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ABSTRACT 

How do the value o and the solution x and y of a zero-sum two-person 
completely mixed game vary as the elements of the n X n payoff matrix A = ( u,~) are 
perturbed?Assumingo>O,weshowthat,fori,j,k=l,...,n,O~dv/da,j=r,yl~1 
(by a little-known theorem of Gross), that dx,/dajj = x,u+~~, dy,/da,j = y,o+,,, 
and (for g, h = 1,. .., n) d”u/du,,, da,, = o[x,q,,+jr + xrqj+,,i], where Glj is defined 
in terms of B = (b,j) = A-’ by (pij = &,,b,,,)(&b,j) - b,,Z:,,,,,&,. If A is a nonsin- 
gular M-matrix, then for i, j = 1,. , n we have d”v/day, < 0, dr,/da,j -C 0, and 
dy,/da,, < 0, but v is not concave as a function of the vector of diagonal elements 

(a ,,,...,a,,,,). 

1. INTRODUCTION 

The value v(A) of an m x n real matrix A, 1 < m, n < co, is defined [IS] 

by 

v(A) = max min xTAy, 
x E p,,, Y E pn 

where T denotes transpose and P,,={x~R”:x~>,0, i=l,2,...,n, and 
Cr,rx, = l}. A pair (x, y), where x E P,,, and y E P,,, is a solution of A if 

(Ay), < v(A) =s (x?‘A)~ 

for i=l,..., m and j= l,..., n. These concepts arise in the theory of 
two-person zero-sum games (e.g. [4]). 

How do the value v(A) and solutions depend on the elements of A? It is 
known that if J is the m X n matrix with all elements equal to 1, then 
v( A + a./) = v(A) + a for a E R. The solutions of A + uJ are identical to 
those of A. Shapley [ll] proved that if A and B are m x n real matrices, 
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then ]u(A) - u(B)] < maxi, jlai. - b,,l. Gross [6] showed that if X X Y is the 
set of all sohrtions (x, y) of A, t h en the right and left derivatives of u(A) as a 
function of a single element a i i of A exist and are given by 

du+ 
- = maxx,min yj, 
daij XGX ytY 

du- 
- = minximaxyj. 
daij XGX YEY 

He observed that when A has a unique solution, then the derivatives all 
exist (i.e., the left and right derivatives are equal) and I&, j dv/daij = 1. 
Since Bohnenblust, Karlin, and Shapley [2, p. 561 proved that the set of 
m x n matrices A which have unique solutions is open and everywhere 
dense in mn-space, Gross’s result implies that the derivatives exist for most 
A. Raghavan [9, p. 371 showed that if A is n X n and real, then for a E R, 

v( A + al ) is a continuous nondecreasing function of a, and v( A + al) -j F cc 
as a + _t co. Beyond these few facts, little appears to be known, and even 
Gross’s results, which were never submitted for external publication, do not 
appear to be widely known. 

The derivatives of the value as a function of matrix elements are of applied 
interest. For an observer of a game in which the matrix elements are 
estimated from data, the first derivatives indicate the sensitivity of the 
estimated value to errors in the estimated matrix, and therefore indicate 
which matrix elements should be estimated with greatest precision. For 
players attempting to manipulate or influence the matrix of a game in which 
they are involved, the first derivatives identify the matrix elements that would 
yield the largest rewards per unit of change, while the second derivatives 
identify where efforts to change a matrix element would yield (locally) 
increasing or decreasing returns in the value per unit of change in the matrix 
element. 

Because of the similarity between the value of A and a formula [l] 

~(4 = 
xTAy 

max min - 
XEP,’ yep,’ xry 

for the spectral radius of an n X n matrix A = (ai j) with all a, > 0, where 
P,’ = {xEPn:xi>O, i=1,2 )...) n }, one might hope for a qu ai. . native simi- 
larity between the behavior of v(A) and p(A) when A is square and A > 0 
(meaning that all aij > 0). 
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In fact, the behavior of u(A) and p(A) can be dramatically different. For 
example, let 

a > 0. 

Since p(A) > maxiaii, p(A(a))t CCJ as a t 00. On the other hand, using the 
procedure of Shapley and Snow [12], it requires only elementary calculation 
to show that u( A(a)) = 1, regardless of a, with solution rr = ( f ,O, i), y* = 
(0, I, 0). 

Unlike the spectral radius, which is an analytic function of matrix ele- 
ments, the derivative dv/daij of the value u = u(A) as a function of the 
element aij, holding all other elements constant, can fail to exist at a finite 
number of values of ai j. For example, if a E R, then 

has saddlepoints equal to 0, a, or 1, according as a < 0, 0 < a < 1, or 1~ a. 
Thus dv/da 11 = 0 for a < 0 and a > 1, and dv/da,, = 1 for 0 < a -C 1, but 
dv/da,, fails to exist for a = 0 and a = 1. This example also shows that v 
need not be concave or convex in general. 

2. GENERAL RESULTS 

The matrix A is defined to be comiletely mixed if, for every solution 
(x, y), no element of x is zero and no element of y is zero. If A is completely 
mixed, then the solution of A is unique and m = n [7]. 

In the rest of this section, we shall suppose that u(A) > 0. Under this 
assumption, if A is completely mixed, then A is nonsingular [7]. 

The first theorem, discovered independently of Gross [6], is an immediate 
consequence of his results and the fact that a completely mixed matrix has a 
unique solution. We give an elementary proof, independent of Gross’s, that 
introduces facts useful later. 

THEOREM 1. If A is completely mixed, then, for every i, j, &/da i j 
exists and equals xiyi, 0 -C dv/daij < 1, and Ci,jdv/daij = 1. 
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Proof. Under the hypotheses, Kaplansky [7] and Shapley and Snow [12] 
showed that 

v(A) = l/lTAP’l, (2.1) 

xT= ITA-%( (2.2) 

y = A-%(A), (2.3) 

where 1 is the n-vector with each element 1. The existence of dv/duij is 
immediate from (2.1) and the existence of d(A-‘)/daij. From (2.2) and 
(2.3), we have xTAy = v(A), whence 

dv dxT dA 
-Ay + yT-- 

dy -= 
daij daij da..Y+WTAdn_ 

‘J tJ 

dxT 
=- 

daij 
Iv + xTEijy + lTv 

dy 
daij 

d( xTI) d(lTy) =vp 
daij +‘iyj+’ daij 

dl dl 

=vda,i + ‘iyi + ’ daij 

= “iYj> 

where E i j is the n X n matrix with i, j element 1 and all others 0. This 
implies 0 < dv/du i j < 1 and Xi, j dv/du i j = 1. H 

Define, for any nonsingular n X n real matrix A with inverse A -’ = B = 
(bjj), for 1 < j, k < n, 

THEOREM 2. Let A be completely mixed. Then for i, j, k = 1,. . . , n, 

dXk 
daij 

= 
‘kXiYj 
-- 

4A) 

Xi(A-‘)jk 

2 = YjV(A)Gki(A). 
'J 
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Proof. Assume A is completely mixed. Because we assume u(A) > 0, A 
is nonsingular. From (2.2), xTA = lTu(A), so 

dv 
lT 

da,j=x 

T dA dxT 
- -A. 
duij + duij 

Then using dv/da i j = x iyj and dA /da i j = E i j gives 

dxT 
- zz 
daij 

x,yjlTA-’ - xTEijA-’ 

=x 
xiYj T_ - 

v(A) 

+ AdA-’ 1 oTaij . 

Drawing on (2.1), we let S = lTA-‘1 = l/v(A) = Cg,h(A-l)gh. Then 

dx, ‘kXiyj 
-=u(~)- [x,(jthrowof A-‘)], 
daij 

‘kXi!!j 
= - - Xi( A-‘)jk 

v(A) 

(kth col. sum of A-‘)(jth row sum of A-‘) 
= xi 

S 
- (A-l)jk 1 

= xiv(A) 
[ 
(kth col. sum of A-‘)( jth row sum of A-‘) 

- (A-‘)jk( C (A-‘),h) 
g, 11 

= ‘iV(A)$jk(A). 

The derivation of dy, /da i j is similar. n 

THEOREM 3. Let A be a completely mixed n x n matrix. Then for 
g,h,i, j=l,..., n, d ‘v/da gh da i j exists and 

d2v 

daghdaij 
= V( A)[ XiY,tGjg( A) + XgYj+hi( A)] * (2.4) 
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In particular, 

(2.5) 

Proof. The derivatives (2.4) and (2.5) exist because d2(A p’)/da,l, duij 

exists whenever A - ’ exists, and in this case 0 is given by (2.1). But A - ’ 
exists because we assume u(A) > 0. Then, by Theorem 1, d2v/da,, duij = 
x ;( dyj/dagh) + (dxi/dazh)yj. Substituting the formulas of Theorem 2 gives 
(2.4) and (2.5). n 

In light of the central position of Gij(A) in Theorems 2 and 3, it will be 
useful to have equivalent forms of +ij( A). For 1~ p < n and 1~ i, < i, < 
... <i,<n and l<j,<j,< **. <j,<n, we let A[i, ,..., i,]j, ,..., j,] 
denote the p x p submatrix of the n X n matrix A formed from the intersec- 
tion of rows i, ,..., i, and columns jr,..., j,. We let A(i, ,..., i,ljl ,..., j,) 
denote the (n - p) X (n - p) submatrix of A that remains after striking out 
rows il,...,i, and columns ji,. . . , jr,, provided p -C n, while we define 
A(1 ,..., nil ,..., n)=l. 

THEOREM 4. Let A be a nonsingular n X n matrix and let B = (bij) = 
A-‘. Thenfor l< j,k<n 

+jk( A) = C bgk C bjh - bjk C bgh> 
g+j h#k g+j,h+k 

@jk( A) = C C [ bgkbjh - bjkbgh] ’ 
g#j hzk 

(2 +6> 

(2.7) 

Gjk(A) = - (detA))‘( - l)jtk 

c c detA(h,k]g,j)( -l)g+h 
g<jhik 

+ c c detA(k,h]g,j)( -l)g+h 
g-cjhzk 

+ c c detA(h,k]j,g)( -l)g+h 
g>j h-ck 

+ c c det A(k, hlj,g)( - l)g+h . 1 w3) 
g>jh>k 
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Proof. Canceling the terms common to Cg= ib,,Cz, rbjh and bjkXg, ,>hgll 
in the definition of +jk( A) gives (2.6). Collecting terms in (2.6) with common 
indices of summation gives (2.7). Specializing a formula found in, e.g., [S, 
1: 21, (33)], 

det B[i, ,..., i,]j, ,..., j,] 

= (d&A)-‘( - l)Xi’+X:i’detA(j, ,..., jP]i, ,..., iP), (2.9) 

to the summands on the right of (2.7) gives (2.8). n 

3. M-MATRICES 

An n X n real matrix A is called an M-matrix if A = SZ - M, where I is 
the n x n identity matrix, M has nonnegative elements, and s > pM. Clearly, 
A is singular if s = pM, nonsingular if s > pM. Nonsingular M-matrices are 
special cases of Minkowski-Leontief matrices, which Karlin [B, p. 521 showed 
to be completely mixed with positive value. (See Bohnenblust, Karlin, and 
Shapley [2, pp. 68-691 for a precursor of Karlin’s [B] result, and Raghavan [9] 
for the special case of M-matrices.) 

THEOREM 5. Zf A is an M-matrix, then 

and 0 = v(A) if and only if A is singular. 

Proof. Since M > 0, there exist x, y E P,,, not necessarily unique, such 
that xTM = (pM)xT and My =(pM)y. Hence Ay = (s - pM)y and s - pM 

>, 0. Therefore, by Theorem 1 of Cohen and Friedland [3], v(A) G s - pM. 

If A is singular, s- pM = 0, so xTA = OT and Ay =O, where 0 is the 
n-vector with each’element 0. Therefore (x, y) is a solution of A, and A has 
value 0. 

If A is nonsingular, then s > pM, so B = (bij) = A-’ >, 0 (e.g. [5, 2:66]). 
Moreover, S = Xi, jbi j > 0, since otherwise B would be singular. Theorem 1 of 
Raghavan [lo], rediscovered as Corollary 5 of [3], asserts that if A is a 
nonsingular matrix with A-’ > 0, then v(A) = S-i, so o > 0. w 
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THEOREM 6. Let A be an n X n nonsingular M-matrix. Then for i, j = 

1 n, >*..> 

d2v 
- -c 0, 
dafi 

dx, 
- < 0, 
daii 

(3.1) 

(3.2) 

(3.3) 

Proof. By Theorems 2 and 3, (3.1), (3.2) and (3.3) are equivalent to 
&i(A) < 0 for i = l,..., n, since x > 0, y > 0, and v(A) > 0. It entails no loss 
in generality, and is notationally convenient, to relabel the rows and columns 
of A in the same way so that i = 1. By Theorem 4, (2.8) 

@ii= -(detA)-’ 5 5 ( -l)g+hdetA(l,h]l,g). 
g=2 11=2 

NOW H = A(l]l) = sZ,_ i - M(111) is also a nonsingular M-matrix, because 
s > p M > p M( 111). Therefore C = ( cgh) = H- ’ >, 0. Also &c,, > 0, because if 
C,c,,, = 0, then C would be singular. But, by (2.9), 

Now every principal minor of a nonsingular M-matrix is positive [5, 2 : 701. 
Thus 

,!a( -l)g+hdetA(l,h(l,g)=detA(l]l)~cg,>O, 
I h 

and since det A > 0, we have +ii( A) < 0. n 

If A is a nonsingular M-matrix, no generalization about d%/da fj (i # j ) 
that is as simple as (3.1) holds, at least without some additional hypothesis. 
For example, let M be the 3 X 3 matrix with all elements 0 except mia, where 

m12 = m>O. Then pM=O for all m>O, so A=Z-M is a nonsingular 
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M-matrix with inverse B = A-’ = I + M. Consequently, +&A) = 1 - m, so 
$&A) > 0 or +J A) < 0 as m < 1 or m > 1. 

The concavity of v(A) as a function of each diagonal element aii of A 
established in (3.1) raises the question whether u(A) is a concave function of 
all the diagonal elements of A considered jointly. More precisely, if D is a real 
n x n diagonal matrix and A, A + D, and A +2D are all nonsingular 
M-matrices, is 2v(A + D) > u(A) + v(A +2D)? 

To see that the answer can be no, let A = Z - M be the 3 X 3 matrix in 
the next to last paragraph with m = 100 (i.e., aii = 1, i = 1,2,3; aI2 = - 100; 
and all other elements of A are 0). Let D be the 3 X 3 diagonal matrix with 
diagonal elements d 11 = 2, d,, = 1, and d, = 0. It is easy to see that A, 
A + D, and A + 20 are all nonsingular M-matrices. It is not hard to show 
that u(A) = 6, u(A + D) = 5, and u(A +2D) = 2, from which it follows 
that 2u(A + D) < v(A)+ u(A +2D). 

4. OPEN PROBLEM 

For finite matrix games that are not completely mixed, find an efficient 
procedure for deciding when the derivatives of the value as a function of a 
given matrix element exist, and find formulas for computing those derivatives 
when they exist. Lloyd Shapley (personal communication, 11 October 1984) 
observed that the nonexistence of any derivatives as a function of a given 
matrix element should turn up as degeneracies in the linear-programming 
solution of the game. As quoted in Section 1, Gross [6] gave formulas for the 
first derivative of the value in the general case, but these formulas have not 
been extended yet to higher derivatives of the value or to derivatives of the 
solutions. 
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Hole Oceanographic Institution, and Mr. and Mrs. William T. Golden for 

hospitality during this work; to the John D. and Catherine T. MacArthur 

Foundation for a Fellowship; and to the U.S. National Science Foundation for 

partial support through grant BSR 84-07461. 
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