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Abstract

We prove that the isometry group Iso(U) of the universal Urysohn metric space U equipped with the natural Polish topology is
a Lévy group in the sense of Gromov and Milman, that is, admits an approximating chain of compact (in fact, finite) subgroups,
exhibiting the phenomenon of concentration of measure. This strengthens an earlier result by Vershik stating that Iso(U) has a
dense locally finite subgroup.
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1. Introduction

The following concept, introduced by P.S. Urysohn [29,30], has generated a considerable and steadily growing
interest over the past two to three decades.

Definition 1.1. The Urysohn metric space U is defined by three conditions:

(1) U is a complete separable metric space;
(2) U is ultrahomogeneous, that is, every isometry between two finite metric subspaces of U extends to a global

isometry of U onto itself;
(3) U is universal, that is, contains an isometric copy of every separable metric space.

An equivalent property distinguishing U among complete separable metric spaces is finite injectivity: if X is a
metric subspace of a finite metric space Y , then every metric embedding of X into U extends to a metric embedding
Y ↪→ U. Establishing an equivalence between this description and Definition 1.1 is an enjoyable exercise.

Such a metric space U exists and is unique up to an isometry, and in addition to the original proof by Urysohn,
there are presently several known alternative proofs of this result, most notably those in [13,36–38].
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At the same time, there is still no known concrete realization (model) of the Urysohn space, and finding such a
model is one of the most interesting open problems of the theory, mentioned by such mathematicians as Fréchet [2,
p. 100] and P.S. Alexandroff (cf. his commentaries to the article [31]), and presently being advertised by Vershik.
The only bit of constructive knowledge about the structure of the Urysohn space currently available is that U is
homeomorphic to the Hilbert space �2 (Uspenskij [35]).

A “poor man’s version” of the Urysohn space U, the so-called random graph R (discovered much later than the
Urysohn space, see e.g. [27]), has a model (in fact, more than one, cf. [1]). The random graph can be viewed as a
version of the universal Urysohn metric space whose metric only takes values 0,1,2, which fact offers some hope that
a model for U can also be found.

One can in fact study a variety of versions of the Urysohn space defined by a restriction on the collection of values
that the distance is allowed to take. Among them, one of the most interesting and useful objects is the Urysohn space
of diameter one, U1. Here the diameter of a metric space X is defined as sup{d(x, y): x, y ∈ X}, the space U1 has
diameter 1, and possesses the same properties as the space U with the exception that it is universal for all separable
metric spaces having diameter one. It is easy to show that the space U1 is isometric to the sphere of radius 1/2 around
any point in U.

An interesting approach to the Urysohn space was proposed by Vershik who regards U as a generic, or random,
metric space. Here is one of his results. Denote by M the Polish space of all metrics on a countably infinite set ω. Let
P(M) denote the Polish space of all probability measures on M . Then, for a generic measure μ ∈ P(M) (in the sense
of Baire category), the completion of the metric space (X,d) is isometric to the Urysohn space U μ-almost surely in
d ∈ M . We refer the reader to a very interesting theory developed in [36,37] and especially [38]. Cf. also [39].

The group of all isometries of the Urysohn space U onto itself, equipped with the topology of simple conver-
gence (or the compact-open topology, which happens to be the same), is a Polish (separable completely metrizable)
topological group. It possesses the following remarkable property, discovered by Uspenskij.

Theorem 1.2. (Cf. Uspenskij [33]; also [7], 3.11. 2
3 +.) The Polish group Iso(U) is a universal second-countable

topological group. In other words, every second-countable topological group G embeds into Iso(U) as a topological
subgroup.

The same property is shared by the topological group Iso(U1). Other known results include the following.

Theorem 1.3. (See Uspenskij [34].) The group Iso(U1) is topologically simple (contains no non-trivial closed normal
subgroups) and minimal (admits no strictly coarser Hausdorff group topology).

One can deduce from the above fact some straightforward but still interesting corollaries which, to this author’s
knowledge, have never been stated by anyone explicitly. For example, Iso(U1) admits no non-trivial (different from
the identity) continuous unitary representations. In fact, a stronger result holds.

Corollary 1.4. The topological group Iso(U1) admits no non-trivial continuous representations by isometries in re-
flexive Banach spaces.

Proof. According to Megrelishvili [18], the group Homeo+[0,1] consisting of all orientation-preserving self-
homeomorphisms of the closed unit interval and equipped with the compact-open topology, admits no non-trivial
continuous representations by isometries in reflexive Banach spaces. By Uspenskij’s theorem, Homeo+[0,1] embeds
into Iso(U1) as a topological subgroup. If now π is a continuous representation of Iso(U1) in a reflexive Banach space
E by isometries, that is, a continuous homomorphism π : Iso(U1) → Iso(E) where the latter group is equipped with
the strong operator topology, then, by force of Theorem 1.3, the kernel kerπ is either {e} or all of Iso(U1). In the
former case, the restriction of π to a copy of Homeo+[0,1] must be a continuous faithful representation by isometries
in a reflexive Banach space, which is ruled out by Megrelishvili’s theorem. We conclude that kerπ = Iso(U1), that is,
the representation π is trivial (assigns the identity operator to every element of the group). �

Modulo a result independently obtained by Megrelishvili [17] and Shtern [28], this implies:
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Corollary 1.5. Every continuous weakly almost periodic function on Iso(U1) is constant.

An action of a topological group G on a finite measure space (X,μ) is called measurable, or a near-action, if for
every g ∈ G the motion X � x �→ gx ∈ X is a bi-measurable map defined μ-almost everywhere, and for every mea-
surable set A ⊆ X the function G � g �→ μ(gAΔA) ∈ R is continuous. In addition, the identities g(hx) = (gh)x and
ex = x hold for μ-a.e. x ∈ X and every g,h ∈ X. Such an action is measure class preserving if for every measurable
subset A ⊆ X and every g ∈ G, the set g · A, defined up to a μ-null set, has measure μ(g · A) > 0 if and only if
μ(A) > 0. Finally, we say that an action as above is trivial if the set of G-fixed points has full measure.

Corollary 1.6. The topological group Iso(U1) admits no non-trivial measurable action on a measure space, preserving
the measure class.

Proof. Indeed, every such action leads to a non-trivial strongly continuous unitary representation via the standard
construction of the quasi-regular representation in the space L2(X,μ), given by the formula

gf (x) =
(

d(μ ◦ g−1)

dμ

)1/2

f (g−1x),

where d/dμ is the Radon–Nykodim derivative. �
We do not know if the analogues of Theorem 1.3 and Corollaries 1.4, 1.5, 1.6 hold for the Polish group Iso(U).
Another example of a universal Polish group was also previously discovered by Uspenskij [32]: the group

Homeo(Q) of self-homeomorphisms of the Hilbert cube Q = I
ℵ0 equipped with the compact-open topology. Ap-

parently, Homeo(Q) and Iso(U) remain to date, essentially, the only known examples of universal Polish groups (if
one discounts the modifications of the latter such as Iso(U1)). As pointed out in [23], these two topological groups
are not isomorphic between themselves. Indeed, the Hilbert cube is topologically homogeneous, that is, the action of
Homeo(Q) on the compact space Q is transitive and therefore fixed point-free, cf. e.g. [19]. At the same time, the
dynamic behavior of the groups such as Iso(U) is markedly different.

Definition 1.7. One says that a topological group G is extremely amenable, or has the fixed point on compacta property,
if every continuous action of G on a compact space X admits a fixed point: for some ξ ∈ X and all g ∈ G, one has
gξ = ξ .

As first noted by Granirer and Lau [6], no locally compact group different from the trivial group {e} is extremely
amenable. In fact, until an example was constructed by Herer and Christensen in [11], the very existence of extremely
amenable topological groups remained in doubt. However, since Gromov and Milman [8] proved that the unitary group
U(�2) of a separable Hilbert space equipped with the strong operator topology is extremely amenable, it gradually
became clear that the property is rather common among the concrete “infinite-dimensional” topological groups. We
refer the reader to two recent articles [14,3] which together cover most of examples of extremely amenable groups
known to date.

The present author had shown in [24] that the topological group Iso(U) is extremely amenable. Consequently, it is
non-isomorphic, as a topological group, to Homeo(Q). The same is true of Iso(U1).

Vershik has demonstrated in [40] that the group Iso(U) contains a locally finite everywhere dense subgroup. We
will give an alternative proof of this result below in Section 2. This proof is a step towards Theorem 2.13 which is
the main result of our article. Before stating this result, we need to remind some concepts introduced by Gromov and
Milman [8] and linking topological dynamics of “large” groups with asymptotic geometric analysis [21].

The phenomenon of concentration of measure on high-dimensional structures says, intuitively speaking, that the
geometric structures—such as the Euclidean spheres—of high finite dimension typically have the property that an
overwhelming proportion of points are very close to every set containing at least half of the points. Technically, the
phenomenon is dealt with in the following framework.

Definition 1.8. (See Gromov and Milman [8].) A space with metric and measure, or an mm-space, is a triple,
(X,d,μ), consisting of a set X, a metric d on X, and a probability Borel measure μ on the metric space (X,d).
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For a subset A of a metric space X and an ε > 0, denote by Aε the ε-neighborhood of A in X.

Definition 1.9. (ibid.) A family X = (Xn, dn,μn)n∈N of mm-spaces is called a Lévy family if, whenever Borel subsets
An ⊆ Xn satisfy

lim inf
n→∞ μn(An) > 0,

one has for every ε > 0

lim
n→∞μn

(
(An)ε

) = 1.

The concept of a Lévy family can be reformulated in many equivalent ways. For example, it is not difficult to see
that a family X as above is Lévy if and only if for every ε > 0, whenever An,Bn are Borel subsets of Xn satisfying

μn(An) � ε, μn(Bn) � ε,

one has d(An,Bn) → 0 as n → ∞.
This is formalized using the notion of separation distance, proposed by Gromov ([7], Section 3 1

2 .30). Given num-
bers κ0, κ1, . . . , κN > 0, one defines the invariant

Sep(X;κ0, κ1, . . . , κN)

as the supremum of all δ such that X contains Borel subsets Xi , i = 0,1, . . . ,N , with μ(Xi) � κi , every two of which
are at a distance � δ from each other. Now a family X = (Xn, dn,μn)n∈N is a Lévy family if and only if for every
0 < ε < 1

2 , one has

Sep(Xn; ε, ε) → 0 as n → ∞.

The reader should consult Ch. 3 1
2 in [7] for numerous other characterizations of Lévy families of mm-spaces.

We will state just one more such reformulation. It is an easy exercise to show that in Definition 1.9 of a Lévy family
it is enough to assume that the values μn(An) are bounded away from zero by 1/2 (or by any other fixed constant
strictly between zero and one). In other words, a family X is a Lévy family if and only if, whenever Borel subsets
An ⊆ Xn satisfy μn(An) � 1/2, one has for every ε > 0

lim
n→∞μn(An)ε = 1.

This leads to the following concept [20,22], providing convenient quantitative bounds on the rate of convergence
of μn(An)ε to one.

Definition 1.10. Let (X,d,μ) be a space with metric and measure. The concentration function of X, denoted by
αX(ε), is a real-valued function on the positive axis R+ = [0,∞), defined by letting α(0) = 1/2 and for all ε > 0

αX(ε) = 1 − inf

{
μ(Bε): B ⊆ X, μ(B) � 1

2

}
.

Thus, a family X = (Xn, dn,μn)n∈N of mm-spaces is a Lévy family if and only if

αXn → 0 pointwise on (0,+∞) as n → ∞.

A Lévy family is called normal if for suitable constants C1,C2 > 0,

αXn(ε) � C1e−C2ε
2n.

Example 1.11. The Euclidean spheres S
n, n ∈ N+, of unit radius, equipped with the Haar measure (translation-

invariant probability measure) and Euclidean (or geodesic) distance, form a normal Lévy family.

Definition 1.12. (See Gromov and Milman [8].) A metrizable topological group G is called a Lévy group if it contains
an increasing chain of compact subgroups

G1 < G2 < · · · < Gn < · · · ,
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having an everywhere dense union in G and such that for some right-invariant compatible metric d on G the groups
Gn, equipped with the normalized Haar measures and the restrictions of the metric d , form a Lévy family.

The above concept admits a number of generalizations, in particular, it makes perfect sense for non-metrizable,
non-separable topological groups as well. In fact, in the definition of a Lévy group it is the uniform structure on G

that matters rather than a metric. Namely, one can easily prove the following.

Proposition 1.13. Let G be a metrizable topological group containing an increasing chain of compact subgroups (Gn)

with everywhere dense union. The subgroups (Gn) form a Lévy family with regard to the normalized Haar measures
and the restrictions of some right-invariant metric d on G if and only if for every neighborhood of identity, V , in G

and every collection of Borel subsets An ⊆ Gn with the property μn(An) � 1/2 one has

lim
n→∞μn(V An) = 1.

Examples of presently known Lévy groups can be found in [8,22,4,23,15,3,5].
The following result had been also established in [8], and one can give numerous alternative proofs to it, cf. e.g.

[4,23,3,26].

Theorem 1.14. Every Lévy group is extremely amenable.

The concept of a Lévy group is stronger than that of an extremely amenable group. Typically, examples of ex-
tremely amenable groups coming from combinatorics as groups of automorphisms of infinite Fraïssé order structures
[14] are not Lévy groups, because they contain no compact subgroups whatsoever. Even the dynamical behavior of
Lévy groups has been shown by Glasner et al. [5] to differ considerably from that of the rest of extremely amenable
groups.

The main theorem of this article (Theorem 2.13) states that the group Iso(U) is a Lévy group rather than merely an
extremely amenable one.

The monograph [25] by the present author provides an introduction to the theory of extremely amenable groups
and its links with geometric functional analysis and combinatorics. The Urysohn metric space can also be found there.
In fact, the book also contains Theorem 2.13 (cf. Section 3.4.3). The reason to have this theorem published in the
present Proceedings is twofold: firstly, the book [25], published in Brazil, is not readily available, and secondly, the
proof of Theorem 2.13 as presented there is not sufficiently accurate.

2. Approximating Iso(U) with finite subgroups

Let Γ = (V ,E) be an (undirected, simple) graph, where V is the set of vertices and E is the set of edges. A weight
on Γ is an assignment of a non-negative real number to every edge, that is, a function w :E → R+. The pair (Γ,w)

forms a weighted graph. The path pseudometric on a connected weighted graph (Γ,w) is the maximal pseudometric
on Γ with the property d(x, y) = w(x,y) for any pair of adjacent vertices x, y. Equivalently, the value of ρ(x, y) is
given for each x, y ∈ V by

ρ(x, y) = inf
N−1∑
i=0

d(ai, ai+1), (1)

where the infimum is taken over all positive natural N and all finite sequences of vertices x = a0, a1, . . . , aN−1,

aN = b, with the property that ai and ai+1 are adjacent for all i. Notice that here we allow for sequences of length
one, in which case the sum above is empty and returns value zero, the distance from a vertex to itself.

In particular, if every edge is assigned the weight one, the corresponding path pseudometric is a metric, called the
path metric on Γ .

Let G be a group, and V a generating subset of G. Assume that V is symmetric (V = V −1) and contains the
identity. The Cayley graph associated to the pair (G,V ) has all elements of the group G as vertices, and two of them,
x, y ∈ G, x 
= y, are adjacent if and only if x−1y ∈ V . The Cayley graph is connected. The corresponding path metric
on G is called the word distance with regard to the generating set V .
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If V is an arbitrary generating subset of G, then the word distance with regard to V is defined as that with regard
to V ∪ V −1 ∪ {e}. The value of the word distance between e and an element x is called the reduced length of x with
regard to the generating set V , and denoted �V (x). It is simply the smallest integer n such that x can be written as a
product of � n elements of V and their inverses. Since the identity e of the group G is represented, as usual, by an
empty word, one has V 0 = {e} and �V (e) = 0.

Lemma 2.1. Let G be a group equipped with a left-invariant pseudometric, d . Let V be a finite generating subset of
G containing the identity. Then there is the maximal pseudometric, ρ, among all left-invariant pseudometrics on G,
whose restriction to V is majorized by d . The restrictions of ρ and d to V coincide. If d|V is a metric on V , then ρ is
a metric as well, and for every ε > 0 there is an N ∈ N such that �V (x) � N implies ρ(e, x) � ε.

Proof. Make the Cayley graph Γ associated to the pair (G,V −1V ) into a weighted graph, by assigning to every
edge (x, y), x−1y ∈ V −1V , the value d(x, y) ≡ d(x−1y, e). Denote by ρ the corresponding path pseudometric on the
weighted graph Γ . To prove the left-invariance of ρ, let x, y, z ∈ G. Consider any sequence of elements of G,

x = a0, a1, . . . , aN−1, aN = y, (2)

where N ∈ N and a−1
i ai+1 ∈ V −1V , i = 0,1, . . . , n − 1. Since for all i the elements zai, zai+1 are adjacent in the

Cayley graph ((zai)
−1zai+1 = a−1

i ai+1 ∈ V −1V ), one has

d(zx, zy) �
n−1∑
i=0

d(zai, zai+1) =
n−1∑
i=0

d(ai, ai+1),

and taking the infimum over all sequences as in Eq. (2) on both sides, one concludes d(zx, zy) � d(x, y), which of
course implies the equality.

For every x, y ∈ V , one has x−1y ∈ V −1V and consequently ρ(x, y) = ρ(x−1y, e) � d(x−1y, e) = d(x, y). Now
let ς be any left-invariant pseudometric on G whose restriction to V is majorized by d . If a, b ∈ G are such that
a−1b ∈ V −1V , then for some c, d ∈ V one has a−1b = c−1d , and

ς(a, b) = ς(a−1b, e) = ς(c−1d, e) = ς(c, d) � d(c, d) = d(c−1d, e) = d(a−1b, e) = d(a, b).

For every sequence as in Eq. (2), one now has

ς(x, y) �
n−1∑
i=0

ς(ai, ai+1) �
n−1∑
i=0

d(ai, ai+1),

and by taking the infimum over all such finite sequences on both sides, one concludes

ς(x, y) � ρ(x, y),

that is, ρ is maximal among all left-invariant pseudometrics whose restriction to V is majorized by d . In particular,
ρ � d , which implies ρ|V = d|V .

Assuming that d|V is a metric, all the weights on the Cayley graph Γ as above assume strictly positive values, and
consequently ρ is a metric. As we have already noticed, for every x, y ∈ G with the property x−1y ∈ V −1V , the value
d(x, y) is of the form d(a, b) for suitable a, b ∈ V . Consequently, there exists the smallest value taken by d between
pairs of distinct elements x, y ∈ G with the property x−1y ∈ V −1V , and it is strictly positive. Denote this value by δ.
Clearly, for every x ∈ G one has ρ(e, x) � δ�V −1V (x) � (δ/2)�V (x), and the proof is finished. �

Next we are going to get rid of the restrictions on V . The price to pay is to agree that all pseudometrics will be
bounded by 1. In the following lemma, �V (x) will denote the word length of x with regard to V if x is contained in
the subgroup generated by V , and ∞ otherwise.



V. Pestov / Topology and its Applications 154 (2007) 2173–2184 2179
Lemma 2.2. Let G be a group equipped with a left-invariant pseudometric, d , whose values are bounded by 1. Let
V be a finite subset of G. Then there is the maximal pseudometric, ρ, among all left-invariant pseudometrics on G,
bounded by one and whose restriction to V is majorized by d . The restrictions of ρ and d to V coincide. If d|V is a
metric on V , then ρ is a metric on G.

Proof. The set Ψ of all left-invariant pseudometrics on G bounded by one and whose restrictions to V are majorized
by d is nonempty (d ∈ Ψ ), and contains the maximal element, ρ, given by ρ(x, y) = supς∈Ψ ς(x, y). Obviously,
ρ|V = d|V . To verify the last assertion, let δ be the smallest strictly positive value of the form d(x, y), x, y ∈ V ,
x 
= y. Let ς now denote the metric on G taking values 0 and δ. Denote by 〈V 〉 the subgroup of G generated by V .
According to Lemma 2.1, there exists the maximal metric ς1 on the subgroup 〈V 〉 of G generated by V whose
restriction to V ∪ V −1 ∪ {e} only takes the values 0 or δ. Define a pseudometric ς2 on all of G by the rule

ς2(x, y) =
{

min{1, ς1(x, y)}, if x−1y ∈ 〈V 〉,
1, otherwise.

Since ς1|V � d|V , it follows that ς2|V � ρ, and thus ρ is a metric. �
Lemma 2.3. Let ρ be a left-invariant pseudometric on a group G, and let H � G be a normal subgroup. The formula

ρ̄(xH,yH) := inf
h1,h2∈H

ρ(xh1, yh2) ≡ inf
h1,h2∈H

ρ(h1x,h2y) ≡ inf
h∈H

ρ(hx, y) (3)

defines a left-invariant pseudometric on the factor-group G/H . This is the largest pseudometric on G/H with respect
to which the quotient homomorphism G → G/H is 1-Lipschitz.

Proof. The triangle inequality follows from the fact that, for all h′ ∈ H ,

ρ̄(xH,yH) = inf
h∈H

ρ(hx, y) � inf
h∈H

[
ρ(hx,h′z) + ρ(h′z, y)

] = inf
h∈H

ρ(hx,h′z) + ρ(h′z, y)

= inf
h∈H

ρ(h′−1hx, z) + ρ(h′z, y) = ρ̄(xH, zH) + ρ(h′z, y),

and the infimum of the right-hand side taken over all h′ ∈ H equals ρ̄(xH, zH) + ρ̄(zH,yH). Left-invariance of
ρ̄ is obvious. If d is a pseudometric on G/H making the quotient homomorphism into a 1-Lipschitz map, then
d(xH,yH) � ρ(xh1, yh2) for all x, y ∈ G, h1, h2 ∈ H , and therefore d(xH,yH) � ρ̄(xH,yH). �

We will make a distinction between the notion of a distance-preserving map f :X → Y between two pseudometric
spaces, which has the property dY (f x,fy) = dX(x, y) for all x, y ∈ X, and an isometry, that is, a distance-preserving
bijection.

Let G be a group. For every left-invariant bounded pseudometric d on G, denote Hd = {x ∈ G: d(x, e) = 0}, and
let d̂ be the metric on the left coset space G/Hd given by d̂(xHd, yHd) = d(x, y). The metric d̂ is invariant under
left translations by elements of G. We will denote the metric space (G/Hd, d̂), equipped with the left action of G by
isometries, simply by G/d .

A distance-preserving map need not be an isometry. For instance, if d is a left-invariant pseudometric on a group
G, then the natural map G → G/d is distance-preserving, onto, but not necessarily an injection.

A group G is residually finite if it admits a separating family of homomorphisms into finite groups, or, equivalently,
if for every x ∈ G, x 
= e, there exists a normal subgroup H � G of finite index such that x /∈ H . Every free group is
residually finite (cf. e.g. [16]), and the free product of two residually finite groups is residually finite [9].

Lemma 2.4. Let G be a residually finite group equipped with a left-invariant pseudometric d � 1, and let V ⊆ G be a
finite subset. Suppose the restriction d|V is a metric, and let ρ be the maximal left-invariant metric on G bounded by
one with ρ|V = d|V . Then there exists a normal subgroup H �G of finite index with the property that the restriction of
the quotient homomorphism G → G/H to V is an isometry with regard to ρ and the quotient pseudometric ρ̄ (which
is in fact a metric).
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Proof. Let δ > 0 be the smallest distance between any pair of distinct elements of V . Let N ∈ N+ be even and such
that (N − 2)δ � 1. The subset formed by all words of length � N in V is finite, and, since the intersection of finitely
many subgroups of finite index has finite index (Poincaré’s theorem), one can choose a normal subgroup H � G of
finite index containing no words of V -length � N other than e. Let x, y ∈ V and h ∈ H , h 
= e. If y−1hx /∈ 〈V 〉, then
ρ(hx, y) = 1. If y−1hx ∈ 〈V 〉, then the reduced V -length of the word y−1hx is � N − 2, and consequently

ρ(hx, y) = ρ(y−1hx, e) � min
{
1, (N − 2)δ

}
� 1.

(Otherwise there would exist a representation

y−1hx = v1v2 . . . vk

with vi ∈ V and d(e, v1) + ∑k−1
i=1 d(vi, vi+1) < (N − 2)δ, that is, k < N − 2.)

In either case, the distance ρ̄(xH,yH) between cosets is realized on the representatives x, y:

ρ̄(xH,yH) = ρ(x, y).

The factor-pseudometric ρ̄ on G/H is, according to Lemma 2.3, the largest pseudometric making the factor-map π

1-Lipschitz. We claim that ρ̄ is the largest left-invariant pseudometric on G/H , bounded by one, whose restriction to
V coincides with the metric on V . Indeed, denoting such a pseudometric by ς , one sees that ς ◦ π is a left-invariant
pseudometric on G, bounded by one, and whose restriction to V equals dξ |V . It follows that ς ◦ π � ρ, thence ς � ρ̄

and the two coincide. Now Lemma 2.2 tells us that ρ̄ is a metric. �
The following concept, along with the two subsequent results, forms a powerful tool in the theory of the Urysohn

space.

Definition 2.5. (See Uspenskij [34].) One says that a metric subspace Y is g-embedded into a metric space X if
there exists an embedding of topological groups e : Iso(Y ) ↪→ Iso(X) with the property that for every h ∈ Iso(Y ) the
isometry e(h) :X → X is an extension of h:

e(h)|X = h.

Proposition 2.6. (See Uspenskij [33,34].) Each separable metric space X admits a g-embedding into the complete
separable Urysohn metric space U.

Every isometry between two compact metric subspaces of the Urysohn space U extends to a global self-isometry of
U (it was first established in [12]). Together with Proposition 2.6, this fact immediately leads to the following result.

Proposition 2.7. Each isometric embedding of a compact metric space into U is a g-embedding.

Recall that an action of a group G on a set X is free if for all g ∈ G, g 
= e and all x ∈ X, one has g · x 
= x. Here
comes the main technical result of this paper.

Lemma 2.8. Let X be a finite subset of the Urysohn space U, and let a finite group G act on X freely by isometries.
Let f be an isometry of U, and let ε > 0. There exist a finite group G̃ containing G as a subgroup, an element f̃ ∈ G̃,
and a finite metric space Y , X ⊆ Y ⊂ U, upon which G̃ acts freely by isometries, extending the original action of G

on X and so that for all x ∈ X one has d(f̃ x, f x) < ε.

Proof. Without loss in generality, one can assume that the image f (X) does not meet X, by replacing f , if nec-
essary, with an isometry f ′ such that the image f ′(X) does not intersect X, and yet for every x ∈ X one has
dU(f (x), f ′(x)) < ε. By renormalizing the distance if necessary, we will further assume that the diameter of the
set X ∪ f (X) does not exceed 1.

Since every compact subset of U such as X is g-embedded into the Urysohn space (Proposition 2.7), one can
extend the action of G by isometries from X to all of U.
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Choose any element ξ ∈ U at a distance 1 from every element of X ∪ f (X). Let Θ = X/G denote the set of
G-orbits of X. For each θ ∈ Θ , choose an element xθ ∈ θ and an isometry fθ of U in such a way that fθ (ξ) = xθ . Let
n = |Θ|, and let Fn be the free group on n generators which we will denote likewise fθ , θ ∈ Θ .

Finally, denote by f a generator of the group Z, and let F = G ∗ Fn ∗ Z be the free product of three groups.
There is a unique homomorphism F → Iso(U), which sends all elements of G ∪ {fθ : θ ∈ Θ} ∪ {f } to the corre-

sponding self-isometries of U. In this way, F acts on U by isometries. Denote

V = {g ◦ fθ : g ∈ G, θ ∈ Θ} ∪ {f ◦ g ◦ fθ : g ∈ G, θ ∈ Θ}.
The formula

dξ (g,h) := min
{
1, dU

(
g(ξ), h(ξ)

)}
, g,h ∈ F,

defines a left-invariant pseudometric dξ on the group F , bounded by 1.
Denote by ev :F → U the evaluation map φ �→ φ(ξ). The restriction ev|V is an isometry between V , equipped

with the restriction of the pseudometric dξ , and X ∪ f (X). Also notice that the restriction ev|{g ◦ fθ : g ∈ G, θ ∈
Θ} establishes an isomorphism of G-spaces between the latter set (upon which G acts by left multiplication in the
group F ) and X. Both properties take into account the freeness of the action of G on X.

The restriction of the pseudometric dξ to V is a metric. Let ρ be the maximal left-invariant metric on F bounded
by 1 such that ρ|V = dξ |V (Lemma 2.2).

The group F , being the free product of three residually finite groups, is residually finite, and so we are under the
assumptions of Lemma 2.4. Choose a normal subgroup H �F of finite index in such a way that if the finite factor-group
F/H is equipped with the factor-pseudometric ρ̄, then the restriction of the factor-homomorphism π :F → F/H to
V is an isometry. This ρ̄ is then a metric. In addition, by replacing H with a smaller normal subgroup of finite index
if necessary, one can clearly choose H so that H ∩ G = {e}, and thus π |G is a monomorphism.

The finite group G̃ = F/H acts on itself by left translations, and this action is a free action by isometries on
the finite metric space Y = (F/H, ρ̄). The metric space X ∪ f (X) embeds into Y as a metric subspace through the
isometry π ◦ ev, and f̃ |X = f |X. Finally, G is a subgroup of G̃, and X is contained inside Y as a G-space.

Finally, the embedding of X ∪ f (X) (considered as a subspace of Y ) can be extended over Y , so we can view Y as
a metric subspace of U, and it is a g-embedding by Proposition 2.7. �

Now we are ready to give an alternative proof of the following result of Vershik. Recall that a group G is locally
finite if every finitely generated subgroup of G is finite. A countable group is locally finite if and only if it is the union
of an increasing chain of finite subgroups.

Theorem 2.9. (See Vershik [40].) The isometry group Iso(U) of the Urysohn space, equipped with the standard Polish
topology, contains an everywhere dense locally finite countable subgroup.

Proof. Choose an everywhere dense subset F = {fi : i ∈ N+} of Iso(U) and a point x1 ∈ U.
Let G1 = {e} be a trivial group, trivially acting on U by isometries. Clearly, the restriction of this action on the

G1-orbit of {x1} is free.
Assume that for an n ∈ N one has chosen recursively a finite group Gn, an action σn by isometries on U, and a

collection of points {x1, . . . , x2n} in such a way that the restriction of the action σn to the Gn-orbit of {x1, x2, . . . , x2n)

is free.
Using Lemma 2.8, choose a finite group Gn+1 containing (an isomorphic copy) of Gn, an element f̃n ∈ Gn+1 and

an action σn+1 of Gn+1 on U by isometries such that for every j = 1,2, . . . ,2n and each g ∈ Gn one has

σn(g)xj = σn+1(g)xj ,

the elements x2n+j = f̃n(xj ), j = 1,2, . . . ,2n, are all distinct from any of xi , i � 2n, the restriction of the action of
Gn+1 on the Gn+1-orbit of {x0, x1, . . . , x2n+1} is free, and

dU

(
fn(xj ), f̃n(xj )

)
< 2−n, j � 2n.

The subset X = {xi : i ∈ N+} is everywhere dense in U. Indeed, for each n ∈ N the subset {fi(xn): i � n} is
everywhere dense in U, and since it is contained in the 2−n-neighborhood of {f̃i (xn): i � n} ⊂ X, the statement
follows.
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The group G = ⋃∞
i=1 Gn is locally finite. Now let g ∈ G. For every i ∈ N+, the value g · xi is well-defined as the

limit of an eventually constant sequence, and determines an isometry from an everywhere dense subset X ⊂ U into
U. Consequently, it extends uniquely to an isometry from U into itself. If g,h ∈ G, then the isometry determined by
gh is the composition of isometries determined by g and h: every x ∈ X has the property (gh)(x) = g(h(x)), once
x = xi , i � N , and g,h ∈ GN , and this property extends over all of U. Thus, G acts on U by isometries (which are
therefore onto).

Finally, notice that G is everywhere dense in Iso(U). It is enough to consider the basic open sets of the form{
f ∈ Iso(U): d

(
f (xi), g(xi)

)
< ε, i = 1,2, . . . , n

}
,

where g ∈ Iso(U), n ∈ N, and ε > 0. Since F is everywhere dense in Iso(U), there is an m ∈ N with n � 2m−1, 2−m <

ε/2, and d(fm(xi), g(xi)) < ε/2 for all i = 1,2, . . . , n. One concludes: d(f̃m(xi), g(xi)) < ε for i = 1,2, . . . , n, and
f̃m ∈ Gm ⊂ G, which settles the claim. �

A further refinement of our argument leads to another approximation Theorem 2.13, which states that Iso(U) is a
Lévy group and forms the central result of the present paper. The proof will interlace the recursion steps in the proof of
Theorem 2.9 with an adaptation of an idea used in the proof of the following result to obtain, historically, the second
ever example of a Lévy group, after U(�2).

Theorem 2.10. (See Glasner [4]; Furstenberg and Weiss (unpublished).) Let G be a compact metric group, and let d

be an invariant metric on G. The group L1([0,1];G) of all equivalence classes of Borel maps from the unit interval
[0,1] to G, equipped with the metric d1(f, g) = ∫ 1

0 d(f (x), g(x))dx (cf. [10]), is a Lévy group.

The following well-known and important result is being established using the probabilistic techniques (martin-
gales). (Cf. the more general Theorem 7.8 in [22] or Theorem 4.2 in [15].)

Theorem 2.11. Let (Xi, di,μi), i = 1,2, . . . , n, be metric spaces with measure, each having finite diameter ai . Equip
the product X(i) = ∏n

i=1 Xi with the product measure
⊗n

i=1 μi and the �1-type (Hamming) metric

d(x, y) =
n∑

i=1

di(xi, yi).

Then the concentration function of X satisfies

αX(ε) � 2e−ε2/8
∑n

i=1 a2
i .

Let us consider the following particular case. Let (X,d) be a finite metric space, and let Z be a finite set equipped
with the normalized counting measure μ�, that is, μ�(A) = |A|/|Z|. We will equip the collection XZ of all maps from
Z to X with the L1(μ�)-metric:

d1(f, g) =
∫
Z

d
(
f (z), g(z)

)
dμ�(z).

This is just the �1-metric normalized:

d1(f, g) = 1

|Z|
∑
z∈Z

d
(
f (z), g(z)

)
.

It is also known as the (generalized) normalized Hamming distance. In particular, if a = diam(Z) is the diameter of
Z, then the diameter of every “factor” of the form {z} × Z is a/n, and Theorem 2.11 gives the following.

Corollary 2.12. Let (X,d) is a finite metric space of diameter a and let n ∈ N. Let the metric space Xn be equipped
with the normalized counting measure and the normalized Hamming distance. Then the concentration function of
mm-space Xn satisfies

αXn(ε) � 2e−nε2/8a2
.
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Notice that Xn with the above metric contains an isometric copy of X, consisting of all constant functions.
If a finite group G acts on a finite metric space X by isometries, then this action naturally extends to an action

of Gn on Xn by isometries, where the latter set is equipped with the normalized Hamming, or L1(μ�), metric. If the
action of G on X is free, then so is the action of Gn on Xn.

Theorem 2.13. The isometry group Iso(U) of the Urysohn space, equipped with the standard Polish topology, is a
Lévy group. Moreover, the groups in the approximating Lévy family can be chosen finite.

Proof. As in the proof of Theorem 2.9, choose an everywhere dense subset F = {fi : i ∈ N+} of Iso(U) and a point
x1 ∈ U. Set G1 = {e} and X1 = {x1}. Assume that for an n ∈ N+ a finite group Gn, an action σn by isometries on
U, and a finite Gn-invariant subset Xn ⊂ U have been chosen. Also assume that Gn acts on Xn freely. Let an be the
diameter of Xn. Choose mn ∈ N so that

mn � 8a2
nn. (4)

The finite metric space X̃n = X
mn
n (with the L1(μ�)-metric) contains Xn as a subspace of constant functions, therefore

one can embed X̃n into U so as to extend the embedding Xn ↪→ U (the finite injectivity of U).
The group G̃n = G

mn
n acts on the metric space X̃n freely by isometries. Since every embedding of a compact

subspace into U is a g-embedding, one can simultaneously extend the action of G̃n to a global action, σ̃n, on U by
isometries. Now construct the group Gn+1 and its action σn+1 by isometries exactly as in the proof of Theorem 2.9,
but beginning with G̃n instead of Gn and X̃n instead of {x1, . . . , x2n}. Namely, using Lemma 2.8, choose a finite group
Gn+1 containing (an isomorphic copy) of G̃n, an element f̃n ∈ Gn+1 and an action σn+1 of Gn+1 on U by isometries
such that for every x ∈ X̃n and each g ∈ Gn one has

σn(g)x = σn+1(g)x,

the sets f̃n(X̃n) and X̃n are disjoint, the restriction of the action of Gn+1 on the Gn+1-orbit of X̃n is free, and

dU

(
fn(x), f̃n(x)

)
< 2−n for all x ∈ X̃n.

Denote Xn+1 = Gn+1 · X̃n. The step of recursion is accomplished.
The union G = ⋃∞

i=1 Gn = ⋃∞
i=1 G̃n is, like in the proof of Theorem 2.9, an everywhere dense locally finite

subgroup of Iso(U), and it only remains to show that the groups G̃n, n ∈ N+, form a Lévy family with regard to the
uniform structure inherited from Iso(U).

First, consider the groups G̃n = G
mn
n equipped with the L1(μ�)-metric formed with regard to the discrete (that is,

{0,1}-valued) metric on Gn. If Vε is the ε-neighborhood of the identity, then for every g ∈ Vε and each x ∈ X̃n = X
mn
n

one has d1(g · x, x) < ε · an, where an = diamXn. Consequently, if g ∈ Vε/an , then d1(g · x, x) < ε.
Now let us turn to the group topology induced from Iso(U). Let

V [x1, . . . , xt ; ε] = {
f ∈ Iso(U): ∀i = 1,2, . . . , n, dU

(
xi, f (xi)

)
< ε

}
be a standard neighborhood of the identity in Iso(U). Here one can assume without loss of generality, that xi ∈⋃∞

n=1 Xn, i = 1,2, . . . , t , because the union of Xn’s is everywhere dense in U. Let k ∈ N be such that x1, x2, . . . , xt ∈
Xk . For all n � k, if A ⊆ G̃n contains at least half of all elements, the set Vε/anA is of Haar measure (taken in G̃n) at

least 1 − 2e−mnε/8a2
n , according to Theorem 2.11. The set V [x1, . . . , xt ; ε] · A contains Vε/anA and so the measure of

its intersection with G̃n is at least as big. According to the choice of numbers mn (Eq. (4)),

μn

(
G̃n ∩ (

V [x1, . . . , xt ; ε] · A))
� 1 − e−nε2

.

By Proposition 1.13, the family of groups G̃n is Lévy. �
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