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Abstract

We present a pedagogical discussion on the time evolution of a Gaussian neutrino wave packet in free space. A common

treatment is to keep momentum terms up to the quadratic order in the expansion of the energy-momentum relation so

that the Fourier transform can be evaluated analytically via Gaussian integrals. This leads to a solution representing

a flat Gaussian distribution with a constant longitudinal width and a spreading transverse width, which suggests that

special relativity would be violated if the neutrino wave packet were detected on its edge. However, we demonstrate

that by including terms of higher order in momentum the correct geometry of the wave packet is restored. The corrected

solution has a spherical wave front so that it complies with special relativity.
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1. Introduction

After the OPERA Collaboration reported their false superluminal neutrino results in 2011, the authors of

[1] claimed that the off-axis neutrinos may be detected earlier than those traveling along the source-detector

axis due to the spreading of a neutrino wave packet (WP) in the transverse direction. For a WP with a finite

size, its momentum uncertainty allows it to expand transversely as it propagates in space. These authors

claimed that, when the edge of an off-axis WP reaches the detector, the distance traveled by the center of the

WP is shorter than the source-detector distance, and therefore, a superluminal effect is observed as depicted

in Fig. 1.

The argument was soon questioned by the author of [2], who pointed out that a Gaussian neutrino WP

will asymptotically develop a spherical wave front. Consequently, the arrival time of an off-axis neutrino

WP will be the same as one traveling along the source-detector axis. However, the argument of [2] was

based on the description of a Gaussian beam that is localized only in the transverse direction but not in the

longitudinal direction. The spherical wave front was inferred from the phase term in the Gaussian beam

solution, which is well known in laser optics.

The evolution of an initial WP can be found by two different but equivalent methods. The first method

involves solving a wave equation suitable to the context. The massless Klein-Gordon equation is appro-

priate in the case of neutrinos or photons propagating in free space. The solution usually requires some
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Fig. 1. An off-axis neutrino WP may be detected due to its spreading in the transverse direction.

approximation to this equation and employs an ansatz with desired boundary conditions (e.g., [3, 4]). The

second method involves evolving each Fourier mode of the initial WP with a specific angular frequency

and superposing each mode at a later time (e.g., [5, 6, 7, 8]). Tackling an oscillatory integral is the major

difficulty of the second method.

For pedagogical purpose, we revisit the time evolution of a Gaussian WP with a sharply peaked momen-

tum distribution. In particular, we review the necessary computational techniques of the second method and

extend the solution commonly found in literature by including higher-order terms in the expansion of the

energy-momentum relation. We demonstrate explicitly that these terms lead to the spherical shape of the

WP. We end with a brief discussion of the corrected solution.

2. Time Evolution of a Gaussian Neutrino WP

In order to simplify the calculations, we assume an initial neutrino WP with a momentum distribution

sharply peaked around the average momentum. Specifically, at time t = 0, the neutrino state is an isotropic

Gaussian WP with a spatial width σ0 corresponding to a momentum width (2σ0)−1. Its average momentum

is �k0 = k0ẑ with k0σ0 � 1. Under the above assumption, the spinor part of the neutrino wave function

is essentially a constant factor and can be neglected, and only the evolution of the scalar part needs to be

followed. In addition, we assume that the neutrino is massless and without flavor oscillations. The calcula-

tions for massive neutrinos are straightforward but introduce unnecessary complications to the discussion.

Natural units are used throughout the presentation.

The position-space wave function for the initial neutrino WP is

Ψ(�r, 0) =
1

(2πσ2
0
)3/4

exp

⎛⎜⎜⎜⎜⎝− r2

4σ2
0

+ ik0z
⎞⎟⎟⎟⎟⎠ , (1)

and its Fourier transform is

Ψ̃(�k) = (8πσ2
0)3/4 exp

[
−σ2

0k2
⊥ − σ2

0(kz − k0)2
]

, (2)

where k2⊥ ≡ k2
x + k2

y . At a later time, each plane-wave component of the WP evolves with a specific an-

gular frequency and gains a phase factor exp(−iωt), where ω = |�k| is the dispersion relation (the energy-

momentum relation for a massless neutrino). Superposing each plane-wave component at t > 0, we can

express the resulting wave function as

Ψ(�r, t) =
∫

d3�k′

(2π)3
(8πσ2

0)3/4 exp
[
−σ2

0k′2 − iω�k′+�k0
t + i(�k′ + �k0) · �r

]
, (3)
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where �k′ = �k − �k0. To simplify the notation, we will use �k for �k′ below. Noting that the integrand in the

above equation is significant only for |�k| � O(σ−1
0 ) � k0, we expand the dispersion relation around �k = 0:

ω�k+�k0
≡ ωq + δω = k0

⎛⎜⎜⎜⎜⎝1 + kz

k0

+
k2⊥
2k2

0

− kzk2⊥
2k3

0

+
4k2

z k2⊥ − k4⊥
8k4

0

+ · · ·
⎞⎟⎟⎟⎟⎠ , (4)

where ωq represents the terms up to the quadratic order in the parentheses and δω those beyond.

If we approximate ω�k+�k0
as ωq, the exponent in Eq. (3) can be expressed as quadratic polynomials

of kx, ky, and kz. Upon completing the square for each momentum variable, we can evaluate Eq. (3) via

Gaussian integrals to obtain the zeroth-order solution

Ψ(0)(�r, t) =
1

(2πσ2
0
)3/4

[
1 + it(2k0σ

2
0
)−1

] exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
x2 + y2

4σ2
0

[
1 + it(2k0σ

2
0
)−1

] − (z − t)2

4σ2
0

+ ik0(z − t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5)

This solution is a plane wave with momentum �k0 modulated by a complex envelope that is traveling along

the z-direction at the speed of light. The modulus squared of Eq. (5), or the probability density, essentially

corresponds to a “flat disc” with a time-dependent transverse width σT (t) = σ0

√
1 + t2(4k2

0
σ4

0
)−1 as shown

in Fig. 1.

To go beyond the zeroth-order solution, we include δω in ω�k+�k0
and use exp(iδωt) =

∑∞
n=0(iδωt)n/n! to

rewrite Eq. (3) as

Ψ(�r, t) =
∫

d3�k
(2π)3

(8πσ2
0)3/4 exp

{
−σ2

0k2 − iωqt + i(�k + �k0) · �r
}

×
⎡⎢⎢⎢⎢⎣1 + it

2k2
0

kzk2
⊥ −

it
8k3

0

(
4k2

z k2
⊥ − k4

⊥
)
+ higher orders

⎤⎥⎥⎥⎥⎦ ,

(6)

which again can be evaluated via Gaussian integrals. The correction to Ψ(0)(�r, t) can be efficiently computed

by using the following identity:

∫ ∞
−∞ dk kne−a(k−b)2+c∫ ∞
−∞ dk e−a(k−b)2+c

=

n∑
l=0

(
n
l

)
bn−l ×

⎧⎪⎪⎨⎪⎪⎩
0, for odd l,
(l − 1)!!/(2a)l/2, for even l.

(7)

The complex coefficients a, b, and c in the above equation are obtained from completing the square for each

momentum variable in the exponent of Eq. (6). In principle, Ψ(�r, t) can be calculated to any desired order:

Ψ(�r, t) = Ψ(0)(�r, t) + Ψ(1)(�r, t) + · · · . For illustration, we present here only the leading-order correction:

Ψ(1)(�r, t) = − t
4k2

0
σ3

0

× (z − t)

σ0

[
1 + it(2k0σ

2
0
)−1

]
⎧⎪⎪⎪⎨⎪⎪⎪⎩1 − x2 + y2

4σ2
0

[
1 + it(2k0σ

2
0
)−1

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭Ψ(0)(�r, t), (8)

which is obtained from the second term in the square brackets of Eq. (6).

3. Discussion

A comparison of the contour of constant probability density for Ψ(0)(�r, t) and Ψ(�r, t) is made in Fig. 2.

We can observe that significant deviation of Ψ(�r, t) from Ψ(0)(�r, t) appears when the phase correction δωt in

Eq. (6) is no longer negligible. The leading correction term in Eq. (8) is proportional to (z − t), which gives

rise to the asymmetry between the space-like and time-like regions, thereby “bending” the flat Gaussian

distribution. Thus the initial Gaussian WP develops a spherical wave front after higher-order terms in the

phase are taken into account.
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Fig. 2. The 2σ contours of the probability density calculated from Ψ(0)(�r, t) and Ψ(�r, t) are shown in blue and red, respectively. The

gray dashed curve indicates a circular arc of radius t. These plots are for y = 0 and assume k0σ0 = 100. The horizontal scale is the

same for all figures while the vertical scale is set in proportion to the increasing transverse size of the WP.

The result from Eq. (6) is ensured by the infinitely large convergence radius of the complex exponential

function. It is just a matter of determining how many correction terms are required in order to produce a

good approximation. To address this issue, we define δω(i) to correspond to the ith-order term (i ≥ 3) in the

parentheses of Eq. (4). The result in Eq. (8) obtained with the approximation exp(iδωt) ≈ 1+ iδω(3)t is valid

for |δω(3)t| < 1. This implies a limit on the propagation time t � 2k2
0σ

3
0
. It is not difficult to envision that,

as time increases, a tiny contribution to δω could totally change the value of exp(iδωt). Unfortunately, if the

propagation time exceeds 2k2
0σ

3
0
, the required computational effort to obtainΨ(�r, t) from Eq. (6) dramatically

increases.

If one would like to find an acceptable solution at t > 2k2
0σ

3
0

through the laborious computation using

Eqs. (6) and (7), a reasonable procedure is as follows:

1. Find the term δω(m) in the expansion series of ω�k+�k0
such that π ∼ |δω(m)t| � |δω(m+1)t| based on the

estimate |δω(m)t| ∼ O (k0t(k0σ0)−m). Make the approximation exp(iδωt) ≈ exp(iδω̃t), where δω̃ ≡∑m
i=3 δω

(i).
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2. Make another approximation exp(iδω̃t) ≈ ∑p
n=0

(iδω̃t)n/n!, where the integer p should be at least an

order of magnitude larger than |δω(3)t| to ensure good convergence.

3. Compute the contribution to Ψ(�r, t) in Eq. (6) from each term in
∑p

n=0
(iδω̃t)n/n! using Eq. (7).

We have not found an efficient way to simplify the cumbersome algebra in the above steps and conclude that

the perturbative method discussed above is practical only for limited propagation time.

By evolving the different Fourier modes in an initial Gaussian neutrino WP, we have shown that the

WP develops a spherical wave front, thereby obeying the limit on its propagation speed imposed by special

relativity. We note that the apparent overlap of the WP with the space-like region shown in Fig. 2 must not

be mistaken as a superluminal effect: this is purely due to the intrinsic position uncertainty of the initial

WP. We also note that the transverse expansion of the WP indeed allows detection of the neutrino over an

increasing spatial extent. This may have interesting consequences for long-baseline neutrino experiments,

which we plan to study in the future.
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