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Abstract

As more and more genomes are sequenced, evolutionary biologists are becoming increasingly
interested in evolution at the level of whole genomes, in scenarios in which the genome evolves through
insertions, deletions, and movements of genes along its chromosomes. In the mathematical model
pioneered by Sankoff and others, a unichromosomal genome is represented by a signed permutation
of a multiset of genes; Hannenhalli and Pevzner showed that the edit distance between two signed
permutations of the same set can be computed in polynomial time when all operations are inversions.
El-Mabrouk extended that result to allow deletions (or conversely, a limited form of insertions which
forbids duplications). In this paper, we extend El-Mabrouk’s work to handle duplications as well as
insertions and present an alternate framework for computing (near) minimal edit sequences involving
insertions, deletions, and inversions. We derive an error bound for our polynomial-time distance
computation under various assumptions and present preliminary experimental results that suggest
that performance in practice may be excellent, within a few percent of the actual distance.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Biologists can infer the ordering and strandedness of genes on a chromosome, and thus
represent each chromosome by an ordering of signed genes (where the sign indicates the
strand). These gene orders can be rearranged by evolutionary events such as inversions
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(also called reversals) and transpositions and, because they evolve slowly, give biologists
an important new source of data for phylogeny reconstruction (see, e.g.,[6,13,14,16]).
Appropriate tools for analyzing such data may help resolve some difficult phylogenetic
reconstruction problems. Developing such tools is thus an important area of research—
indeed, the recent DCAF symposium[18] and IMA/RECOMB Workshop on Comparative
Genomics[9] were devoted in good part to this topic.

A natural optimization problem for phylogeny reconstruction from gene-order data is to
reconstruct an evolutionary scenario with a minimum number of the permitted evolutionary
events on the tree. This problem is NP-hard for most criteria—even the very simple problem
of computing a median1 of threegenomes with identical gene content under such models
is NP-hard[4,15]. The problem of computing the edit distance between two genomes is
itself difficult: for instance, even with equal gene content and with only inversions allowed,
the problem is NP-hard for unsigned permutations[3].

Hannenhalli and Pevzner[8] made a fundamental breakthrough by developing an elegant
theory for signed permutations and providing a polynomial-time algorithm to compute the
edit distance (and the corresponding shortest edit sequence) between two signed permuta-
tions under inversions; Bader et al.[1] later showed that this edit distance is computable
in linear time. El-Mabrouk[7] extended the results of Hannenhalli and Pevzner to the
computation of edit distances for inversions and deletions and also for inversions and non-
duplicating insertions; she also gave an approximation algorithm with bounded error for
computing edit distances in the presence of all three operations (inversions, deletions, and
non-duplicating insertion). Liu et al. showed that edit distances that allow only inversions
and deletions can be computed in linear time[10].

In this paper, we extend El-Mabrouk’s work by providing a polynomial-time approxi-
mation algorithm with bounded error to compute edit distances under inversions, deletions,
and unrestricted insertions (including duplications) from the perfectly sorted sequence (the
identity sequence) to any other. Our approach is based on a new canonical form for edit
sequences: we show that shortest edit sequences can be transformed into equivalent se-
quences of equal length in which all insertions are performed first, followed by all in-
versions, and then by all deletions. This canonical form allows us to take advantage of
El-Mabrouk’s exact algorithm for inversions and deletions, which we then extend by find-
ing the best possible prefix of insertions, producing an approximate solution with bounded
error.

Section2 introduces some notation and definitions. Section3 gives two key theorems
that enable us to reduce edit sequences to a canonical form. Section4 outlines our method
for handling unrestricted insertions. Section5 presents the complete algorithm as well as an
analysis of its error bounds. Section6gives some empirical results for the method presented
here. Section7 introduces a more general method that can be applied to arbitrary pairs of
sequences.

1 The median ofk genomes is a genome that minimizes the sum of the pairwise distances between itself and
each of thek given genomes.
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2. Notation and definitions

We denote a particular edit sequence with a Greek letter,�, its operations by subscripted
letters,oi , and its contents enclosed in angle brackets:� = 〈o1, o2, . . . , on〉. We assume
that the desired (optimal) edit sequence is that which uses the fewest operations, with all
operations counted equally.As in the standard statement of the equal gene-content problem,
we move from a subject sequenceS to a perfectly sorted target sequenceT with sequence
elements inZ.

We say that substringsi is adjacentto substringsj whenever they occupy sequential
indices in a string. Let signmin(sl) be the sign of the element of smallest index insl and
signmax(sl) be the sign of the element of largest index insl ; we define theparity, �, of a
pair of ordered strings(si, sj ) as signmin(si) · signmax(sj ).

Let � be theorderingdefined whensi andsj are single-element strings consisting of the
elementsei andej , respectively; we just set� = ei − ej . As an example, suppose we have
si = 5 andsj = 3; then we have� = ei − ej = 5 − 3 = 2. Given a subject sequence and
the target sequence, we say that two substrings,si andsj , arecorrectly orientedrelative to
each other if and only if:
(1) si or sj is ε.
(2) si andsj are both of length 1 and adjacent with ordering� in the target and source

sequences.
(3) All substrings insi are correctly oriented relative to each other, all substrings insj are

correctly oriented relative to each other andsi is adjacent tosj with parity� in the target
and source sequences.

We say that an operationsplitssi andsj if the two sequences are correctly oriented before
the operation, but not after it.

3. Canonical forms

In this section, we prove useful results about shortest transformation sequences, results
that will enable us to obtain acanonical forminto which any shortest sequence can always
be transformed without losing optimality.

We make use throughout our derivation of operation reindexing; this reindexing provides
a pliability to the indices that operations act upon so that their order can be manipulated. For
example, take the string(1, 2, 3, −5, −4, 6, 7, 11, 12) and suppose that the next operation
to perform is an inversion starting at index 4 and going to index 7 (inclusive). This operation
yields the new string(1, 2, 3, −7, −6, 4, 5, 11, 12). Now, suppose that, in order to achieve a
desired form, we needed an insertion of the element 10 at index 4 to precede the application
of this inversion. The goal is to maintain the indices of the inversion so that it continues
to act upon the substring(−5, −4, 6, 7). After the application of the insertion we are left
with the string(1, 2, 3, 10, −5, −4, 6, 7, 11, 12). In order to maintain the integrity of the
inversion, we adjust the start index of an inversion to be at 5 and the end index to be at
8. Application of the inversion from index 5 to index 8 will now yield the desired string
(1, 2, 3, 10, −7, −6, 4, 5, 11, 12). The other types of reindexing that we use for inversions
and deletions follow a similar pattern.
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Our first theorem extends an earlier result of Hannenhalli and Pevzner (who proved that
a sorted substring need not be split in an inversion-only edit sequence[8]) by showing that,
whenever two substrings are correctly oriented, there is always a minimum edit sequence
that does not split them. The idea behind this result is to show that the optimal edit sequence
can be rewritten to keep the substrings together. First definemove(sx, sy, �) to movesx to
the immediate left ofsy resulting with parity� betweensx andsy . Given an edit sequence
〈o1, o2, . . . , ok, . . . , om, . . .〉, where operationok is responsible for splitting the substrings
si and sj and operationom returns them to their correctly oriented state, we rewrite the
operations to keep the substrings together. To accomplish this, eachox , for k� x�m, is
expanded into a tuple of operations〈fx, ôx, tx〉, in whichfx andtx aremove operations.
This tuple is constructed so that thexth tuple is functionally equivalent toox andtx is the
inverse offx+1; furthermore, the leading and trailing tuples are designed so thatfk andtm
are identity operations.

We illustrate this construction through a simple example. Suppose we have the se-
quence(14, 15, 11, 12, 13, 16) and the sorting sequence isinv(2, 5), inv(1, 4), inv(4, 4),
inv(5, 5). The first operation in this sequence splits the substring 14, 15 and the fourth
restores it. We can construct a new sorting sequence of the same length that preserves the
adjacency 14, 15 by constructing the tuples as follows:
(1) inv(2, 5) → 〈move(14, 15, 1), inv(1, 5), move(−14, −13, −1)〉,
(2) inv(1, 4) → 〈move(14, 16, −1), inv(1, 3), move(−14, −15, 1)〉,
(3) inv(4, 4) → 〈move(−14, 16, −1), inv(ε), move(−14, −15, 1)〉,
(4) inv(5, 5) → 〈move(−14, 16, −1), inv(4, 5), move(14, 15, 1)〉.
The original sorting sequence produces:

14, 15, 11, 12, 13, 16
inv(2,5)
⇒ 14, −13, −12, −11, −15, 16
inv(1,4)
⇒ 11, 12, 13, −14, −15, 16
inv(4,4)
⇒ 11, 12, 13, 14, −15, 16
inv(5,5)
⇒ 11, 12, 13, 14, 15, 16.

The new sequence of triples produces:

14, 15, 11, 12, 13, 16
move(14,15,1)
⇒ 14, 15, 11, 12, 13, 16

inv(1,5)
⇒ −13, −12, −11, −15, −14, 16
move(−14,−13,−1)
⇒ 14, −13, −12, −11, −15, 16

14, −13, −12, −11, −15, 16
move(14,16,−1)
⇒ −13, −12, −11, −15, −14, 16

inv(1,3)
⇒ 11, 12, 13, −15, −14, 16
move(−14,−15,1)
⇒ 11, 12, 13, −14, −15, 16

11, 12, 13, −14, −15, 16
move(−14,16,1)
⇒ 11, 12, 13, −15, −14, 16

inv(ε)
⇒ 11, 12, 13, −15, −14, 16
move(−14,−15,−1)
⇒ 11, 12, 13, 14, −15, 16

11, 12, 13, 14, −15, 16
move(−14,16,−1)
⇒ 11, 12, 13, −15, −14, 16
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inv(4,5)
⇒ 11, 12, 13, 14, 15, 16
move(14,15,1)
⇒ 11, 12, 13, 14, 15, 16

It is evident that the end product of each triple (the rightmost column of permutations) is
the same as that of the corresponding original operation; it can also easily be seen that the
permutation before the third operation of each triple is identical to that produced by the first
operation of the following triple (the middle column of permutations in each case). The new
sorting sequence,inv(1, 5), inv(1, 3), inv(ε), inv(4.5), produces:

14, 15, 11, 12, 13, 16
inv(1,5)
⇒ −13, −12, −11, −15, −14, 16
inv(1,3)
⇒ 11, 12, 13, −15, −14, 16
inv(ε)
⇒ 11, 12, 13, −15, −14, 16

inv(4,5)
⇒ 11, 12, 13, 14, 15, 16

Thus it preserves the 14, 15 adjacency throughout; moreover, we see directly that the new
sorting sequence is in fact shorter, since one of its operations is an identity.

This example illustrates how the construction of the tuples can create an operation se-
quence where each tuple has the same effect as its corresponding operation in the original
sequence and the opposing move operations cancel one another’s effect (and can thus be
discarded).

We formalize this insight with the following theorem—whose proof, easy but tedious, is
omitted.

Theorem 1. If subsequencessi andsj are correctly oriented relative to each other at some
step during the execution of the minimum edit sequence�, say at the kth step, then there is
another minimum edit sequence, call it �′, that has the same firstk steps as�, and never
splitssi andsj . (For simplicity we assume that duplications do not arise.)

Our next theorem shows that it is always possible to take any minimum edit sequence
and transform it into a form where all of the insertions come first, followed by all of the
inversions and then all of the deletions. The proof is again based on the idea of rewriting
each operation preceding the first insert such that, at the beginning and end of each operation
rewrite group, the sequence is the same as at each step in the original sequence, but when the
terms are regrouped and cancellation occurs, the insert is pushed to the front of the operator
sequence. (Once again, each rewrite group is a triple, but this time, the first member of each
triple is an insertion, while the third member is a deletion.) Since each step produces the
same sequence, we know that the resulting edit sequence is correct and the cancellation
maintains the same number of operations in the new sequence as in the old one.

Theorem 2. Given a minimal edit sequence� = 〈o1, o2 . . . ok−1, ins1, ok+1 . . . om〉 there
is a �′ such that(i) �′ ≡ �; (ii) |�′| = |�|; and (iii) �′ = 〈ins1 . . . insp, inv1 . . . invq,

del1 . . . delr 〉.

Proof. For eachoj � j� k − 1, set ôj = (ins′j , o′
j ,del

′
j ), with del′j = ins′−1

j+1 for

j ∈ [1, k − 2] and ins−1
1 for j = k − 1, whereins′j is the inverse ofdel′j and o′

j is
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oj reindexed to compensate for the insertion. Thusdel′j deletes whatever was inserted
by ins′j wheno′

j is applied and the construction of each tuple ensuresoj ≡ ôj .
Write

�′ = 〈ô1 . . . , ôk−1, ins1, ok+1 . . . , om〉

Expanding each term̂oj , we get

�′ = 〈(ins′1, o′
1,del

′
1), (ins

′
2, o

′
2,del

′
2), . . . , (ins

′
k−1, o

′
k−1,del

′
k−1), ins1, . . . , om〉.

Sincedel′j and ins′j+1 as well asdel′k−1 and ins1 cancel by construction, the expression
reduces to

〈ins′1, o′
1, o

′
2, . . . , o

′
k−1, ok+1, . . . , om〉.

The construction foro′
j ensures that eacĥoj sequence is equivalent tooj and the cancellation

of the insanddel operators inôj , results in|�| = |�′|.
This reasoning shows how to move the first insertion to the front of the sequence; further

insertion operations can be moved similarly.�

These two theorems allow us to define a canonical form for edit sequences. That canonical
form includes only inversions and deletions in its second and third parts, which is one of
the cases for which El-Mabrouk gave an exact polynomial-time algorithm. We can use her
algorithm to find the minimal edit sequence of inversions and deletions, then reconstruct the
preceding sequence of insertions. Because this approach fixes the sequence of inversions
and deletions without taking insertions into account, and then only addresses insertions, it
is an approximation, not an exact algorithm. We shall prove that the error is bounded and
also give evidence that, in practice, the error is very small.

4. Unrestricted insertions

4.1. The problem

The presence of duplicates in the sequence makes the analysis much more difficult; in
particular, it prevents a direct application of the method of Hannenhalli and Pevzner’s and
thus also of that of El-Mabrouk’s. We can solve this problem by assigning distinct names
to each copy, but this approach begs the question of how to assign such names. Sankoff
proposed the exemplar strategy[17], which attempts to identify, for each family of gene
copies, the “original” gene (known in biology asortholog) as distinct from its copies (known
is biology asparalogs), and then discards all copies, thereby reducing a multiset problem
to the simpler set version. However, identifying exemplars is itself NP-hard[2]—and much
potentially useful information is lost by discarding copies. Fortunately, we found a simple
selection method, based on substring pairing, that retains a constant error bound.
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4.2. Sequence covers

Our job is to pick a group of substrings from the subject such that every element in the
target appears in one of those substrings. To formalize and use this property, we need a few
definitions. Call a substringe1e2 . . . en contiguousif we have∀j, ej+1 = ej + 1. Given a
contiguous substringsi , define thenormalizedversion ofsi to besi itself if the first element
in si is positive andinv(si) otherwise; thus the normalized version ofsi is a substring of the
identity. Call a subsequenceTnd of the target stringT , thenon-deletedportion ofT if Tnd,
viewed as a set, is the largest subset of elements inT that is also contained in the subject
stringS (also viewed as a set). (Note thatTnd is not a substring, but a subsequence; that
is, it may consist of several disjoint pieces ofT ; thus, in particular, it is unique.) Given a
subsetC of the set of normalized maximal contiguous substrings inS, we define�C to be
the string produced by ordering the strings ofC lexicographically and concatenating them
in that order, removing any overlap. We say that a setC of contiguous substrings fromS is
acoverfor T if Tnd is �C. Note that a cover must contain only contiguous strings. We call
thesizeof a cover the number of string fromC used in�C.

For example, pickT = (1, 2, 3, 4, 5, 6, 7) andS = (3, 4, 5, −4, −3, 5, 6, 7). The set of
normalized maximal contiguous substrings is{(3, 4, 5), (3, 4), (5, 6, 7)};Tnd is(3, 4, 5, 6, 7);
a possible cover forT is{(3, 4, 5), (5, 6, 7)}; and�Cp is(3, 4, 5, 6, 7). The size of this cover
is 2.

Let n be the size of (number of operations in) the minimal edit sequence.

Theorem 3. There exists a cover forS of size2n + 1.

Proof. By induction onn. Forn = 0, S itself forms its own cover, since it is a contiguous
sequence; hence the cover has size 1, obeying the bound. For the inductive step, note that
deletions are irrelevant, since the cover only deals with the non-deleted portion; thus we
need only verify that insertions and inversions obey the bound. An insertion between two
contiguous sequences simply adds another piece, while one inside a contiguous sequence
splits it and adds itself, for an increase of two pieces. Similarly, an inversion within a
contiguous sequence cuts it into at most three pieces, for a net increase of two pieces, while
an inversion across two or more contiguous sequences at worst cuts each of the two end
sequences into two pieces, leaving the intervening sequences contiguous, also for a net
increase of two pieces. Since we have(2(n − 1) + 1) + 2 = 2n + 1, the bound is obeyed
in all cases. �

4.3. Building the minimal cover

LetC(S) be the set of all (normalized versions of) maximal contiguous substrings ofS.
We will build our cover greedily from left to right with this simple idea: if, at some stage,
we have a collection of strings in the current cover that, when run through the� operator,
produces a string that is a prefix of lengthi of our targetT , we consider all remaining strings
in C(S) that begin at or to the left of positioni (i.e., that can extend the current cover) and
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select that which extends farthest to the right of positioni. Although this is a simple (and
efficient) greedy construction, it actually returns a minimum cover, as we can easily show
by contradiction.

Proposition 4. The cover derived by our greedy algorithm is optimal.

Proof.We proceed by contradiction. Assume there exists a cover, sayCmin, that is smaller
than the one provided by our construction,Cconst. Order the sequences inCmin by
increasing value of the smallest index in the sequence. Let� be the smallest element, say
the kth element in this order such that� is not the same as thekth sequence ofCconst
under the same order. We have three cases:
(1) During the construction ofCconst, � was not selected forCconst because the previous

selection of a cover element inCconst did not cover all the way to the start index of�.
Then� is not the first differing element in the order, a contradiction.

(2) During the construction ofCconst, � was not selected forCconst because there was a
sequence that had the same start index as�, but covered fewer elements than�. But
this contradicts the selection criteria for our construction.

(3) During the construction ofCconst, � was not selected forCconst because there was a
sequence that had the same start index as�, but covered more elements than�. Then
Cconsthas at most as many elements asCmin, a contradiction. �

5. Our algorithm

Now that we have a method to construct a minimal cover, we can assign unique labels
to all duplicates. which in turn enables the use of El-Mabrouk’s approximation method.
However, for greater control of the error and to cast the problem into a more easily analyzed
form, we choose to use El-Mabrouk’s exact method for deletions only, and then to extend
the resulting solution to handle the needed insertions.

Theorem 5. Let � be the minimal edit sequence fromS to T , using l insertions andm
inversions. LetTir denoteT with all of the elements that do not appear inS removed. Let�′
be the minimal edit sequence of just inversions and deletions fromS to Tir . The extension
�̂ of �′ (with the needed insertions) has at mostl + m insertions.

Proof. Clearly, our method will do at least as well as looking at each inserted string inT

and taking that as an insertion for�̂. Now, looking at the possible effect of each type of
operation on splitting a previous insertion, we have 3 cases:
(1) Inserting another substring cannot split an inserted substring—it just creates a longer

string of inserted elements. (Ifx is inserted,u v1v2 w → u v1xv2 w)

(2) Deletion of a substring cannot split an inserted substring—it just shortens it, even per-
haps to the point of eliminating it and thus potentially merging two neighboring strings.

(If v2 is deleted,u v1v2v3 w → u v1v3 w)
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(3) An inversion may split an inserted substring into two separate strings, thus increasing
the number of inserted substrings by one. It cannot split a pair of inserted substrings
because the inversion only rearranges the inserted substrings; it does not create new

contiguous substrings. (Ifu2v1 is the substring inverted,u1u2 v1v2 w → u1 -v1 -

u2 v2 w)

Thus, if we havel insertions andm inversions in�, there can be at mostl + m� |�| = n

inserted substrings inT . �

If our selected coverC (of S) was the same as an optimal coverCo (of S), we could sort
our string with the optimal edit sequence�. Thus we can count how far off we are from|�|
for each wrong choice in our cover. The proof of this result is a constructive case analysis
and is quite tedious. But to give an idea of how one would proceed, we provide a brief
example. Let(sa, sx, su, sy, sz) be substrings ofS, let the′ denote that a particular substring
was marked as a copy by a given cover, and let�tail be the inversion and deletion portion of�.
SetS = (sa . . . sxsusy . . . sz) andT = (sa . . . sxsusy . . . su . . . sz); let T renamed according
to the optimal covering be denotedTopt = (sa . . . sxs

′
usy . . . su . . . sz); and letT renamed

according to the chosen covering be denotedTchosen= (sa . . . sxsusy . . . s′
u . . . sz). Further,

suppose thatsu is at indexI1 in S ands′
u, according toTopt, is inserted at indexI2. The

construction proceeds by movingsu to the location of the insertion ofs′
u, then inserting

s′
u in the location thatsu was in. Thus, for each wrong choice in the cover, we need three

inversions to move and one to insert. In the given example,su should be moved toI2 and
s′
u should be inserted at indexI1. Now �tail can be applied to this modified sequence to

produceTchosen.
If the minimal edit sequence isn operations long, then we have|C|� 2n + 1. Assum-

ing that each of the selections inC is in error and taking the results from above, the worst-
case sequence that can be constructed fromC is bounded by 4(2n + 1) = 8n + 4
operations. Finally the extension of the edit sequence to include the insertions adds at most
n insertions. Thus, the edit sequence produced by the proposed method has at most 9n + 4
operations.

Theorem 6. The algorithm has an error bounded by9n + 4where n is the number of edit
operations in the minimal edit sequence.

While this error bound is large, it is a constant; it is also unrealistically large, as the
assumptions used are not simultaneously realizable. Furthermore, the bounds can be easily
computed on a case-by-case basis in order to provide information on the accuracy of the
results for each run. Thus, we expect the error encountered in practice to be much lower
and that further refinements in the algorithm and error analysis will bring the bound to a
reasonable level.

6. Experimental results

To test our algorithm and get an estimate of its performance in practice, we ran simulations.
We generated pairs of sequences, one the sequence(1, 2, 3, . . . , n), for n = 200, 400, 800,
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Fig. 1. Experimental results for 200 genes. Left: generated edit length vs. reconstructed length; right: the ratio of
the two.

and the other derived from the first through an edit sequence. Our edit sequences, of various
lengths, include 80% of randomly generated inversions (the two boundaries of each inversion
are uniformly distributed through the array), 10% of deletions (the left end of the deleted
string is selected uniformly at random, the length of the deleted string is given by a Gaussian
distribution of mean 20 and deviation 7), and 10% of insertions (the locus of insertion is
uniformly distributed at random and the length of the inserted string is as for deletion), with
half of the insertions consisting of new elements and the other half repeating a substring of
the current sequence (with the initial position of the substring selected uniformly at random).
Thus, in particular, the expected total number of duplicates in the subject sequence equals
the generated number of edit operations—up to 400 in the case of 800-gene sequences. We
ran 10 instances for each combination of parameters (in the figures below, we show the
average, minimum, and maximum values over the 10 instances).

The results are gratifying: the error is consistently very low, with the computed edit
distance staying below 3% of the length of the generated edit sequence in the linear part of
the curve—that is, below saturation. (Of course, when the generated edit sequence gets long,
we move into a regime of saturation where the minimum edit sequence becomes arbitrarily
shorter than the generated one.) Figs.1–3 show our results for sequences of 200, 400, and
800 genes, respectively.

7. Moving beyond the identity

To extend these results, we are studying the same problem with arbitrary subjects and
targets; in other words, the target is no longer restricted to unique elements—a much more
useful setting, since the genomes of most species contain many duplicated genes.

Building the cover with the identity permutation as the target was relatively easy, because
all candidate cover elements from the subject were immediately apparent. With an arbitrary
target, this correlation no longer exists. We do not yet know whether a minimal cover can be
built efficiently between two arbitrary sequences. However, cases where it is hard to find a
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Fig. 2. Experimental results for 400 genes. Left: generated edit length vs. reconstructed length; right: the ratio of
the two.
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Fig. 3. Experimental results for 800 genes. Left: generated edit length vs. reconstructed length; right: the ratio of
the two.

minimal cover are quite specialized and probably not seen in nature; moreover, when such
a case does arise, it is unlikely to cause a large error.

We have implemented an algorithm to find such a cover and incorporated it into our code
base; we have started to evaluate our approach and give here some preliminary results.
We test this new method against tree distances rather than pairwise distances, since it is
always tree distances that we need in phylogenetic reconstruction. Thus, in our current
experiments, we generate a tree according to some model, evolve genomes down the tree
under inversions, deletions, insertions, and duplications, and store the distance (based on
the number of operations on the tree edges between the two leaves) between each pair of
leaves in the tree. We then compare our distance estimates to these stored values.

Fig. 4 shows results obtained on trees of 16 taxa, where the root genome had 800 genes,
the edge lengths (number of evolutionary events along the edge) followed by a Uniform



358 M. Marron et al. / Theoretical Computer Science 325 (2004) 347–360

 0

 50

 100

 150

 200

 0  50  100  150  200

C
al

cu
la

te
d 

E
di

t L
en

gt
hs

Generated Edit Lengths

y=x

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300

C
al

cu
la

te
d 

E
di

t L
en

gt
hs

Generated Edit Lengths(b)

(c)

(a)

y=x

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250  300  350  400

C
al

cu
la

te
d 

E
di

t L
en

gt
hs

Generated Edit Lengths

y=x

Fig. 4. Tree distance estimates on trees of 16 taxa with an initial content of 800 genes and various expected tree
edge lengths: (a) 20; (b) 40; (c) 60.
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distribution around the indicated mean, and specific events were generated according to the
same system as described in our earlier experiments. These results are representative of a
variety of evolutionary parameters that we have used. Although the results are encouraging,
it can be seen that they usually overestimate the tree distance and also that they suffer
from significant variance when edges are long. Thus, our next step is to look at techniques
that can be used to reduce the variance. Our initial work indicates that much of the error
sensitivity is a result of the cover selection. Our goal is to improve selection heuristics and
apply methods to reduce the chances that a single poor selection will bias the result too
much. Fortunately, this problem is amenable to a large number of standard approximation
and search techniques.

With these improvements and further empirical tests we expect to reduce the error of the
method substantially and then to apply it to the problem of tree reconstruction and labeling
of the internal nodes.

8. Conclusion and future directions

An exact polynomial-time algorithm for the computation of genomic distances under
arbitrary insertions, deletions, and inversions remains to be found, but our work takes us a
step closer in that direction. More thorough experimental testing will determine how well our
algorithm does in practice under different regimes of insertion, deletion, and duplication, but
our results to date are very encouraging. In order to be usable in many reconstruction algo-
rithms, however, a further, and much more complex, computation is required: the median of
three genomes. This computation is NP-hard even under inversions only[4,15]—although
the algorithms of Caprara[5] and of Siepel and Moret[19] have done well in practice (see,
e.g.,[12]). Good bounding is the key to such computations; our covering technique may be
extendible to median computations.
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