 , ..., :n

be finite subsets of L. For any subset A/[:1 , ..., :n] consider the rank of the
union of all : # A. Now consider all linear inequalities that are valid for ranks of
these subsets for all :1 , ..., :n /L. For example, the inequality of type (7) for ranks
says that

rk(:1 _ :3)+rk(:2 _ :3)�rk(:1 _ :2 _ :3)+rk(:3).

This inequality can be rewritten in terms of dimensions of subspaces: any set X of
vectors generates a subspace, and the dimension of this subspace is rk(X). Replacing
each :i by a linear subspace Ai generated by :i , we get

dim(A1+A3)+dim(A2+A3)�dim(A1+A2+A3)+dim(A3).

It is easy to verify that this inequality is true for any linear subspaces of any linear
space. So, all basic inequalities are true when K( } ) is replaced by rk( } ) and strings
are replaced by vectors. Moreover, the following is true.

Theorem 2. Any linear inequality valid for Shannon entropy is valid for ranks
(dimensions) in any linear space over any finite field or over R.
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Proof. Assume that A1 , ..., An are subspaces of a finite-dimensional linear space
L over a field F. It suffices to construct random variables :1 , ..., :n such that H(:i)
is proportional to dim Ai , H((:i , :j) ) is proportional to dim(Ai+Aj), ..., and
H((:1 , :2 , ..., :n) ) is proportional to dim(A1+A2+ } } } +An).

If F is finite, the construction is straightforward. Consider a random linear func-
tional :: L � F. For any subspace A/L consider the restriction :|A . This is a
random variable with |F |dim A values (here |F | is the number of elements in F ); all
values have equal probabilities, so H(:|A)=dim A } log |F |. If Ai and Aj are two
subspaces, the pair (:|Ai

, :| Aj
) is equivalent to (and has the same distribution as)

:|Ai+Aj
. Therefore, the entropy of the pair (:|Ai

, :|Aj
) is equal to dim(Ai+Aj) }

log |F |; the same is true for triples, etc.
Now consider the case F=R. We may assume that L is a Euclidean space.

Let : be a random variable, uniformly distributed in the unit disk in L. For any
subspace A, consider a random variable :A that is the orthogonal projection of :
onto A. This random variable has an infinite domain, so we need to digitize it. For
any =>0 and for any subspace A/L we divide A into equal cubes of dimension
dim A and size =_ } } } _=. By :A, = we denote the variable whose value is the cube
that contains :A . Let us prove that

H(:A, =)=log(1�=) } dim A+O(1)

(when = � 0).
If = is small enough the number kA, = of the cubes which are possible values of :A

satisfies the inequality

kA, =�C(1�=)dim A,

where C is a constant slightly bigger than the volume of the unit disk in A. There-
fore,

H(:A, =)�log(1�=) } dim A+O(1).

On the other hand, for any fixed cube the probability of :A getting into it is at most

c=dim A,

where c is a constant equal to the ratio of volumes of unit disks in Euclidean spaces
of dimensions dim L&dim A and dim L.

Hence,

H(:A, =)�log(1�=) } dim A+O(1).

The projection :A1+A2
is equivalent to (:A1

, :A2
). This is not true for =-versions;

the random variables :A1+A2, = and (:A1, = , :A2, =) do not determine each other com-
pletely. However, for any fixed value of one of these variables there exist only a
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finite number of possible values of the other; therefore, the conditional entropies are
limited and the entropies differ by O(1).

Now we let = � 0 and conclude that any inequality that is valid for Shannon
entropy is valid for ranks. K

Therefore, we have a sequence of inclusions: (basic inequalities (7) and their non-
negative linear combinations)/(inequalities valid for Kolmogorov complexity)=
(inequalities valid for Shannon entropy)/(inequalities valid for ranks).

For n=1, 2, 3 all these sets are equal, as the following theorem shows.

Theorem 3. For n=1, 2, 3 any inequality valid for ranks (dimensions) is a conse-
quence (linear combination with nonnegative coefficients) of basic inequalities (7).

Proof. The cases n=1, 2 are trivial. Let us consider the case n=3.
Consider the following nine basic inequalities:

dim(B+C)�dim(A+B+C)

dim(A+C)�dim(A+B+C)

dim(A+B)�dim(A+B+C)

dim(C)+dim(A+B+C)�dim(A+C)+dim(B+C)

dim(B)+dim(A+B+C)�dim(A+B)+dim(B+C) (9)

dim(A)+dim(A+B+C)�dim(A+B)+dim(A+B)+dim(A+C)

dim(A+B)�dim(A)+dim(B)

dim(A+C)�dim(A)+dim(C)

dim(B+C)�dim(B)+dim(C).

We claim that any valid linear inequality for dim A, dim B, dim C, dim(A+B),
dim(A+C), dim(B+C), dim(A+B+C) is a nonnegative linear combination of
these nine inequalities (for instance, so are all other basic inequalities).

The inequalities (9) determine a convex cone C in the space R7 where the
variables are

dim(A), dim(b), dim(C), dim(A+B), dim(B+C), dim(A+C), dim(A+B+C).

Any three subspaces A, B, C determine a point inside C. Let us denote the set of
all points in C obtained in this way by C$. To prove Theorem 3 it is enough to show
that any point in C can be represented as a nonnegative linear combination of
points from C$. It is enough to consider eight points in C$ shown in Fig. 1.

Here e1 , e2 , e3 are three pairwise independent vectors in 2-dimensional space;
[u] stands for the linear subspace generated by u. By 0 we denote the 0-dimen-
sional subspace.
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FIG. 1. Eight points in C$.

Let us show that any point in C can be represented as a nonnegative linear com-
bination of those eight points. To prove this it is convenient to consider another
coordinate system in R7. We denote new coordinates by

[a], [b], [c], [ab], [ac], [bc], [abc].

The relations between new and old variables are

dim(A)=[a]+[ab]+[ac]+[abc],

dim(A+B)=[a]+[b]+[ab]+[ac]+[bc]+[abc],

dim(A+B+C)=[a]+[b]+[c]+[ab]+[bc]+[ac]+[abc]

and similar formulae obtained by permutations of letters (see Fig. 2). Or, equiv-
alently,

[a] = rk(A+B+C)&rk(B+C),

[ab] = rk(A+C)+rk(B+C)&rk(A+B+C)&rk(C),

[abc] = rk(A+B+C)&rk(A+B)&rk(A+C)&rk(B+C)

+rk(A)+rk(B)+rk(C),

} } } .
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FIG. 2. Old and new variables.

The inequalities (9) rewritten in new variables are

[a]�0, [b]�0, [c]�0,

[ab]�0, [ac]�0, [bc]�0, (10)

[ab]+[abc]�0, [ac]+[abc]�0, [bc]+[abc]�0.

(Please note that [abc] may be negative.) In new variables, the eight specified
points in C$ are written as shown in Fig. 3. Thus, we have to show that any vector
satisfying the inequalities (10) is a nonnegative linear combination of eight vectors
represented in Fig. 3 (we denote them by v1 �v8).

Let v=([a], [b], [c], [ab], ..., [abc]) be a vector in C. If [abc] is nonnegative,
we can represent v as a nonnegative linear combination of v1�v7 . Otherwise (when
[abc] is negative) we can represent v as a nonnegative linear combination of v1�v8

as follows:

FIG. 3. Eight points in C$ in new coordinates.
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v=[a] v1+[b] v2+[c] v3+([ab]+[abc]) v4

+([ac]+[abc]) v5+([bc]+[abc]) v6&[abc] } v8 .

Theorem 3 is proven. K

4. INGLETON'S INEQUALITY

As we have seen in the preceding section, for n=3 the same inequalities are true for
Shannon entropy, Kolmogorov complexity, and ranks, namely, the nonnegative linear
combinations of basic inequalities. However, for n=4 the situation becomes more com-
plicated: there is an inequality that is true for ranks but not for Shannon entropy.

Ingleton [3] established the following necessary condition for a matroid with
ground set S and rank function r to be representable over a field F: for any subsets
A, B, C, D of S there must hold

r(A)+r(B)+r(C _ D)+r(A _ B _ C)+r(A _ B _ C)

�r(A _ B)+r(A _ C)+r(A _ D)+r(B _ C)+r(B _ D). (11)

In terms of dimensions of subspaces Ingleton's inequality says that

dim A+dim B+dim(C+D)+dim(A+B+C)+dim(A+B+D)

�dim(A+B)+dim(A+C)+dim(B+C)+dim(A+D)+dim(B+D); (12)

It can be rewritten as

I(A : B)�I(A : B | C)+I(A : B | D)+I(C: D), (13)

where I(A : B) sands for dim(A)+dim(B)&dim(A+B), I(A : B | C) stands for
dim(B+C)+dim(A+C)&dim(A+B+C)&dim(C), etc.

To prove inequality (13) one may interpret I(A : B) as the dimension of intersec-
tion A & B and I(A : B | C) as the dimension of the intersection of A�C and B�C
(i.e., A and B factorized over C). See also Section 5 where Ingleton's inequality is
proved as a consequence of Theorem 8.

The following example shows that Ingleton's inequality is not always true for
Shannon entropy.

Theorem 4. There exist four random variables :, ;, #, $ such that

I(: : ;)>0

I(: : ; | #)=0

I(: : ; | $)=0

I(# : $)=0.

In other terms, # and $ are independent, and : and ; are independent for any
fixed value of # and for any fixed value of $; however, : and ; are dependent.
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FIG. 4. Conditional probability distributions for (:, ;).

Proof of Theorem 4. Let the range of all four variables :, ;, #, $ be [0, 1]. Let
# and $ be independent and uniformly distributed.

Any possible distribution of :, ; is determined by four nonnegative reals whose
sum is 1 (i.e., by the probabilities of all four combinations), so the distribution can
be considered as a point in a three-dimensional simplex S in R4. For any of the four
possible values of (#, $) we have a point in S (whose coordinates are conditional
probabilities). We denote these points by P00 , P01 , P10 , and P11 . What are the con-
ditions we need to satisfy? Let Q be the subset of S that corresponds to independent
random variables; Q is a quadratic curve (the independence condition means that
the determinant of the probabilities matrix is equal to zero). The conditions
I(: : ; | #)=0 and I(: : ; | $)=0 mean that midpoints of segments P00P01 , P10P11 ,
P00 P10 , P01P11 belong to Q. The inequality I(: : ;)>0 means that the point
(P00+P01+P10+P11)�4 does not belong to Q. In other terms, we are looking for
a parallelogram (formed by midpoints) whose vertices lie on a quadratic curve but
whose center does not, so almost any example will work. Figure 4 shows one of
them.

It is easy to check that all four conditional distributions (for conditions #=0,
#=1, $=0, $=1) satisfy the independence requirement. However, the uncondi-
tional distribution for (:, ;) is

0 1

0 5�16 3�16(14)

1 3�16 5�16

so : and ; are dependent.
A simpler example, though not so symmetric, can be obtained as follows. Let #

and $ be independent random variables with range [0, 1] and uniform distribution,
:=#(1&$) and ;=$(1&#). For any fixed value of # or $ one of the variables :
and ; is equal to 0; therefore, they are independent. However, : and ; are not
(unconditionally) independent, since each of them can be equal to 1, but they
cannot be equal to 1 simultaneously. K

We see that for n=4 not all the inequalities valid for ranks are valid for
entropies, so the rank and entropy cases should be considered separately. For ranks
we have the complete answer as follows.

Theorem 5. For n=4, all inequalities that are valid for ranks are consequences
( positive linear combinations) of basic inequalities and Ingleton-type inequalities (i.e.,
inequalities obtained from Ingleton's inequality by permutations of variables).
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FIG. 5. The generators of C(+)
4 .

Proof. The system F (+)
4 of all basic inequalities that involve at most four

variables, together with the six Ingleton-type inequalities, determines a convex
polyhedral cone C(+)

4 /R15.
It is not hard to show that this cone is generated by (i.e., is the convex hull of) the 35

points shown in Fig. 5. Since it requires a great deal of (not very interesting) computa-
tion, we refrain from demonstrating this here. However, it can be done by hand (using,
for instance, Fourier�Motzkin elimination) or with the help of appropriate software.

To prove the theorem, it remains to show that for each generator \i there exists
a quadruple of subspaces A, B, C, D that represents this point:

Represented generator of C (+)
4

subspace \1 \2 \3 \4 \5 \6 \7 \8 \9 \10

A [e1] [e1] [e1] [e1] 0 [e1] [e1] [e1] 0 0
B [e1] [e1] [e1] 0 [e1] [e1] 0 0 [e1] [e1]
C [e1] [e1] 0 [e1] [e1] 0 [e1] 0 [e1] 0
D [e1] 0 [e1] [e1] [e1] 0 0 [e1] 0 [e1]

Represented generator of C (+)
4

subspace \11 \12 \13 \14 \15 \16 \17 \18 \19 \20

A 0 [e1] 0 0 0 [e1] [e1] [e1] 0 [e1]
B 0 0 [e1] 0 0 [e2] [e2] 0 [e1] [e2]
C [e1] 0 0 [e1] 0 [e3] 0 [e2] [e2] [e3]
D [e1] 0 0 0 [e1] 0 [e3] [e3] [e3] [e3]
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Represented generator of C (+)
4

subspace \21 \22 \23 \24 \25 \26 \27 \28 \29

A [e1] [e1] [e1] [e1] [e1] [e1] [ j1] [e1 , e2] [e1]
B [e2] [e2] [e2] [e2] [e1] [e2] [ j2] [e2] [e1 , e2]
C [e3] [e2] [e3] [e1] [e2] [e3] [ j3] [e3] [e3]
D [e2] [e3] [e1] [e3] [e3] [e4] [ j4] [e4] [e4]

Represented generator of C (+)
4

subspace \30 \31 \32 \33 \34 \35

A [e1] [e1] [ j1 , j2] [ j1] [ j1] [ j1]
B [e2] [e2] [ j3] [ j2 , j3] [ j2] [ j2]
C [e1 , e3] [e3] [ j4] [ j4] [ j3 , j4] [ j3]
D [e4] [e1 , e4] [ j5] [ j5] [ j5] [ j4 , j5]

It is easy to check that the above indicated quadruples of subspaces meet all
necessary requirements. Here e1 , e2 , e3 , e4 are four pairwise independent vectors in
2-dimensional space; j1 , j2 , j3 , j4 , j5 are five vectors in 3-dimensional space such
that any three of them are independent; [u, ...] stand for the linear subspace
generated by u, ... . By 0 we denote the 0-dimensional subspace. K

For Shannon entropy (Kolmogorov complexity) we do not know the complete
answer. The only thing we know is the following conditional result.

Theorem 6. For n=4: if for any =>0 there exist random variables :, ;, #, $, and
a real k such that

H(:)rH(;)rH(#)rH($)r2k,

H((:, ;) )rH((:, #) )rH((:, $) )rH((;, #) )rH((;, $) )r3k,

H((#, $) )r4k,

H((;, #, $) )rH((:, #, $) )rH((:, ;, $) )rH((:, ;, #) )r4k,

H((:, ;, #, $) )r4k,

where xr y means that |x& y|�k=, then all the linear inequalities that are valid for
Shannon entropy are consequences ( positive linear combinations) of the basic
inequalities.

Proof. The system F4 of all basic inequalities that involve at most four variables
determines a convex polyhedral cone C4 /R15, and we have C (+)

4 /C4 . Moreover,
it can be shown that the extreme points \1 , ..., \35 of C (+)

4 together with the six
points
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\36 =(2, 2, 2, 2, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4)

\37=(2, 2, 2, 2, 3, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4)

\38=(2, 2, 2, 2, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4)

\39=(2, 2, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4)

\40=(2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4)

\41=(2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4)

generate the cone C4 . As in the case of C (+)
4 , it requires a rather long computation

that can be performed using standard analytic�geometric methods or with the help
of appropriate software.

Now, for every extreme vector \i we would like to find a quadruple of random
variables whose entropies' vector is proportional to \i . For the generators \1 , ..., \35

this can be easily done. Using the method developed in the proof of Theorem 2,
construct for each i=1, ..., 35 the required quadruple of random variables from the
respective quadruple of subspaces A, B, C, D that represents \i .

However, one can prove that for \36 , ..., \41 such a quadruple does not exist. Our
assumption says that for every = there is a quadruple of random variables that gives
=-approximation to the required point.

From here follows the assertion of the theorem. Indeed, assume that there exists
a linear inequality that is valid for random variables but is not a positive linear
combination of the basic inequalities. Then, at least one of the extreme points \i of
C4 does not satisfy this inequality. Consequently, for some =, no point in the
=-neighbourhood of \i is represented by a quadruple of random variables��a con-
tradiction. K

We may also ask which inequalities are valid for ranks in arbitrary matroids (see
[8]). In this case the extreme vector mentioned in Theorem 6 is represented by a
Va� mos matroid (see [8]), so we get the following

Theorem 7. For n=4, all the inequalities that are valid for ranks in arbitrary
matroids are consequences ( positive linear combinations) of basic inequalities.

5. ONE MORE INEQUALITY FOR SHANNON ENTROPY

In this section we present one more inequality for entropy and show how it can
be used to prove Ingleton's inequality and the Ga� cs�Ko� rner result on common
information.

Theorem 8. For any random variables !, :, ;, #, and $,

H(!)�2H(! | :)+2H(! | ;)+I(: : ; | #)+I(: : ; | $)+I(# : $). (15)
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Proof. This inequality is a nonnegative linear combination of basic inequalities.
However, we present a proof that reflects the intuitive meaning of the inequality.

The intuitive meaning of (15) can be explained as follows. As we have seen,
Ingleton's inequality

I(: : ;)�I(: : ; | #)+I(: : ; | $)+I(# : $)

is not always true for entropies. However, (15) implies that if a random variable !
has zero complexities H(! | :) and H(! | ;), then

H(!)�I(: : ; | #)+I(: : ; | $)+I(# : $).

The inequality (15) can be proved as follows. As we know from Section 1,
inequality (6),

H(!)�H(! | #)+H(! | $)+I(# : $).

Now we use the conditional versions of this inequality,

H(! | #)�H(! | (:, #) )+H(! | (;, #) )+I(: : ; | #)

H(! | $)�H(! | (:, $) )+H(! | (;, $) )+I(: : ; | $).

Recalling that H(! | (:, #) )�H(! | :), H(! | (:, $) )�H(! | :), etc., and combining
the last three inequalities, we get the inequality of Theorem 8. K

We present two corollaries of inequality (15). The first is a generalization of
Ingleton's inequality. We formulate this corollary for Shannon entropy; a similar
result is true for Kolmogorov complexity.

Let us call the random variable ! common information for random variables :
and ; if

H(! | :)=0

H(! | ;)=0

H(!)=I(: : ;).

Theorem 9. Let :, ;, #, and $ be random variables. If there exists a random
variable that is common information for : and ;, then Ingleton's inequality holds:

I(: : ;)�I(: : ; | #)+I(: : ; | $)+I(# : $).

The proof is easy: just apply Theorem 8 to the random variable ! that is the
common information of : and ;.
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The inequality of Theorem 8 is valid for dimensions (as a consequence of basic
inequalities). That is, for any linear spaces X, A, B, C, D, we have

dim(X)�2 dim(X | A)+2 dim(X | B)+I(A : B | C)+I(A : B | D)+I(C : D).

Let X=A & B. Since dim(X)=I(A : B), dim(X | A)=dim(X | B)=0, we obtain
Ingleton's inequality.

Now we understand why Ingleton's inequality is true for ranks in linear spaces
(though it is not true for general matroids, Shannon entropy, or Kolmogorov com-
plexity): There is an intersection operation on subspaces that extracts the common
information!

The second corollary is an easy proof of one of the Ga� cs�Ko� rner [1] results on
common information.

Let a and b be two binary strings. We look for the binary string x that represents
the common information in a and b in the following sense (cf. the definition for the
case of Shannon entropy above): K(x | a) and K(x | b) are small and K(x) is close
to I(a : b). (As we know from Section 1, Eq. (6), K(x) cannot exceed I(a : b)
significantly if K(x | a) and K(x | b) are small.)

Now we can read the Kolmogorov complexity version of the inequality of
Theorem 8 in the following way: If for given a and b one can find c and d such that
I(a : b | c), I(a : b | d ), and I(c : d ) are small, then any x with small K(x | a) and
K(x | b) has small complexity.

However, I(a : b) may still be significant, and in this case we get an example of
two strings with significant mutual information but with no common information.
This can be done as follows.

Consider two coins (random variables) : and ; used in the proof of Theorem 4;
see (14). Each coin has two equiprobable outcomes; and : and ; are dependent:

Pr[;=:]=5�8, Pr[;{:]=3�8.

Theorem 10. Consider the infinite sequence of independent trials (:i , ;i) having
this distribution. Let AN be the initial segment :1 , :2 } } } :N and let BN be the initial
segment ;1 ;2 } } } ;N . Then with probability 1 we have

I(AN : BN)=cN+o(N),

where c=I(: : ;)>0. At the same time the following is true with probability 1: For
any sequence XN of binary strings of length O(N) such that K(XN | AN)=o(N) and
K(XN | BN)=o(N), the complexity K(XN) is small: K(XN)=o(N).

Proof. Indeed, the first statement (I(AN : BN)=cN+o(N)) follows from
Lemma 1 above. To validate the second claim, consider four random variables
:, ;, #, $ used in the proof of Theorem 4 and the initial segments 1N=#1 } } } #N

and 2N=$1 } } } $N of independent trials (each trial involves all four variables).
Lemma 1 implies that I(AN : BN | 1N)=o(N) and I(AN : BN | 2N)=o(N) as well as
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I(1N : 2N)=o(N). Inequality 15 (for Kolmogorov complexities) guarantees now
that

H(xN)�2H(XN | AN)+2H(XN | BN)

+I(AN : BN | 1N)+I(AN : BN | 2N)+I(1N : 2N)

=2o(N)+2o(N)+o(N)=o(N).

Theorem 10 is proved. K

This theorem is a very special case of the Ga� cs�Ko� rner results [1]; they prove
the claim of Theorem 10 for any two random variables : and ; such that there is
no random variable # such that H(#)>0 while H(# | :)=H(# | ;)=0. However,
their proof seems to be more technical.

CONCLUSIONS AND OPEN QUESTIONS

The obtained results are summarized in the following picture: In the general case
the class of the basic inequalities (7) and their nonnegative linear combinations
is a subclass of the class of all inequalities valid for Kolmogorov complexity or
Shannon entropy, which is a subclass of the class of all inequalities valid for ranks
(left side of Fig. 6). The latter two classes are separated by Ingleton's inequality,
and, hence, the inclusion is strict. Therefore, the area marked by * is nonempty.

For n=1, 2, 3 all these classes coincide (right side of Fig. 6).
Many questions are still unsolved. Here are some of them:

v Is it true that all inequalities valid for Shannon entropy or Kolmogorov
complexity are consequences of basic inequalities? (See the right part of Fig. 6
where the respective area is labeled with a question mark.)

v Is it true that all inequalities valid for ranks are consequences of basic
inequalities and Ingleton-type inequalities?

v What inequalities are true for ranks in arbitrary matroids? (For n=4 the
answer is given by Theorem 7.)

FIG. 6. True linear inequalities.
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v The proof of the Ga� cs�Ko� rner result given above works only for a very
special : and ;; we cannot use it directly even if 3�8 and 5�8 are replaced, say, by
1�8 and 7�8. (Some extension of our technique allows this case to be covered
however.) It is possible to get a simple proof of Ga� cs�Ko� rner's result for a general
case?
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