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Abstract

We find necessary density conditions for Marcinkiewicz–Zygmund inequalities and interpolation for
spaces of spherical harmonics in S

d with respect to the Lp norm. Moreover, we prove that there are no
complete interpolation families for p �= 2.
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1. Introduction

Let S
d be the unit sphere in R

d+1. We consider the Banach spaces Lp(Sd) of measurable
functions defined in S

d such that

‖f ‖p
p =

∫
Sd

∣∣f (z)
∣∣p dσ(z) < ∞,

if 1 � p < ∞, and

‖f ‖∞ = sup
z∈Sd

∣∣f (z)
∣∣ < ∞,

when p = ∞. Here dσ stands for the Lebesgue surface measure in S
d .
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Now we recall some facts about spherical harmonics, see [25]. For any integer � � 0, let H�

be the space of spherical harmonics of degree � in S
d . Then H� is the restriction to S

d of the
homogeneous harmonic polynomials of degree � in R

d+1. For any integer L � 0 we denote the
space of spherical harmonics of degree not exceeding L by ΠL = span

⋃L
�=0 H�. One can see by

using Stirling’s formula2 that dimΠL = πL ∼ Ld, when L → ∞.

For any degree L we take mL points in S
d

Z(L) = {
zLj ∈ S

d : 1 � j � mL

}
, L � 0,

and assume that mL → ∞ as L → ∞. This yields a triangular family of points Z = {Z(L)}L�0
in S

d .

Definition 1.1. Let Z = {Z(L)}L�0 be a triangular family with mL � πL for all L. We call Z an
Lp-Marcinkiewicz–Zygmund family, denoted by Lp-MZ, if there exists a constant Cp > 0 such
that for all L � 0 and Q ∈ ΠL,

C−1
p

πL

mL∑
j=1

∣∣Q(zLj )
∣∣p �

∫
Sd

∣∣Q(ω)
∣∣p dσ(ω) � Cp

πL

mL∑
j=1

∣∣Q(zLj )
∣∣p, (1)

if 1 � p < ∞, and

sup
ω∈Sd

∣∣Q(ω)
∣∣ � C sup

j=1,...,mL

∣∣Q(zLj )
∣∣,

when p = ∞.

Then the Lp-norm in S
d of a polynomial of degree L is comparable to the discrete version

given by the weighted �p-norm of its restriction to Z(L). In fact we observe that Z is L2-MZ if
and only if, for all L � 0, the normalized reproducing kernels of ΠL centered at the points Z(L)

form a frame in ΠL, with frame bounds independent of L.

A concept that can be seen as dual of MZ is that of interpolation.

Definition 1.2. Let Z = {Z(L)}L�0 be a triangular family with mL � πL for all L. We say that
Z is Lp-interpolating, if for all family {cLj }L�0, 1�j�mL

of values such that

sup
L�0

1

πL

mL∑
j=0

|cLj |p < ∞,

there exists a polynomial Q ∈ ΠL such that Q(zLj ) = cLj , 1 � j � mL.

Roughly speaking in order to recover the Lp-norm of a polynomial of degree L from the
evaluation at the points in Z(L) we need a sufficiently big number of points in Z(L). On the other
hand, it is possible to have a spherical harmonic of degree at most L attaining some prescribed

2 Here and in what follows ∼ means that the ratio of the two sides is bounded from above and from below by two
positive constants.
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values on Z(L) only when Z(L) is sparse. When we have both MZ and interpolation the points
of the family can be thought as placed in some sort of equilibrium.

Definition 1.3. Let Z = {Z(L)}L�0 be a triangular family. We say that Z is an Lp-complete
interpolating family if it is both Lp-MZ and Lp-interpolating.

We denote by d(u, v) = arccos〈u,v〉 the geodesic distance between u,v ∈ S
d , where 〈u,v〉

is the scalar product in R
d+1. The ball B(u, θ) ⊂ S

d is, therefore, the spherical cap of radius
0 < θ < π and center u ∈ S

d .

A first measure of sparsity is the uniform separation between points of the same generation.
This leads to the following definition.

Definition 1.4. A triangular family Z is uniformly separated if there is a positive number ε > 0
such that

d(zLj , zLk) � ε

L + 1
, if j �= k,

for all L � 0.

The precise formulation of the sparsity requirement is expressed in terms of the following
Beurling type densities [18].

Definition 1.5. For Z a triangular family in S
d we define the upper and lower density respectively

as

D−(Z) = lim inf
α→∞ lim inf

L→∞
minz∈Sd #(Z(L) ∩ B(z, α

L+1 ))

αd
,

D+(Z) = lim sup
α→∞

lim sup
L→∞

maxz∈Sd #(Z(L) ∩ B(z, α
L+1 ))

αd
.

Now we can formulate our main result which we will prove in Section 6.

Theorem 1.6. Let 1 � p � ∞. If Z is an Lp-Marcinkiewicz–Zygmund family there exists a
uniformly separated Lp-MZ family Z̃ ⊂ Z such that

D−(Z̃) � 2

d!d√
π


(d+1
2 )


(d
2 )

.

If Z is an Lp-interpolating family then it is uniformly separated and

D+(Z) � 2

d!d√
π


(d+1
2 )


(d
2 )

.
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This result together with Theorem 4.10, that shows that an interpolating family has to be
uniformly separated, proves that Lp-complete interpolation families must have

D−(Z) = D+(Z) = 2

d!d√
π


(d+1
2 )


(d
2 )

.

In order to stress the relationship between our problem and the problems of sampling and
interpolation in the Paley–Wiener space, PWp, of Lp-functions bandlimited to the unit ball, we
recall some results. A reference for material on sampling and interpolation is [23].

As in the Paley–Wiener case, in the study of Lp-MZ and interpolation families much more
is known in d = 1 than in d > 1. The main reason for such gap is that for d = 1 the family
given by the roots of the unity is both MZ and interpolating. We recall the classical result due to
A. Zygmund and J. Marcinkiewicz: there exists a constant Cp > 0 such that for any q polynomial
of degree smaller or equal than n

C−1
p

n

n∑
j=0

∣∣q(ωn,j )
∣∣p �

2π∫
0

∣∣q(
eiθ

)∣∣pdθ � Cp

n

n∑
j=0

∣∣q(ωn,j )
∣∣p,

where ωn,j are the (n + 1)th roots of the unity, see [13] or [27, Theorem 7.5, Chapter X].
In the case d > 1 that we deal with in this paper we do not have an even distribution of

points analogous to the roots of unity, although a lot of schemes have been proposed. We refer
to N.J.A. Sloane [24] for further information. In fact, in contrast with the situation for d = 1 we
will prove the following result about complete interpolating families.

Theorem 1.7. For d > 1, there are no Lp-complete interpolating families if p �= 2.

The one-dimensional case was treated by A. Zygmund and J. Marcinkiewicz and can be seen
as the S

1 analogue to the Whittaker–Kotelnikov–Shannon theorem. Moreover, there is a complete
characterization for Lp-complete interpolating families in terms of Muckenhoupt’s condition,
due to C.K. Chui, X.-C. Shen and L. Zhong [3,4] analogous to that of B.S. Pavlov, Y.I. Lyubarskii
and K. Seip [12,19], in the case of the Paley–Wiener space.

Also the classical results, for d = 1, about sampling and interpolation for Bernstein’s space
given by A. Beurling [1] using densities and weak limits have their counterparts for Lp-MZ
and interpolation families in the recent results given in [18]. Indeed, it is shown in [18] that
if a triangular family is Lp-MZ then its lower density has to be greater or equal to 1/2π, and
that the converse holds for families with densities greater to 1/2π. The corresponding result for
interpolation can be proved without a lot of effort.

Finally, for d = 1, one can consider the space of holomorphic polynomials in one variable as
a model space and obtain a full characterization of L2-MZ families in terms of the invertibility
of certain Toeplitz operators, see [23, Theorem 8, p. 88].

In the Paley–Wiener case and for greater dimensions there are classical necessary conditions
for sampling and interpolation in terms of densities due to H. Landau [10]. It can be easily seen
that these densities cannot characterize sampling and interpolation sequences. In previous work
[14] we have shown how to obtain sampling and interpolation sequences with densities arbitrarily
close to the critical one (Nyquist density) for functions bandlimited in the Euclidean space. In
particular this applies to functions in PWp.
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Concerning the question of sufficient conditions in S
d , in 2000 H.N. Mhaskar, F.J. Nar-

cowich and J.D. Ward [16] using the doubling weights construction due to G. Mastroianni and
V. Totik [15] obtained a sufficient condition for being Lp-MZ in terms of a mesh norm condition
that is far from being optimal.

Our main result, Theorem 1.6, can be seen as the analogue of the Paley–Wiener space result
due to H. Landau [10]. Instead of using the approach provided by J. Ramanathan T. Steger [20],
that was adapted in [18] to the S1 case, we are going to adapt the classical operator theoretic
proof given by H. Landau. We deal with the case d > 1 but the result for d = 1 follows also with
minor changes.

We prove also that for p �= 2 there are no triangular families that are both Lp-MZ and inter-
polating. Indeed, if such a family exists one can construct a bounded multiplier that turns out
to be the multiplier for the ball. Finally the well-known result of C. Fefferman [7] brings us the
contradiction.

Up to here we have seen that the knowledge is similar in both spaces. Therefore the Paley–
Wiener case provides us the inspiration but technically the situation is completely different. In
further work we will focus on this relation.

The main technical difficulties in the case d > 1 is that we cannot use the techniques for
holomorphic polynomials used in [18].

The outline of this paper is as follows. In the next section we summarize some well-known
facts about spherical harmonics and Jacobi polynomials.

In Section 3 we calculate the traces of the concentration operator and its square over a spher-
ical cap, which are the main tools in proving the density conditions. Controlling these quantities
we can estimate the number of “big” eigenvalues of the concentration operator, and this quantity
can be thought of as the local dimension of the space of spherical harmonics. Now, to get a MZ
or interpolating family we will need locally to have respectively more or less points than this
local dimension.

In Section 4 we prove several general results concerning MZ and interpolating families. Our
main tool, Lemma 4.2, says that the Lp-norm of a spherical harmonic is equivalent, with con-
stants that do not depend on the degree, to the Lp-norm computed in any other sphere with radius
close to 1. A perturbative argument allows us to restrict ourselves to the case p = 2 with uni-
formly separated family in the proof of our main result, Theorem 1.6. We characterize also in
this section the Carleson families of measures in S

d .

In Section 5 we prove the result about nonexistence of complete interpolating families, Theo-
rem 1.7, using the approach outlined above.

Finally, in Section 6 we prove two technical lemmas that we use to prove the main result.

2. Spherical harmonics

In this section we recall some facts about spherical harmonics and Jacobi polynomials, see
[25,26].

Let Z�
η ∈H� be such that for Q ∈ H�

Q(η) =
∫
d

Q(ξ)Z�
η(ξ) dσ (ξ), ξ ∈ S

d .
S
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We call it the zonal harmonic of degree � with pole η ∈ S
d . Let P(Sd) be the linear span of⋃∞

�=0 H�.

Definition 2.1. A zonal multiplier is a linear map from P(Sd) into C(Sd) which commutes with
rotations.

The following explains why the term multiplier is used in this last definition.

Theorem 2.2. (See [5, Chapter 3].) Let T be a zonal multiplier in S
d . For any � � 0, Y� ∈ H�

are eigenvectors of T corresponding to the same eigenvalue.

Then for T as above there exists a sequence {m�}∞�=0 ⊂ C such that for
∑N

�=0 Y� ∈ P(Sd)

T

(
N∑

�=0

Y�

)
=

N∑
�=0

m�Y�.

Definition 2.3. We say that T is a bounded zonal multiplier if for some 1 � p < ∞ we have
Ap > 0 such that for any Y ∈ P(Sd)

‖T Y‖p � Ap‖Y‖p.

Definition 2.4. We call a function in S
d zonal if it is invariant by the action of SO(d), i.e. if

f ◦ ρ(ω) = f (ω), ω ∈ S
d ,

for ρ ∈ SO(d + 1) such that ρN = N.

Observe that this is equivalent to saying that f is constant on

Lθ = {
ω ∈ S

d : d(ω,N) = θ
}
, 0 � θ � π,

so the value of a zonal function in one point depends only on its geodesic distance to the north
pole.

For functions f,g ∈ L1(Sd) with g zonal we define the convolution product

(g ∗ f )(ω) =
∫
Sd

g�
(〈ω,x〉)f (x)dσ (x),

where g� is the function in [−1,1] defined by

g�
(〈ω,N〉) = g(ω).

From now on we denote dimH� = h�. In the Hilbert space L2(Sd) we can take an orthonormal
basis of H�, that we denote by Y 1

� , . . . , Y
h�

� , which can be chosen in such a way that Y 1
� is the

only vector non-vanishing at the north pole. The spaces H� are orthogonal so taking all these
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basis together (for � = 0, . . . ,L) we get an orthonormal basis for ΠL. Given f ∈ L2(Sd) we
define its Fourier coefficients as the triangular family

f̂ (�, j) =
∫
Sd

f (z)Y
j

� (z) dσ (z),

for � � 0 and 1 � j � h�.

It is well known that the reproducing kernel for ΠL is

KL(u, v) =
L∑

�=0

h�∑
j=1

Y
j
� (u)Y

j
� (v), u, v ∈ S

d ,

and that this expression does not depend on the basis.
Now we will compute the kernel KL. The zonal harmonic of degree � � 0 is the reproducing

kernel in H�, so

Z�
u(v) =

h�∑
j=1

Y
j
� (u)Y

j
� (v) = h�

σ (Sd)
P�

(
d + 1; 〈u,v〉),

where P�(d + 1;x) is the �th Legendre polynomial in d + 1 dimensions [17]. Using the
Christoffel–Darboux formula we get

L∑
�=0

h�

σ (Sd)
P�

(
d + 1; 〈u,v〉) =

(
d + L − 1

L

)
PL(d + 1; 〈u,v〉) − PL+1(d + 1; 〈u,v〉)

σ (Sd)(1 − 〈u,v〉) .

Finally,

PL(d + 1;x) − PL+1(d + 1;x) = (1 − x)

(
L + (d − 2)/2

L

)−1

P
(d/2,(d−2)/2)
L (x),

where P
(α,β)
L stands for the Jacobi polynomial of degree L and index (α,β).

From now on we denote λ = (d − 2)/2. So the reproducing kernel is given by

KL(u, v) = Cd,L

σ (Sd)
P

(1+λ,λ)
L

(〈u,v〉),
where Cd,L = (

d+L−1
L

)
/
(L+ d−2

2
L

)
, and using Stirling’s formula one can see that Cd,L ∼ Ld/2, if

L → ∞.

To estimate the Lp norm of this kernel, all we need is to estimate the Lp-norm of the Jacobi
polynomial. For the case p = ∞ it is well known that

sup
∣∣P (1+λ,λ)

L (t)
∣∣ =

(
L + λ + 1

L

)
∼ Ld/2.
t∈[−1,1]
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For 1 � p < ∞ we can use the estimate in [26, p. 391] and the fact that P
(1+λ,λ)
L (t) =

(−1)LP
(1+λ,λ)
L (−t) to obtain, for any v ∈ S

d

∫
Sd

∣∣P (1+λ,λ)
L

(〈u,v〉)∣∣p dσ(u) ∼

⎧⎪⎪⎨⎪⎪⎩
Ld(

p
2 −1), p > 2d

d+1 ,

L−p/2 logL, p = 2d
d+1 ,

L−p/2, p < 2d
d+1 .

(2)

Finally we recall an estimate that will be used later on [26, p. 198]:

P
(1+λ,λ)
L (cos θ) = k(θ)√

L

{
cos

(
(L + λ + 1)θ + γ

) + O(1)

L sin θ

}
, (3)

if c/L � θ � π − (c/L), where

k(θ) = π−1/2
(

sin
θ

2

)−λ−3/2(
cos

θ

2

)−λ−1/2

, γ = −
(

λ + 3

2

)
π

2
.

3. Concentration operator

In this section we estimate the trace of the concentration operator and its square in order to
obtain an estimate for the eigenvalues of this operator, Proposition 3.1. In the next section we
will show how the cardinality of the set of “big” eigenvalues can be related with the density of
the triangular family when it is MZ or interpolating.

Let KA be the concentration operator over A ⊂ S
d defined for Q ∈ ΠL and given by

KAQ(u) =
∫
A

KL(u, v)Q(v)dv. (4)

This operator results from the composition of the restriction operator

ΠL −→ L2(
S

d
)

Q �−→ χAQ,

with the orthogonal projection

L2(
S

d
) −→ ΠL

f �−→
L∑

�=0

h�∑
j=1

〈
f,Y

j

�

〉
Y

j

� .

The operator KA is self-adjoint and by the spectral theorem its eigenvalues are all real and ΠL

has an orthonormal basis of eigenvectors of KA. We can compute the trace of this operator using
Z�

u(u) = h�/σ (Sd) and the expression of KL as sum of zonal harmonics

tr(KA) =
∫

KL(u,u)dσ(u) = πL

σ(A)

σ(Sd)
.

A
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Now we take A a spherical cap with radius α/(L + 1) and we want to obtain an estimate for
tr(K2

A).

Proposition 3.1. Let A ⊂ S
d be a spherical cap with radius α/(L + 1) and let KA be the con-

centration operator defined in (4). Then

tr(KA) − tr
(
K2

A

) = O
(
αd−1 logα

)
,

when L → ∞, with constants depending only on d.

Remark. The invariance of the zonal harmonic, Z�
ρu(ρv) = Z�

u(v), for ρ ∈ SO(d + 1), gives

tr(K2
A) = tr(K2

ρA).

Proof. Using the reproducing property we have

tr
(
K2

A

) =
∫
A

∫
A

∣∣KL(u, v)
∣∣2

dσ(u)dσ(v)

=
∫
A

∫
Sd

∣∣KL(u, v)
∣∣2

dσ(u)dσ(v) −
∫
A

∫
Sd\A

∣∣KL(u, v)
∣∣2

dσ(u)dσ(v)

=
∫
A

KL(u,u)dσ(u) −
∫
A

∫
Sd\A

∣∣KL(u, v)
∣∣2

dσ(u)dσ(v)

= tr(KA) − C2
d,L

σ (Sd)2

∫
A

∫
Sd\A

∣∣P (1+λ,λ)
L

(〈u,v〉)∣∣2
dσ(u)dσ(v).

In S
d we take the spherical coordinates⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = sin θd . . . sin θ2 sin θ1,

x2 = sin θd . . . sin θ2 cos θ1,
...

xd = sin θd cos θd−1,

xd+1 = cos θd,

where 0 � θk < π if k �= 1 and 0 � θ1 < 2π. Using the rotation invariance we get

∫
Sd\A

∣∣P (1+λ,λ)
L

(〈u,v〉)∣∣2
dσ(u) �

∫
Sd\B(N,d(v,∂A))

∣∣P (1+λ,λ)
L

(〈u,N〉)∣∣2
dσ(u)

= σ
(
S

d−1) π∫ ∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ.
d(v,∂A)
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Let θα = α/(L + 1) be the radius of the spherical cap A and let v ∈ A be fixed. Since we want
an asymptotic result we will take an α � 1 and an even bigger L, in such a way that θα � 1.

Integrating over A we get∫
A

∫
Sd\A

∣∣P (1+λ,λ)
L

(〈u,v〉)∣∣2
dσ(u)dσ(v)

� σ
(
S

d−1)2
θα∫

0

sind−1 η

π∫
θα−η

∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ dη.

Split the innermost integral depending on whether θ > L−1 or θ < L−1. In the first case (recall
that θα > L−1)

Ld

θα∫
0

sind−1 η

π∫
θα−η, θ>L−1

∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ dη

�
α∫

0

ηd−1

π∫
π−m(α,η,L)

∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ dη

+
α∫

0

ηd−1

π−m(α,η,L)∫
m(α,η,L)

∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ dη = A1 + A2,

where m(α,η,L) = max((α − η)/L,1/L).

For part A1 we use that |P (1+λ,λ)
L (x)| = O(Lλ), for −1 � x � 0, [26, p. 168]. Then, for a

fixed α

A1 � L2λ

α∫
0

ηd−1m(α,η,L)ddη = L−2

α∫
0

ηd−1 max(α − η,1)ddη,

which goes to zero as L → ∞.

Using the Szegő estimate (3) we get

A2 �
α∫

0

ηd−1

π−m(α,η,L)∫
m(α,η,L)

k2(θ)

L
sind−1 θ dθ dη =

α∫
0

ηd−1

π−m(α,η,L)∫
m(α,η,L)

2d−1

L sin2 θ
2

dθ dη

∼ 1

L

α∫
0

ηd−1 cot
m(α,η,L)

2
dη � 1

L
cot

1

L

α∫
α−1

ηd−1 dη +
α∫

1

(α − η)d−1 1

L
cot

η

L
dη

� αd−1

L
cot

1

L
+

α∫
(α − η)d−1

η
dη = O

(
αd−1 logα

)
.

1
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For the second part (θ < L−1) we obtain

θα∫
0

sind−1 η

π∫
θα−η, θ<L−1

∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ dη

=
θα∫

θα−L−1

sind−1 η

L−1∫
θα−η

∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ dη.

Observe that η < θα − L−1 would imply θ > L−1. Then

Ld

θα∫
θα−L−1

sind−1 η

L−1∫
θα−η

∣∣P (1+λ,λ)
L (cos θ)

∣∣2 sind−1 θ dθ dη

� L2d

θα∫
θα−L−1

sind−1 η

L−1∫
θα−η

sind−1 θ dθ dη

∼
α∫

α−1

(
1 − (α − t)d

)
td−1 dt = O

(
αd−1).

Taking all the estimates together we get the result. �
4. General results about MZ and interpolating families

In this section we prove some results about MZ and interpolation triangular families. Also we
characterize the families of Carleson measures for the spherical harmonics ΠL on S

d .

The first thing we need to show is that in calculating densities we can restrict ourselves to
uniformly separated families. Following [18] we will compare the norm of a polynomial in S

d

with the norm in a shell sufficiently small containing S
d . This comparison result is harder than in

dimension one [18, Lemma 2] because Hadamard’s three circle principle is no longer available.
For r > 0 we denote Sd

r = rS
d and for a measurable function f defined in Sd

r we have

1

rd

∫
Sd

r

f (ω)dσ(ω) =
∫
Sd

f (rω)dσ(ω).

First we prove a result which we will use later on.

Proposition 4.1. There exists a bounded zonal multiplier T :Lp(Sd) → Lp(Sd) for 1 � p � ∞,

such that ‖T ‖p � C < ∞, with C independent of p and L, and such that range T ⊂ Π3L,

T |ΠL = Id.
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Proof. Let g ∈ L1(Sd) be a zonal function. For any 1 � p � ∞ we have

‖g ∗ f ‖p � ‖g‖1‖f ‖p,

so the operator Tg :P(Sd) → C(Sd) defined as Tg(f ) = g ∗ f is bounded in Lp(Sd), commutes
with rotations and has norm ‖g‖1.

Using Hölder’s inequality it is easy to see that the function

g =
(2L+λ+1

2L

)(
L+λ+1

L

) P
(1+λ,λ)
L

(〈N, ·〉)P (1+λ,λ)
2L

(〈N, ·〉),
has L1-norm independent of L. Also, for f ∈P(Sd)

g ∗ f (ω) =
∫
Sd

g�
(〈ω,x〉)f (x)dσ (x)

=
(2L+λ+1

2L

)(
L+λ+1

L

) ∫
Sd

P
(1+λ,λ)
L

(〈ω,x〉)P (1+λ,λ)
2L

(〈ω,x〉)f (x)dσ (x),

is a polynomial of degree � 3L in ω, hence rangeTg ⊂ Π3L. Finally taking the polynomial
f ∈ ΠL and applying the reproducing property we obtain g ∗f (ω) = f (ω), so Tg|ΠL = Id. �

The next lemma shows that the Lp-norm of a spherical harmonic in the unit sphere is equiva-
lent to the Lp-norm in any other sphere with radius close to 1.

Lemma 4.2. Let p ∈ [1,∞] and Q ∈ ΠL. For any |r − 1| � ρ/L there exists a constant C

depending only on ρ and d such that

C‖Q‖Lp(Sd ) � ‖Q‖Lp(Sd
r ) � C−1‖Q‖Lp(Sd ). (5)

Proof. First we consider the right-hand side inequality. For Q ∈ ΠL, |Q|p is subharmonic, thus,
for 0 < r < 1 and 1 � p < ∞, ‖Q‖Lp(Sd

r ) � ‖Q‖Lp(Sd ) [8, Theorem 2.12]. For p = ∞ the same
inequality follows using the maximum principle.

Using the orthogonal decomposition in spherical harmonics of a harmonic functions in S
d it

can be proved that Hadamard’s three circle principle for harmonic functions holds in L2-norm
[9, Lemma 2.1]. Then, for Q ∈ ΠL, 1 < r < 1 + ρ/L and R � 1, we have

log‖Q‖L2(Sd
r ) �

(
1 − log r

logR

)
log‖Q‖L2(Sd ) + log r

logR
log‖Q‖L2(Sd

R),

and using that ‖Q‖2
L2(Sd

R)
= O(RL) we obtain ‖Q‖L2(Sd

r ) � eρ‖Q‖L2(Sd ).

Let QL ∈ ΠL be such that ‖QL‖∞ = 1 = QL(N) and let 1 −ρ/L < r < 1. Restricting QL to
a great circle of S

d through N we get a trigonometric polynomial of degree at most L. So using
Bernstein’s inequality we get QL(z) � 1 − ε for all z ∈ B(N, ε/L).
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We want to estimate the integral

QL(rN) = 1

σ(Sd)

∫
Sd

1 − r2

|rN − u|d+1
QL(u)dσ(u).

For any 0 < θ < 1 − r we have

1 − r2

1 + r2 − 2r cos θ
� 1

1 − r
,

then the integral over B(N, ε/L) is bounded below by a constant independent of r

1

σ(Sd)

∫
B(N,ε/L)

1 − r2

|rN − u|d+1
QL(u)dσ(u)

= (1 − ε)
σ (Sd−1)

σ (Sd)

ε/L∫
0

[
(1 − r2)2

1 + r2 − 2r cos θ

](d+1)/2 sind−1 θ

(1 − r2)d
dθ

� 1 − ε

(1 − r)d

ε/L∫
0

χ(0,1−r)(θ) sind−1 θ dθ � (1 − ε)

(
ε

ρ

)d

.

Since

(1 − r2)2

1 + r2 − 2r cos θ
= (1 − r2)2

2r(1 − cos θ) + (1 − r)2
� 2(1 − r)2

1 − cos θ
,

then ∫
B(N,ε/L)c

1 − r2

|rN − u|d+1
QL(u)dσ(u) � C(1 − r)

L

ε
� C

ρ

ε
.

We have seen that there exists a constant δd > 0, depending only on d, such that for 0 < ρ < δd,

0 < 1 − ρ/L < r and Q ∈ ΠL ‖Q‖L∞(Sd
r ) � Cρ‖Q‖L∞(Sd ). Now, iterating the process, and

therefore changing the constant, we can obtain the same result for arbitrary ρ > 0 getting for any
0 < 1 − ρ/L < r and Q ∈ ΠL

‖Q‖L∞(Sd
r ) � Cρ‖Q‖L∞(Sd ).

So the dilation operator Tr in ΠL given by Q �→ Q(r·) is such that, if we denote by
|Tr |p the norm of Tr defined in (ΠL,‖ · ‖p), we get |Tr |2 � eρ and |Tr |∞ � Cρ. Being
ΠL finite-dimensional spaces we always have |Tr |p < ∞. By [6, Part 1, Theorem VI.10.10,
p. 524] we know that log|Tr |p is a convex function of 1/p, then for all 2 � p � ∞ we have
|Tr |p � max{Cρ, eρ}.

For 1 < p < 2 we consider the multiplier M = ML given by Proposition 4.1. Then for Q ∈ ΠL

and 1 < p < 2,
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∥∥Tr(Q)
∥∥

Lp(Sd )
= sup

‖R‖q�1

∣∣〈Tr(Q),R
〉∣∣ = sup

‖R‖q�1

∣∣∣∣∣
L∑

k=0

rk〈MLQk,R〉
∣∣∣∣∣

= sup
‖R‖q�1

∣∣∣∣∣
L∑

k=0

rk〈Qk,MLR〉
∣∣∣∣∣ � sup

‖R‖q=1
‖Q‖p

∥∥Tr(MLR)
∥∥

q

� |Tr |q‖Q‖p � Cρ‖Q‖p.

We observe that we cannot use the projection onto ΠL instead of ML in the calculation above
because for p �= 2 it is not bounded by a constant independent of L, see Section 5.

So far we have seen that for 1 < p � ∞, 1 < r < 1 + ρ/L and Q ∈ ΠL

‖Q‖Lp(Sd ) � Cρ‖Q‖Lp(Sd ).

For p = 1 we can just take the limit.
For the left-hand side inequality in (5) with r > 1 we define, given Q ∈ ΠL, the polynomial

Q̃(ω) = Q(rω) and apply the former result. �
Integrating with respect to the radius we get the following analog of [18, Corollary 1].

Corollary 4.3. Let

Cρ,L = {
ω ∈ R

d+1:
∣∣|ω| − 1

∣∣ < ρ/L
}
.

For Q ∈ ΠL and 1 � p � ∞ we have

‖Q‖p

Lp(Sd )
� L‖Q‖p

Lp(Cρ,L,dm),

where the constants depend on ρ and p, but not on the polynomial.

Now we want to prove that a triangular family Z is a finite union of uniformly separated
families if and only if the left-hand inequality in (1) holds. This is the generalization to d � 1 of
[18, Theorem 3] and will be used to show that a MZ family contains a separated family which is
also MZ. The problem in proving this result comes from the fact that there is no analogue of the
Bernstein inequality for spherical harmonics if p �= ∞. Instead of proving our result directly, we
will derive it from the next characterization for Carleson measures on S

d that can be of interest
on their own.

Definition 4.4. Let M = {μL}L�0 a family of measures on S
d and 1 � p < ∞. We say that M

is an Lp-Carleson family for ΠL if there exists a positive constant C such that for any Q ∈ ΠL∫
Sd

∣∣Q(z)
∣∣p dμL(z) � C

∫
Sd

∣∣Q(z)
∣∣p dσ(z).
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Theorem 4.5. Let 1 � p < ∞. The family of measures M = {μL}L�0 on S
d is Lp-Carleson for

ΠL if and only if there exists a C > 0 such that

sup
z∈Sd

μL

(
B

(
z,L−1)) � C

πL

. (6)

Remark. We want to point out that condition (6) is independent of p and that we could take balls
of any other radius α/L for α > 0.

Proof. Let 0 < md be the first extremum of the Bessel function Jd/2 and let ηL be such that
ηLL → md when L → ∞. Now, using Mehler–Heine formula [26, Theorem 8.1.1] we see that
there exist δd > 0 and L0 such that for L � L0 and 0 � η � ηL

1 � L−d/2P
(1+λ,λ)
L (cosη) � L−d/2P

(1+λ,λ)
L (cosηL) � δd > 0.

We argue by contradiction. Suppose that for all n ∈ N there exist Ln and a geodesic ball Bn with
radius md/Ln such that πLnμLn(Bn) > n. Let bn ∈ S

d be the center of Bn and define for ω ∈ S
d

Kn(ω) = P
(1+λ,λ)
Ln

(〈bn,ω〉) ∈ ΠLn.

For any Carleson family of measures M we get

∥∥L
−d/2
n Kn

∥∥p

p
�

∫
Sd

∣∣L−d/2
n Kn(z)

∣∣p dμLn(z) �
∫
Bn

∣∣L−d/2
n Kn(z)

∣∣p dμLn(z)

� δ
p
d μLn(Bn).

Then L
−d(p/2−1)
n ‖P (1+λ,λ)

Ln
(〈bn, ·〉)‖p

p � Cn with C depending on p and d, so if we take p �
2d/(d + 1) this contradicts (2).

For other p � 1 we consider � such that q = �p > 2d/(d + 1). Then for

Kn(ω) = P
(1+λ,λ)
[Ln/�]

(〈bn,ω〉)� ∈ ΠLn,

and spherical balls Bn with radius �md/Ln we have

L
−dq/2
n

∥∥P
(1+λ,λ)
[Ln/�]

(〈bn, ·〉
)∥∥q

q
= L

−dq/2
n ‖Kn‖p

p �
∫
Sd

∣∣L−d�/2
n Kn(z)

∣∣p dμLn(z)

�
∫
Bn

∣∣L−d�/2
n Kn(z)

∣∣p dμLn(z) � δ
p
d μLn(Bn)

and this together with (2) brings us the contradiction.
Conversely, for any z ∈ Sd and Q ∈ ΠL we have

∣∣Q(z)
∣∣p � Cd,δL

d+1
∫ ∣∣Q(u)

∣∣p dm(u),
B(z,1/L)
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where B(z,1/L) stands for the Euclidean ball in R
d+1. Using Corollary 4.3 we have

∫
Sd

∣∣Q(z)
∣∣p dμL(z) � Ld+1

∫
Sd

∫
B(z,1/L)

∣∣Q(u)
∣∣p dm(u)dμL(z)

� Ld+1
∫

C1,L

∣∣Q(u)
∣∣p ∫

Sd

χB(z,1/L)(u) dμL(z) dm(u)

� Ld+1
∫

C1,L

∣∣Q(u)
∣∣p ∫

Sd

χB(u/|u|,1/L)(z) dμL(z) dm(u)

� C

πL

Ld+1
∫

C1,L

∣∣Q(u)
∣∣p dm(u) ∼

∫
Sd

∣∣Q(u)
∣∣p dσ(u). �

Corollary 4.6. Let 1 � p < ∞. The family Z ⊂ S
d is a finite union of uniformly separated

families if and only if there exists Cp > 0 such that for all L � 1 and Q ∈ ΠL

1

πL

mL∑
j=1

∣∣Q(zLj )
∣∣p � Cp

∫
Sd

∣∣Q(ω)
∣∣p dσ(ω). (7)

Proof. It is enough to take the family of measures

μL = 1

πL

mL∑
j=1

δzLj
, L � 0,

and apply the previous result. �
Theorem 4.7. Any Lp-MZ family Z contains a uniformly separated family Z̃ ⊂ Z which is also
an Lp-MZ family.

Proof. First consider 1 � p < ∞. Using Corollary 4.6 we can assume that Z is a finite
union of N uniformly ε-separated families, that we call Z(j), j = 1, . . . ,N. Now, following
[22, p. 141] we can construct for 0 < δ < ε/4 a uniformly separated family Z̃ ⊂ Z such that for
all L � 0 and j = 1, . . . ,mL

d
(
zLj , Z̃(L)

)
< δ/L.

Let z̃ be the closest point in Z̃(L) to z ∈ Z(L). Given Q ∈ ΠL there exists z′ ∈ R
d+1 in the

segment joining z and z̃ such that

∣∣Q(z) − Q(z̃)
∣∣ �

∣∣∇Q(z′)
∣∣|z − z̃| � δ ∣∣∇Q(z′)

∣∣.

L
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Differentiating Poisson’s formula

Q(v) = 1

σ(Sd)

∫
∂B(z′,r)

r2 − |v − z′|2
r|u − v|d+1

Q(u)dσr(u),

and evaluating in z′ we obtain∣∣∇Q(z′)
∣∣prd+p � C‖Q‖p

Lp(∂B(z′,r))

where C only depends on p and d. Integrating with respect to r in [0, ε/2L] we get

∣∣∇Q(z′)
∣∣p � CεL

d+p+1
∫

B(z′,ε/2L)

∣∣Q(v)
∣∣p dm(v).

Observe that the balls B(z′, ε/2L) are mutually disjoint therefore

‖Q‖p

Lp(Sd )
∼ 1

πL

∑
z∈Z(L)

∣∣Q(z)
∣∣p � 1

πL

N∑
j=1

∑
z∈Z(j)(L)

(∣∣Q(z) − Q(z̃)
∣∣p + ∣∣Q(z̃)

∣∣p)

� 1

πL

N∑
j=1

δpLd+1
∫

Cε/2,L

∣∣Q(v)
∣∣p dm(v) + CN

πL

∑
z∈Z̃(L)

∣∣Q(z)
∣∣p

� Cε,p,d,Nδp‖Q‖p

Lp(Sd )
+ CN

πL

∑
z∈Z̃(L)

∣∣Q(z)
∣∣p.

We finish by taking δ small enough. The reverse inequality follows from Corollary 4.6.
For p = ∞ take ε > 0 such that 2Cε < 1, where C is the constant in the MZ inequality.

Let u,v ∈ S
d be such that d(u, v) < ε/L. Bernstein’s inequality for trigonometric polynomials

applied to the restriction of Q to a great circle gives us∣∣Q(u) − Q(v)
∣∣ � ε‖Q‖∞,

for Q ∈ ΠL. Now it is easy to construct a Z̃(L) ⊂ Z(L) such that d(u, v) > ε/L for u,v ∈ Z̃(L)

and any z ∈ Z(L) belongs to a ball of center one point in Z̃(L) and radius ε/L. We denote
Z̃(L) = {zLkj

}j=1,...,N and for Q ∈ ΠL

‖Q‖∞ � C sup
z∈Z(L)

∣∣Q(z)
∣∣ = C max

j=1,...,N
sup

z∈Z(L), d(z,zLkj
)<ε/L

∣∣Q(z)
∣∣

� Cε‖Q‖∞ + C max
z∈Z̃(L)

∣∣Q(z)
∣∣.

So we obtain a ε-uniformly separated family Z̃ such that for Q ∈ ΠL

‖Q‖∞ � 2C max
˜

∣∣Q(z)
∣∣. �
z∈Z(L)
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Proposition 3.1 works only when p = 2. For other p ∈ [1,∞] we use a perturbative result.

Definition 4.8. Given a family Z and δ > 0, we denote by Zδ the family Zδ(L) = Z(L1+δ),

where L1+δ = [(1 + δ)L].

Lemma 4.9. Let p ∈ [1,∞] and Z be a uniformly separated Lp-MZ family, then for δ > 0 and
q ∈ [1,∞] the family Zδ is Lq -MZ.

Proof. Using Riesz–Thorin theorem on interpolation of operators, see [6, Part 1, p. 524], it is
enough to show that Zδ is an Lq -MZ family for q = 1,∞. Fixed z ∈ Sd the evaluation operator
ez(QL) = QL(z) defined in (ΠL,‖ · ‖p) can be written as

ez(QL) = 1

πL

mL∑
j=1

QL(zLj )aLj (z),

where aLj (z) ∈ C are such that
∑mL

j=1 |aLj (z)|p′
< CπL, where 1/p + 1/p′ = 1. Let pLδ (t) be

a polynomial in one variable of degree Lδ such that pLδ (1) = 1 and

1∫
−1

∣∣pLδ (t)
∣∣p(

1 − t2)λ
dt = 1.

We have

QL(z) = 1

πL1+δ

mL1+δ∑
j=1

QL(zL1+δj )pLδ (z · zL1+δj )aL1+δj (z),

so

∣∣QL(z)
∣∣ � C sup

j

∣∣QL(zL1+δj )
∣∣( 1

πL1+δ

mL1+δ∑
j=1

∣∣pLδ (z · zL1+δj )
∣∣p)1/p

� C

( 1∫
−1

∣∣pLδ (t)
∣∣p(

1 − t2)λ
dt

)p

sup
j

∣∣QL(zL1+δj )
∣∣.

For q = 1 we take pLδ (t) polynomial of degree Lδ in one variable such that pLδ (1) = 1 and

1∫
−1

∣∣pLδ (t)
∣∣(1 − t2)λ

dt = π−1
L1+δ

and we get the result
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∫
Sd

∣∣QL(z)
∣∣dσ(z) � C

mL1+δ∑
j=1

∣∣QL(zL1+δj )
∣∣ ∫
Sd

∣∣pLδ (z · zL1+δj )
∣∣dσ(z). �

Finally we prove the corresponding result for interpolation. But first we want to estimate the
norm of the evaluation operator. As in the proof of Theorem 4.6 we have for Q ∈ ΠL and u ∈ S

d

∣∣Q(u)
∣∣p � Ld+1

∫
B(u,1/L)

∣∣Q(v)
∣∣p dσ(v) � Ld+1

∫
C1,L

∣∣Q(v)
∣∣p dm(v)

∼ Ld

∫
Sd

∣∣Q(v)
∣∣p dσ(v),

so

π−1
L ‖Q‖p∞ � ‖Q‖p

p.

Theorem 4.10. If Z is an interpolation family for Lp, then it is uniformly separated.

Proof. Standard arguments based on the open mapping theorem for Banach spaces, see [22],
show that the interpolation can be done with polynomials PL such that

‖PL‖p � 1

πL

mL∑
j=0

∣∣PL(zLj )
∣∣p.

Then, for a given L0 � 0 and 1 � j0 � πL0, we can take polynomials PL0j0 ∈ ΠL0 such that
PL0j0(zLj ) = δLL0δjj0 and ‖PL0j0‖p

p � π−1
L . Then for j �= j0 restricting the polynomial to a

great circle and using Bernstein’s inequality for trigonometric polynomials

1 = ∣∣PL0j0(zL0j0) − PL0j0(zL0j )
∣∣ � sup

γ
|DT PL0j0 |d(zL0j0, zL0j )

� L0‖PL0j0‖∞d(zL0j0, zL0j ) � L0π
1/p
L ‖PL0j0‖pd(zL0j0, zL0j )

� L0d(zL0j0, zL0j ),

where DT stands for any unitary tangential derivative. �
Lemma 4.11. Let p ∈ [1,∞] and let Z be an Lp-interpolation family. For δ > 0 and q ∈ [1,∞]
Z−δ (as in Definition 4.8) is an Lq -interpolation family.

Proof. As in the previous lemma we will show that Z−δ is an Lq -interpolation family for
q = 1,∞. The hypothesis implies that there exist polynomials QL1−δ,j ∈ ΠL1−δ

such that

QL1−δ,j (zL1−δ,k) = δjk, 1 � j, k � mL1−δ
,
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with

‖QL1−δ,j‖p
p � π−1

L1−δ
.

Now take polynomials pLδ in one variable of degree Lδ, such that pLδ (1) = 1,

1∫
−1

∣∣pLδ (t)
∣∣p′(

1 − t2)λ
dt = π−1

L1−δ
for

1

p
+ 1

p′ = 1.

Given a triangular family {cL1−δj }L,j such that

1

πL1−δ

mL1−δ∑
j=1

|cL1−δj | < C,

construct the polynomial

QL(z) =
mL1−δ∑
j=1

cL1−δjQL1−δ,j (z)pLδ (z · zL1−δj ) ∈ ΠL,

which satisfies QL(zL1−δj ) = cL1−δj and

∫
Sd

∣∣QL(z)
∣∣dσ(z) �

mL1−δ∑
j=1

|cL1−δj |‖QL1−δ,j‖p

∥∥pLδ

(〈·, zL1−δj 〉
)∥∥

p′

� 1

πL1−δ

mL1−δ∑
j=1

|cL1−δj |.

For q = ∞ we take polynomials pLδ as before, but with

1∫
−1

∣∣pLδ (t)
∣∣(1 − t2)λ

dt = π−1
L1−δ

.

And defining QL as before we obtain the interpolation property and

∣∣QL(z)
∣∣ � C sup

j

|cL1−δ,j |
mL1−δ∑
j=1

∣∣pLδ

(〈z, zLδ 〉
)∣∣ � C sup

j

|cL1−δ,j |. �
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5. There are no complete interpolation families in Lp for p �= 2

In this section we show that there are no Lp-complete interpolation families for p �= 2. We
construct, using transference methods (see [2, Theorem 1.1]), a projection in Lp(Sd) that yields
a bounded ball multiplier in Lp(Rd). Finally the celebrated result of C. Fefferman [7] says that
this can happen only for p = 2.

Proof of Theorem 1.7. We argue by contradiction. Let Z be an Lp-complete interpolation fam-
ily. By Theorem 4.10 we know that it is uniformly separated. Let ε > 0 be the separation constant.
Let �

p
L be the vector space of {cj } ∈ C

Ld
with norm given by ‖{cj }‖p

�
p
L

= 1
Lp

∑Lp

j=1 |cj |p. For

L � 0 we consider the map RL : Lp(Sd) → �
p
L defined as

Lp
(
S

d
) � f �−→ {〈

f,L−dKL(·, zLj )K2L(·, zLj )
〉}

j=1,...,Ld .

We want to show that RL is bounded for p = 1,∞, with constant independent of L. So let
f ∈ L1(Sd),

1

Ld

Ld∑
j=1

∣∣〈f,L−dKL(·, zLj )K2L(·, zLj )
〉∣∣

� 1

Ld

Ld∑
j=1

∫
Sd

∣∣f (ω)
∣∣∣∣∣∣KL(ω, zLj )

Ld
K2L(ω, zLj )

∣∣∣∣dω

� ‖f ‖1
1

Ld
sup
ω∈Sd

Ld∑
j=1

∣∣∣∣KL(ω, zLj )

Ld
K2L(ω, zLj )

∣∣∣∣.
Let ω ∈ S

d be fixed. Then

Ld∑
j=1

∣∣∣∣KL(ω, zLj )

Ld
K2L(ω, zLj )

∣∣∣∣ ∼
Ld∑
j=1

∣∣P (1+λ,λ)
L

(〈zLj ,ω〉)P (1+λ,λ)
2L

(〈zLj ,ω〉)∣∣
� Ld +

∑
j∈I

∣∣P (1+λ,λ)
L

(〈zLj ,ω〉)P (1+λ,λ)
2L

(〈zLj ,ω〉)∣∣ + Ld−2,

where I are the indices j such that ε
2(L+1)

� d(ω, zLj ) � π − ε
2(L+1)

. Observe that there are only
two points zLj such that j /∈ I (one on each cap), and the value of the polynomial is bounded by
the local maximum. In between we use Szegő’s estimate (3) to get

∑
j∈I

∣∣P (1+λ,λ)
L

(〈zLj ,ω〉)P (1+λ,λ)
2L

(〈zLj ,ω〉)∣∣ � 1

L

∑
j∈I

k2(d(zLj ,ω)
)
.

Using rotation invariance we can suppose that ω = N. The function k is decreasing in (0,π/2)

and a lot bigger around 0 than around π. Then to increase the sum we place the points zLj , the
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closer the better, in “bands” around the north pole. Coarse estimates using the uniform separation
yields #I = O(Ld), a maximum of O(Ld−1) “bands” and O(L

ε
sin �ε

L
) points in the �th “band,”

if we start counting from N. So

1

L

∑
j∈I

k2(d(ω, zLj )
)
� 1

L

Ld−1∑
�=1

(
L

ε

)d−1

sind−1 �ε

L
k2

(
�ε

L

)
� Ld

Ld−1∑
�=1

1

�2
,

and we get

‖RLf ‖�1
L

= 1

Ld

Ld∑
j=1

∣∣〈f,L−dKL(·, zLj )K2L(·, zLj )
〉∣∣ � ‖f ‖1,

where the constant depends on ε but is independent of L. To prove the L∞ case is a lot easier:

L−d
∥∥KL(·, zLj )K2L(·, zLj )

∥∥
1 ∼ ∥∥P

(1+λ,λ)
L

(〈·, zLj 〉
)
P

(1+λ,λ)
2L

(〈·, zLj 〉
)∥∥

1

�
∥∥P

(1+λ,λ)
L

(〈·, zLj 〉
)∥∥

2

∥∥P
(1+λ,λ)
L

(〈·, zLj 〉
)∥∥

2 = σ
(
S

d
)
.

Now let EL be the map from �
p
L to ΠL, sending v = {vj } ∈ �

p
L to PL ∈ ΠL such that

PL(zLj ) = vj . By hypothesis ‖EL(v)‖p � ‖v‖�
p
L
, so EL◦RL is bounded from Lp(Sd) to Lp(Sd)

for p = 1,∞ and by Riesz–Thorin theorem on interpolation of operators, see [6, Part 1, p. 524],
we get that it is bounded for all 1 � p � ∞. Denoting PL = EL ◦ RL we get PL|ΠL

= IΠL
.

Following [21, Theorem 1] we define

PLf =
∫

SO(d+1)

ν−1PLνf dν,

that turns out to be a projection from Lp(Sd) to ΠL, commuting with rotations and such that
‖PL‖ � ‖PL‖.

According to Theorem 2.2 we have PLY = m�Y, for Y ∈ H� and for m� ∈ C. The properties
of PL impose that m� = 1 for � � L and zero otherwise. So PLf is just the sum of the orthogonal
projections of f over H� (denoted by PH�

f ) for � = 0, . . . ,L.

Now we can put

PLf =
∞∑

j=0

mL(�)PH�
f,

with mL(�) = m( �
L
) and m(|x|) = χB(x). The sequence {mL(�)}��0 defining a multiplier in

Lp(Sd) with

sup
L�0

‖PL‖p < ∞,

where m0(�) = δ0�.



J. Marzo / Journal of Functional Analysis 250 (2007) 559–587 581
Now using the transference result in [2, Theorem 1.1] we see that the multiplier in Lp(Rd)

given by

f �−→ F−1(χBFf ),

is bounded. Finally C. Fefferman’s result [7] says that this is only possible for p = 2. �
6. Proofs

We need some notation and two technical lemmas before proving Theorem 1.6.
Given L � 0 and α > 0, let AL, A+

L and A−
L be the geodesic balls centered at the north pole

with respective radius α/(L+ 1), (α + ε)/(L+ 1) and (α − ε)/(L+ 1), where ε will denote the
separation constant.

Denote the eigenvalues of the concentration operator KAL
as

1 > λL
1 � · · · � λL

πL
> 0.

Lemma 6.1. Let Z be a ε-uniformly separated L2-MZ family and let

NL = #
(
Z(L) ∩ A+

L

)
.

There exists a constant 0 < γ < 1 independent of α and L such that

λL
NL+1 � γ.

Remark. In the conditions of Lemma 6.1

#
{
λL

j > γ
}

� NL = #
(
Z(L) ∩ A+

L

)
� #

(
Z(L) ∩ AL

) + C
(
1 + o

(
αd

))
, α → ∞,

where the constant C depends on d and ε. This follows from the estimates Ldσ(A+
L \ AL) =

1 + o(αd) if α → ∞ and

#
(
Z(L) ∩ (

A+
L \ AL

)) εd

Ld
� σ

(
A+

L \ AL

)
.

Lemma 6.2. Let Z be an L2-interpolation family and let

nL = #
(
Z(L) ∩ A−

L

)
.

There exists a constant 0 < δ < 1 independent of α and L such that

λL
nL−1 � δ.

Remark. In the conditions of Lemma 6.2 we have, as before,

#
(
Z(L) ∩ AL

) − C
(
1 + o

(
αd

))
� nL = #Z(L) ∩ A−

L � #
{
λL

j � δ
} + 1.
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Proof of Theorem 1.6. Using Theorems 4.7 and 4.10 we can suppose that Z is a uniformly
separated family. Now given η > 0 and taking either Zη or Z−η we have by Lemmas 4.11 and
4.9 that our family is respectively L2-MZ or interpolating. Now we relabel the family as before
and defining the measures dμL = ∑πL

j=1 δλL
j

we have

tr(KAL
) =

1∫
0

x dμL(x) and tr
(
K2

AL

) =
1∫

0

x2 dμL(x).

Let Z be an L2-MZ and let γ be given by Lemma 6.1. We get

#
{
λL

j > γ
} =

1∫
γ

dμL(x) �
1∫

0

x dμL(x) − 1

1 − γ

1∫
0

x(1 − x)dμL(x)

= tr(KAL
) − 1

1 − γ

(
tr(KAL

) − tr
(
K2

AL

))
.

The remark following Lemma 6.1 and Proposition 3.1 yields

#(Z(L) ∩ AL) + C(1 + o(αd))

αd
� πLσ(AL)

αdσ (Sd)
− O(αd−1 logα)

αd(1 − γ )
,

and taking limits we get, for any η > 0,

D−(Zη) � 2

d!d√
π


(d+1
2 )


(d
2 )

,

what implies the result.
Assume now that Z is an L2-interpolation family and let δ > 0 be the value provided by

Lemma 6.2. Using the estimate of Proposition 3.1 we get

#
{
λL

j � δ
}

� −1

δ
tr
(
K2

AL

) + 1 + δ

δ
tr(KAL

)

= tr(KAL
) + 1

δ

(
tr(KAL

) − tr
(
K2

AL

)) = πLσ(AL)

σ(Sd)
+ 1

δ
O

(
αd−1 logα

)
.

Using as before the remark following Lemma 6.2 and taking limits we get for any η > 0

D+(Zη) � 2

d!d√
π


(d+1
2 )


(d
2 )

,

what finishes the proof. �
In the proof of Lemmas 6.1 and 6.2 we follow [11]. For the definition of the Gegenbauer

polynomials and related notions see [17].
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Given δ > 0 consider the functions

h(ω) = (
L

δ
)dχB(N, δ

2(L+1)
)(ω), ω ∈ S

d . (8)

The polynomial Y 1
� (a multiple of the Legendre harmonic) is just the Gegenbauer polynomial

C
d−1

2
� normalized in the L2-norm. Applying Funk–Hecke theorem to h we get

ĥ(�,1) =
(

L

δ

)d ∫
Sd

χ(cos δ
2(L+1)

,1)

(〈ω,N〉)Y 1
� (ω)dσ(ω)

= Ldσ(Sd−1)

δdC
d−1

2
� (1)‖C

d−1
2

� (〈N, ·〉)‖2

δ
2(L+1)∫
0

C
d−1

2
� (cos θ) sind−1 θ dθ.

Given f ∈ L2(Sd), 0 � �, 1 � m � h�, and applying Funk–Hecke as before, we deduce that

(f ∗ h)̂(�,m) =
∫
Sd

(f ∗ h)(ω)Ym
� (ω)dσ(ω)

= Ld

δd

∫
Sd

f (u)

( ∫
Sd

χ(cos δ
2(L+1)

,1)

(〈u,ω〉)Ym
� (ω)dσ(ω)

)
dσ(u)

= ∥∥C
d−1

2
�

(〈N, ·〉)∥∥2ĥ(�,1)f̂ (�,m)

thus

∣∣(f ∗ h)̂(�,m)
∣∣ = CL,δσ (Sd−1)

C
d−1

2
� (1)σ (Sd)

∣∣f̂ (�,m)
∣∣∣∣∣∣∣

δ
2(L+1)∫
0

C
d−1

2
� (cos θ) sind−1 θ dθ

∣∣∣∣∣.
Now we want to show that for 0 � � � L and δ sufficiently small

∣∣∣∣∣
δ

2(L+1)∫
0

C
d−1

2
� (cos θ) sind−1 θ dθ

∣∣∣∣∣ � C
d−1

2
� (1)

(
δ

L

)d

, (9)

and in particular for all Q ∈ ΠL∣∣(Q ∗ h)̂(�,m)
∣∣ �

∣∣Q̂(�,m)
∣∣, 0 � � � L, 1 � m � h�.

To prove (9) let x� be the largest zero in [−1,1] of C
d−1

2
� . It is known that x� ∼ cosC/L, for

some constant C > 0, so for δ sufficiently small independent of L, the polynomial C
d−1

2 has no
�
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zeros in the spherical cap centered in N with radius δ/2(L + 1) [26]. The integral in (9) can be
written as ∫

B(N, δ
2(L+1)

)

C
d−1

2
�

(〈ω,N〉)dσ(ω),

and for d(ω,N) < δ/2(L + 1)

C
d−1

2
�

(〈ω,N〉) � C
d−1

2
� (1)

(
1 − 2(L + 1)d(ω,N)

δ

)
,

or equivalently

C
d−1

2
� (x) � C

d−1
2

� (1)

(
1 − 2(L + 1) arccosx

δ

)
,

if cos δ
2(L+1)

� x � 1. This can be deduced using the concavity of the polynomial and the con-
vexity of the function in the right-hand side of the last expression. So∫

B(N, δ
2(L+1)

)

C
d−1

2
� (ω · N)dσ(ω)

�
∫

B(N, δ
2(L+1)

)

C
d−1

2
� (1)

(
1 − 2(L + 1)d(ω,N)

δ

)
dσ(ω)

∼
δ

2(L+1)∫
0

C
d−1

2
� (1) sind−1 η

(
1 − 2(L + 1)η

δ

)
dη

= C
d−1

2
� (1)

1∫
0

δ

2(L + 1)
sind−1

(
δ

2(L + 1)
(1 − η)

)
dη

� C
d−1

2
� (1)

(
δ

2(L + 1)

)d

,

and (9) follows.

Proof of Lemma (6.1). Let Q ∈ ΠL, let 0 < δ < ε, where ε > 0 is the separation constant of Z
and let h be as in (8). Defining g = Q ∗ h ∈ ΠL we have

‖Q‖2 =
L∑

�=0

h�∑
k=1

∣∣Q̂(�, k)
∣∣2 �

L∑
�=0

h�∑
k=1

∣∣(Q ∗ h)̂(�, k)
∣∣2 = ‖g‖2 � 1

πL

mL∑
k=1

∣∣g(zLj )
∣∣2

.

Applying Schwarz’s inequality, we get
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∣∣g(zLj )
∣∣2 =

∣∣∣∣ ∫
ν∈SO(d+1)

Q(νN)h
(
ν−1zLj

)
dν

∣∣∣∣2

�
‖h‖2

L2(Sd )

σ (Sd)

∫
d(νN,zLj )< ε

2(L+1)

∣∣Q(νN)
∣∣2

dν.

Now suppose that

g(zLj ) = 0, for every zLj ∈ A+
L,

and denote by I the set of indices of those points zLj where g vanishes. Then

‖Q‖2 � 1

πL

∑
j /∈I

∣∣g(zLj )
∣∣2 �

‖h‖2
L2(Sd )

πL

∑
j /∈I

∫
d(νN,zLj )< ε

2(L+1)

∣∣Q(νN)
∣∣2

dν

� Cδ

∫
Sd\AL

∣∣Q(ω)
∣∣2

dσ(ω),

where we have used the separation in the last inequality.
Now we consider an orthonormal basis of eigenvectors GL

j , corresponding to the eigenvalues

λL
j and let cL

j in

Q(z) =
Nn+1∑
j=1

cL
j GL

j ∈ ΠL,

be such that g(zLj ) = (Q ∗ h)(zLj ) = 0 for zLj ∈ A+
L. Then

λL
NL+1

NL+1∑
j=0

∣∣cL
j

∣∣2 �
NL+1∑
j=0

λL
j

∣∣cL
j

∣∣2 = ‖χAL
Q‖2 = ‖Q‖2 − ‖χSd\AL

Q‖2

�
(

1 − 1

Cδ

)NL+1∑
j=0

∣∣cL
j

∣∣2
,

and we get the result. �
Proof of Lemma 6.2. Let Π̃L be the subspace of those polynomials in ΠL vanishing in Z(L).

Let Qj ∈ ΠL � Π̃L be such that

Qj(zLj ′) = δjj ′ ,

and let h be as in (8) with 0 < δ < ε where ε > 0 is the separation constant of Z.

Let Q̃j ∈ ΠL be such that Qj(ω) = (Q̃j ∗ h)(ω), and for

Q ∈ span
{
Q̃j : zLj ∈ A−

L

}
we take g = Q ∗ h.
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It is clear that g ∈ ΠL � Π̃L and vanishes in those points such that zLj /∈ A−
L. Now following

the same steps of Lemma 6.2 and using that g ∈ ΠL � Π̃L we get

‖Q‖2 � C

∫
AL

∣∣Q(ω)
∣∣2

dσ(ω).

Applying Weyl–Courant’s lemma [6, Part 2, p. 908],

λL
k−1 � inf

Q∈ΠL,Q∈E

‖χAL
Q‖2

‖Q‖2
, if dimE = k.

Taking E = span{Q̃j : zLj ∈ A−
L }, that has dimension nL, we get the result. �

Acknowledgment

I want to express my gratitude to my advisor Dr. Joaquim Ortega-Cerdà for his help and
support. Also, I would like to thank the referee for useful remarks and for pointing out some
mistakes.

References

[1] A. Beurling, The Collected Works of Arne Beurling. Complex Analysis, in: L. Carleson, P. Malliavin, J. Neuberger,
J. Wermer (Eds.), in: Contemp. Math., vol. 2, Birkhäuser, Boston, MA, 1989.

[2] A. Bonami, J.-L. Clerc, Sommes de Cesaro et multiplicateurs des developpements en harmoniques spheriques,
Trans. Amer. Math. Soc. 183 (1973) 223–263.

[3] C.K. Chui, L. Zhong, Polynomial interpolation and Marcinkiewicz–Zygmund inequalities on the unit circle, J. Math.
Anal. Appl. 233 (1) (1999) 387–405.

[4] C.K. Chui, X.C. Shen, L. Zhong, On Lagrange interpolation at disturbed roots of unity, Trans. Amer. Math.
Soc. 336 (2) (1993) 817–830.

[5] R.R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in
Math., vol. 242, Springer, Berlin, 1971.

[6] N. Dunford, J.T. Schwartz, Linear Operators, Parts 1 and 2, Interscience, New York, 1967 (third and fourth printing).
[7] C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971) 330–336.
[8] W.K. Hayman, P.B. Kennedy, Subharmonic Functions, vol. I, London Math. Soc. Monogr., vol. 9, Academic Press,

London, 1976.
[9] J. Korevaar, J.L.H. Meyers, Logarithmic convexity for supremum norms of harmonic functions, Bull. London Math.

Soc. 26 (4) (1994) 353–362.
[10] H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117

(1967) 37–52.
[11] H.J. Landau, Sampling, data transmission, and the Nyquist rate, Proc. IEEE 55 (10) (1967) 1701–1706.
[12] Y.I. Lyubarskii, K. Seip, Complete interpolating sequences for Paley–Wiener spaces and Muckenhoupt’s (Ap) con-

dition, Rev. Mat. Iberoamericana 13 (2) (1997) 361–376.
[13] J. Marcinkiewicz, A. Zygmund, Mean values of trigonometrical polynomials, Fund. Math. 28 (1937) 131–166.
[14] J. Marzo, Riesz basis of exponentials for a union of cubes in R

d , preprint, http://arxiv.org/abs/math.FA/0601288,
2005.

[15] G. Mastroianni, V. Totik, Weighted polynomial inequalities with doubling and A∞ weights, Constr. Approx. 16 (1)
(2000) 37–71.

[16] H.N. Mhaskar, F.J. Narcowich, J.D. Ward, Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature,
Math. Comput. 70 (2000) 1113–1130.

[17] C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces, Springer, 1997.
[18] J. Ortega-Cerdà, J. Saludes, Marcinkiewicz–Zygmund inequalities, J. Approx. Theory 145 (2006) 237–252.



J. Marzo / Journal of Functional Analysis 250 (2007) 559–587 587
[19] B.S. Pavlov, The basis property of a system of exponentials and the condition of Muckenhoupt, Dokl. Akad. Nauk
SSSR 247 (1) (1979) 37–40.

[20] J. Ramanathan, T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (2) (1995)
148–153.

[21] W. Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962) 429–432.
[22] K. Seip, On the connection between exponential bases and certain related sequences in L2(−π,π), J. Funct.

Anal. 130 (1995) 131–160.
[23] K. Seip, Interpolation and Sampling in Spaces of Analytic Functions, Univ. Lecture Ser., vol. 33, Amer. Math. Soc.,

Providence, RI, 2004.
[24] N.J.A. Sloane, webpage: http://www.research.att.com/~njas/.
[25] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., Princeton Univ.

Press, Princeton, NJ, 1971.
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