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Abstract

As is well known,h-vectors of simplicial convex polytopes are characterized. Thoseh-vectors
satisfy Dehn–Sommerville equations and some inequalities conjectured by P. McMullen and
first proved by R. Stanley using toric geometry. The boundary of a simplicial convex polytope
determines a Gorenstein* simplicial poset but there are many Gorenstein* simplicial posets
which do not arise this way. However, it is known thath-vectors of Gorenstein* simplicial
posets still satisfy Dehn–Sommerville equations and that every component in theh-vectors
is non-negative. In this paper we prove thath-vectors of Gorenstein* simplicial posets must
satisfy one more subtle condition conjectured by R. Stanley and complete the characterization
of h-vectors of Gorenstein* simplicial posets. Our proof is purely algebraic but the idea of the
proof stems from topology.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A simplicial poset P(also called aboolean posetand aposet of boolean type) is
a finite poset with a smallest element0̂ such that every interval[0̂, y] for y ∈ P

is a boolean algebra, i.e.,[0̂, y] is isomorphic to the set of all subsets of a finite
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set, ordered by inclusion. The set of all faces of a (finite) simplicial complex with
empty set added forms a simplicial poset ordered by inclusion, where the empty set is
the smallest element. Such a simplicial poset is called theface posetof a simplicial
complex, and two simplicial complexes are isomorphic if and only if their face posets
are isomorphic. Therefore, a simplicial poset can be thought of as a generalization of
a simplicial complex.

Although a simplicial posetP is not necessarily the face poset of a simplicial com-
plex, it is always the face poset of a CW-complex�(P ). In fact, to eachy ∈ P \{0̂} =
P , we assign a (geometrical) simplex whose face poset is[0̂, y] and glue those geo-
metrical simplices according to the order relation inP. Then we get the CW-complex
�(P ) such that all the attaching maps are inclusions. For instance, if two simplices
of a same dimension are identified on their boundaries via the identity map, then it
is not a simplicial complex but a CW-complex obtained from a simplicial poset. The
CW-complex�(P ) has a well-defined barycentric subdivision which is isomorphic to
the order complex�(P ) of the posetP . Here, �(P ) is a simplicial complex on the
vertex setP whose faces are the chains ofP .

We say thaty ∈ P has ranki if the interval [0̂, y] is isomorphic to the boolean
algebra of ranki (in other words, the face poset of an(i − 1)-simplex), and the
rank of P is defined to be the maximum of ranks of all elements inP. Let d =
rankP . In exact analogy to simplicial complexes, thef-vector of the simplicial poset
P, (f0, f1, . . . , fd−1), is defined by

fi = fi(P ) = #{y ∈ P | ranky = i + 1}

and theh-vector ofP, (h0, h1, . . . , hd), is defined by the following identity:

d∑
i=0

fi−1(t − 1)d−i =
d∑
i=0

hit
d−i ,

wheref−1 = 1, soh0 = 1. Note that the number of facets ofP, that isfd−1, is related
to h-vectors as follows:

fd−1 =
d∑
i=0

hi. (1.1)

WhenP is the face poset of a simplicial complex�, the f- andh-vector ofP coincide
with the classicalf- and h-vector of the simplicial complex�, respectively.
f- and h-vectors have equivalent information, buth-vectors are often easier than

f-vectors. Stanley[8] discussed characterization ofh-vectors for certain classes of sim-
plicial posets. For example, he proved that a vector(h0, h1, . . . , hd) of integers with
h0 = 1 is theh-vector of a Cohen–Macaulay simplicial poset of rankd if and only if
hi�0 for all i. Gorenstein* simplicial posets are more special than Cohen–Macaulay
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simplicial posets. If the CW-complex�(P ) is homeomorphic to a sphere of dimen-
sion d − 1, then the simplicial posetP of rank d is Gorenstein* (see Section5 for
more details). It is known thath-vectors of Gorenstein* simplicial posets satisfy Dehn–
Sommerville equationshi = hd−i for all i, in addition to the non-negativity conditions
hi�0. In this paper, we will prove thath-vectors of Gorenstein* simplicial posets must
satisfy one more subtle condition conjectured by Stanley[8], see[1,5,8] for partial re-
sults.

Theorem 1.1. If P is a Gorenstein* simplicial poset of rank d andhi(P ) = 0 for some
i between0 and d, then

∑d
i=0 hi(P ), that is the number of facets of P by(1.1), is

even.

Combining this with Theorem 4.3 in[8], one completes characterization ofh-vectors
of Gorenstein* simplicial posets.

Corollary 1.2. Let (h0, h1, . . . , hd) be a vector of non-negative integers withhi =
hd−i for all i and h0 = 1. There is a Gorenstein* simplicial poset P of rank d with
hi(P ) = hi for all i if and only if either hi > 0 for all i , or else

∑d
i=0 hi is even.

Our proof of Theorem1.1 is purely algebraic but the idea stems from topology, so
we will explain how our proof is related to topology in Section2. A main tool to
study theh-vector of a simplicial posetP is a (generalized) face ringAP introduced in
[8] of the posetP. In Section3, we discuss restriction maps fromAP to polynomial
rings. In Section4, we construct a map called an index map fromAP to a polynomial
ring. Theorem1.1 is proven in Section5.

2. Relation to topology

In the toric geometry, simplicial convex polytopes are closely related totoric man-
ifolds or orbifolds (see[2]). Similarly, to this, Gorenstein* simplicial posets, which
contain the boundary complexes of simplicial polytopes as examples, are closely re-
lated to objects (in topology) calledtorus manifolds or orbifolds (see[4,5]), and the
proof of Theorem1.1 is motivated by a topological observation described in this sec-
tion. Here, a torus manifold (resp., orbifold) means a closed smooth manifold (resp.
orbifold) of dimension 2d with an effective smooth action of ad-dimensional torus
group having at least one fixed point.

We shall illustrate relations between combinatorics and topology with simple ex-
amples. In the following,T will denote the product ofd copies of the circle group
consisting of complex numbers with unit length, i.e.,T is a d-dimensional torus group.

Example 2.1. A complex projective spaceCPd has aT-action defined in the homo-
geneous coordinates by

(t1, . . . , td ) · (z0 : z1 : · · · : zd) = (z0 : t1z1 : · · · : tdzd).



M. Masuda /Advances in Mathematics 194 (2005) 332–344 335

The orbit spaceCPd/T has a natural face structure. Its facets are the images of
(real) codimension two submanifoldszi = 0 (i = 0,1, . . . , d) under the quotient map
CPd → CPd/T . The map (called a moment map)

(z0 : z1 : · · · : zd) �→ 1
d∑
i=0

|zi |2
(|z1|2, . . . , |zd |2)

induces a face preserving homeomorphism from the orbit spaceCPd/T to a standard
d-simplex. The face poset ofCPd/T ordered by reverse inclusion (soCPd/T itself
is the smallest element) is the face poset of a simplicial complex of dimensiond − 1
and Gorenstein*.

Similarly, the product ofd copies ofCP 1 admits aT-action, the orbit space(CP 1)d/T

is homeomorphic to ad-cube, and the face poset of(CP 1)d/T ordered by reverse inclu-
sion is also the face poset of a simplicial complex of dimensiond−1 and Gorenstein*.

In any case, the orbit space is a simple convex polytope and its polar is a simplicial
convex polytope. The Gorenstein* simplicial complex is theboundarycomplex of the
simplicial convex polytope.

Example 2.2. Let S2d be the 2d-sphere identified with the following subset inCd×R:

{
(z1, . . . , zd , y) ∈ Cd × R | |z1|2 + · · · + |zd |2 + y2 = 1

}
and define aT-action onS2d by

(t1, . . . , td ) (z1, . . . , zd , y) = (t1z1, . . . , tdzd, y).

The facets in the orbit spaceS2d/T are the images of codimension two submanifolds
zi = 0 (i = 1, . . . , d) under the quotient mapS2d → S2d/T , and the map

(z1, . . . , zd , y) → (|z1|, . . . , |zd |, y)

induces a face preserving homeomorphism fromS2d/T to the following subset of the
d-sphere:

{(x1, . . . , xd, y) ∈ Rd+1 | x2
1 + · · · + x2

d + y2 = 1, x1�0, . . . , xd�0}.

The orbit spaceS2d/T is not (isomorphic to) a simple convex polytope because the
intersection ofd facets consists of two points, but it is a manifold with corners and
every face (evenS2d/T itself) is acyclic. The face poset ofS2d/T ordered by reverse
inclusion is not the face poset of a simplicial complex whend�2. However, it is a
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simplicial poset and Gorenstein*. The geometric realization of the face poset ofS2d/T

is formed from two(d − 1)-simplices by gluing their boundaries via the identity map.

More generally, it is proved in[5] that if a torus manifoldM has vanishing odd de-
gree cohomology, then the orbit spaceM/T is a manifold with corners and every face
(evenM/T itself) is acyclic; so the face poset ofM/T ordered by reverse inclusion is
a Gorenstein* simplicial poset, sayP. Moreover,hi(P ) agrees with the 2ith betti num-
ber b2i (M) of M and the equivariant cohomology ringH ∗

T (M; Z) of M is isomorphic
to the face ringAP of P (defined overZ). HereH ∗

T (M; k) for a ring k is defined as

H ∗
T (M; k) := H ∗(ET ×T M; k),

whereET is the total space of the universal principalT-bundle (on whichT acts freely)
andET ×T M is the orbit space of the productET ×M by the diagonalT-action.

A projective toric orbifold is related to a simplicial convex polytope as in Example
2.1, and theh-vector of the simplicial convex polytope agrees with the (even degree)
betti numbers of the toric orbifold. Noting this fact, Stanley[7] deduced constraints
on the h-vector by applying the hard Lefschetz theorem to the toric orbifold and
completed the characterization ofh-vectors of simplicial convex polytopes. In some
sense our proof of Theorem1.1 is on this line. The topological argument developed
below in this section is not complete but would be helpful for the reader to understand
what is done in subsequent sections.

Let P be a Gorenstein* simplicial poset of dimensiond − 1. Looking at the result
in [5] mentioned above, it is likely that there exists a torus orbifoldM which have the
following properties:

Properties.

(1) H odd(M; Q) = 0,
(2) hi(P ) = b2i (M),
(3) H ∗

T (M; Q) is isomorphic toAP (defined overQ).

What we will use to deduce the necessity in Theorem1.1 is the index map(or
evaluation map) in equivariant cohomology

IndT :H ∗
T (M; Q) → H ∗−2d

T (pt; Q) = H ∗−2d(BT ; Q),

whereBT = ET/T is the classifying space of principalT-bundles. The index map
is nothing but the Gysin homomorphism in equivariant cohomology induced from
the collapsing map�:M → pt . As is well known,BT is the product ofd copies
of CP∞ (up to homotopy) andH ∗(BT ; Q) is a polynomial ring ind variables
of degree two. The index map IndT decreases cohomological degrees by 2d be-
cause the dimension ofM is 2d. Moreover,H ∗

T (M; Q) is a module overH ∗(BT ; Q)

through �∗:H ∗(BT ; Q) = H ∗
T (pt; Q) → H ∗

T (M; Q) and IndT is an H ∗(BT ; Q)-
module map. SinceH odd(M; Q) = 0 and H ∗(BT ; Q) is a polynomial ring ind
variables, sayt1, . . . , td , the quotient ring ofH ∗

T (M; Q) by the ideal generated by
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�∗(t1), . . . ,�∗(td) agrees with the ordinary cohomologyH ∗(M; Q). Similarly, the quo-
tient ring ofH ∗

T (pt; Q) = H ∗(BT ; Q) by the ideal generated byt1, . . . , td agrees with
H ∗(pt; Q). Therefore, the index map in equivariant cohomology induces the index map
in ordinary cohomology:

Ind:H ∗(M; Q) → H ∗−2d(pt; Q).

This map agrees with the Gysin homomorphism in ordinary cohomology induced from
the collapsing map�, so it is the evaluation map on a fundamental class ofM. Thus,
we have a commutative diagram:

H 2d
T (M; Q)

IndT−−−−→ H 0
T (pt; Q) = H 0(BT ; Q) = Q� �

H 2d(M; Q)
Ind−−−−→ H 0(pt; Q) = Q,

where the right vertical map is the identity.

A key thing is to find an element�T in H 2d
T (M; Q) such that

(i) �T is a polynomial in elements ofH 2
T (M; Q),

(ii) IndT (�T ) is an integer and IndT (�T ) ≡ �(M) (mod 2), where�(M) is the Euler
characteristic ofM.

We may think of �T as a “lifting" of the equivariant top Stiefel–Whitney class
wT2d(M) ∈ H 2d

T (M; Z/2) of M. If we find such an element�T , then it follows from
the commutativity of the above diagram that

IndT (�T ) = Ind(�), (2.1)

where� is the image of�T under the left vertical map in the above diagram.
Now supposehi(P ) = 0 for some 1≤ i ≤ d−1. Then the 2ith betti numberb2i (M)

of M is zero by property (2) and the element� vanishes because it is a polynomial
in degree two elements by (i) above, so the right-hand side of (2.1) is zero and�(M)
is even by (ii) above. On the other hand, it follows from properties (1) and (2) that

�(M) =
d∑
i=0

b2i (M) =
d∑
i=0

hi(P ).

These prove that
∑d
i=0 hi(P ) is even.

It turns out that the argument developed above works without assuming the existence
of the torus orbifoldM. In fact, the face ringAP takes the place ofH ∗

T (M; Q) by prop-
erty (3) and an l.s.o.p. forAP plays the role of�∗(t1), . . . ,�∗(td) so that the polynomial
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ring generated by the l.s.o.p. corresponds to the polynomial ring�∗(H ∗(BT ; Q)) (or
H ∗(BT ; Q) since �∗ is injective). The index map IndT has an expression (so-called
Lefschetz fixed point formula) in terms of local data aroundT-fixed points ofM, and
since the formula is purely algebraic, one can use it to define an “index map" from
AP . To carry out this idea, we need to study restriction maps fromAP to polyno-
mial rings because restriction maps toT-fixed points in equivariant cohomology are
involved in the Lefschetz fixed point formula. We will discuss such restriction maps in
Section3 and construct the index map fromAP in Section4.

3. Restriction maps

In this and next sections, we consider rings overQ. A main tool to study theh-
vector of a (finite) simplicial posetP is the face ringAP of the posetP introduced by
Stanley in[8]. We recall it first.

Definition. Let P be a simplicial poset of rankd with elements0̂ = y0, y1, . . . , yp. Let
A = Q[y0, y1, . . . , yp] be the polynomial ring overQ in the variablesyi and define
IP to be the ideal ofA generated by the following elements:

yiyj − (yi ∧ yj )
(∑

z

z

)
, y0 − 1,

whereyi∧yj is the greatest lower bound ofyi andyj , z ranges over all minimal upper
bounds ofyi andyj , and we understand

∑
z z = 0 if yi andyj have no common upper

bound. Then the face ringAP of the simplicial posetP is defined as the quotient ring
A/IP and made graded

AP = (AP )0 ⊕ (AP )1 ⊕ · · ·

by defining degyi = rankyi . The ringAP reduces to a classical Stanley–Reisner face
ring whenP is the face poset of a simplicial complex.

We denote byPs the subset ofP consisting of elements of ranks. Elements inP1
will be denoted byx1, . . . , xn and calledatoms in P. The set{x1, . . . , xn} is a basis
of (AP )1.

Suppose thaty is an element ofPd . Then the interval[0̂, y] is a boolean algebra of
rank d andA[0̂,y] is a polynomial ring ind variables. Sending all elements inP which
are not lower thany to zero, we obtain an epimorphism

�y :AP → A[0̂,y].

SinceQ is a field with infinitely many elements,AP admits an l.s.o.p.�1, . . . , �d (see
the proof of Theorem 3.10 in[8]). In the following we fix the l.s.o.p. and denote by
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	 the vector space of dimensiond spanned by�1, . . . , �d over Q, and byQ[	] the
polynomial ring generated by�1, . . . , �d . Note that	 is a vector subspace of(AP )1
and Q[	] is a subring ofAP .

Lemma 3.1. The restriction of�y to Q[	] is an isomorphism ontoA[0̂,y].

Proof. Since AP is finitely generated as aQ[	]-module, so isA[0̂,y]. This im-
plies that �y maps the vector space	 isomorphically onto the vector space spanned
by d elements of degree one generating the polynomial ringA[0̂,y], thus the lemma
follows. �

Henceforth, we identifyA[0̂,y] with Q[	] via �y , and think of�y as a map toQ[	],
i.e.,

�y :AP → Q[	].

Note that�y is the identity on the subringQ[	] and aQ[	]-module map.
For w ∈ Ps , we set

A(w) := {i ∈ {1, . . . , n} | xi is an atom lower thanw}.

The cardinality ofA(w) is s. Let y ∈ Pd . By definition of �y ,

�y(xi) = 0 wheneveri /∈ A(y). (3.1)

We set

�i (y) := �y(xi) for i ∈ A(y). (3.2)

Since �y : (AP )1 → 	 is surjective and the cardinality ofA(y), that is d, agrees with
the dimension of	, the set{�i (y) | i ∈ A(y)} is a basis of	.

Let z ∈ Pd−1. Let y be an element inPd abovez and define� ∈ {1, . . . , n} by

A(y)\A(z) = {�}.

The canonical mapA[0̂,y] = Q[	] → A[0̂,z] is surjective andA[0̂,z] can canonically
be identified withQ[	]/(��(y)). Let y′ be another element inPd abovez and define
�′ ∈ {1, . . . , n} similarly to �. It may happen that� = �′. Since

Q[	]/(��(y)) = A[0̂,z] = Q[	]/(��′(y′)), (3.3)

��(y) and ��′(y′) are same up to a non-zero scalar multiple; so the following lemma
makes sense.
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Lemma 3.2. �y(
) ≡ �y′(
)mod��(y) for any 
 ∈ AP . In particular, �i (y) ≡ �i (y′)
mod��(y) for i ∈ A(z)(= A(y)\{�} = A(y′)\{�′}).

Proof. We have canonical surjectionsAP → A[0̂,y] → A[0̂,z] and AP → A[0̂,y′] →
A[0̂,z], whose composite surjectionsAP → A[0̂,z] are the same. Therefore the lemma
follows from (3.3). �

4. Index maps

In this section, we define an “index map" fromAP to the polynomial ringQ[	],
which corresponds to the index map IndT in Section2. It is a Q[	]-module map, so
it induces a homomorphism from the quotientAP /(	) modulo the linear system of
parameters�1, . . . , �d to Q. This induced map corresponds to the index map Ind in
Section2.

We shall make some observations needed later before we define the index map. Let
z ∈ Pd−1 and lety, y′ ∈ Pd lie abovez as before. Give an orientation on	 determined
by an ordered basis(�1, . . . , �d) and choose an order of the basis{�i (y) | i ∈ A(y)}
whose induced orientation on	 agrees with the given orientation. We then define
m(y) to be the determinant of a matrix sending the ordered basis{�i (y) | i ∈ A(y)}
to the ordered basis(�1, . . . , �d). Note thatm(y) is positive. It follows from the latter
statement in Lemma3.2 that

m(y)��(y) = �(y, y′)m(y′)��′(y′), (4.1)

where�(y, y′) = ±1. If A(y) = A(y′), then� = �′ and both��(y) and ��′(y′) restrict
to the elementx� in A[0̂,x�]. Therefore

m(y) = m(y′) (and �(y, y′) = 1) if A(y) = A(y′). (4.2)

The order of the basis{�i (y) | i ∈ A(y)} determines an order of atomsxi (i ∈
A(y)) and then determines an orientation on the(d − 1)-simplex with those atoms as
vertices. The oriented(d−1)-simplex obtained in this way is denoted by〈y〉. Then, the
boundaries�〈y〉 and �〈y′〉 of 〈y〉 and 〈y′〉 have opposite orientations on the(d − 2)-
simplex [z] corresponding toz (in other words,[z] does not appear in�〈y〉 + �〈y′〉) if
and only if �(y, y′) = −1.

Now we pose the following assumption, which we shall see in Section5 is satisfied
by all Gorenstein* simplicial posets.

Assumption.

(1) For anyz ∈ Pd−1, there are exactly two elements inPd abovez.
(2) One can assign a sign�(y) ∈ {±1} to eachy ∈ Pd so that

∑
y∈Pd �(y)〈y〉 is a

cycle (hence defines a fundamental class inHd−1(�(P ); Z) where �(P ) denotes
the CW-complex explained in the Introduction).
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When 〈y〉 and 〈y′〉 share a(d−2)-simplex [z], it follows from the above assumption
that [z] does not appear in�(�(y)〈y〉)+ �(�(y′)〈y′〉). Therefore,

�(y, y′) and �(y)�(y′) have opposite signs (4.3)

by the remark mentioned above the assumption.

Definition. For a simplicial posetP which satisfies the assumption above, we define
the index mapby

IndT (
) :=
∑
y∈Pd

�(y)�y(
)
m(y)

∏
i∈A(y) �i (y)

for 
 ∈ AP . (4.4)

Apparently, IndT (
) lies in the quotient field ofQ[	], but we have

Theorem 4.1. IndT (
) ∈ Q[	] for any 
 ∈ AP .

Remark. The proof given below is essentially same as that of Theorem 2.2 in[3].
A similar result can be found in[4, Section 8].

Proof. The right-hand side of (4.4) can be expressed as

g∏N
j=1 fj

(4.5)

with g ∈ Q[	] and fj ∈ 	 ⊂ Q[	] such that any two off1, . . . , fN are linearly
independent. It suffices to show thatf1 divides g.

Let Q be the set ofy ∈ Pd such that�i (y) is not a scalar multiple off1 for every
i ∈ A(y), and letQc be the complement ofQ in Pd . In (4.4), the sum of terms for
elements inQ reduces to

∑
y∈Q

�(y)�y(
)
m(y)

∏
i∈A(y) �i (y)

= g1∏N
j=2 fj

(4.6)

with g1 ∈ Q[	], so thatf1 does not appear in the denominator.
On the other hand, ify ∈ Qc, then it follows from the definition ofQ that there is

an element� ∈ A(y) such that

��(y) = cf1 (0 �= c ∈ Q), (4.7)

and there is a unique elementz ∈ Pd−1 such thatz is lower thany and A(z) =
A(y)\{�}. By assumption, there is a unique element inPd which lies abovez and is
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different from y. We denote it byy′. Now we are in the same situation as before. It
follows from (4.1) and (4.7) that y′ is also an element inQc. Noting that A(y) =
A(z)∪{�} andA(y′) = A(z)∪{�′} and using (4.1), we combine the two terms in (4.4)
for y and y′ to get

�(y)�y(
)
m(y)

∏
i∈A(y) �i (y)

+ �(y′)�y′(
)

m(y′)
∏
i∈A(y′) �i (y

′)

= �(y)�y(
)
∏
i∈A(z) �i (y′)+ �(y, y′)�(y′)�y′(
)

∏
i∈A(z) �i (y)

m(y)��(y)
∏
i∈A(z) �i (y)

∏
i∈A(z) �i (y′)

. (4.8)

Here

�y(
)
∏
i∈A(z)

�i (y′) ≡ �y′(
)
∏
i∈A(z)

�i (y)mod��(y)

by Lemma3.2, and

�(y)+ �(y, y′)�(y′) = 0

by (4.3), so the numerator of the right-hand side of the identity (4.8) is divisible by
��(y) = cf1. This means that we can arrange the left-hand side of (4.8) with a common
denominator in whichf1 does not appear as a factor. Since elements inQc appear
pairwise like this, one has

∑
y∈Qc

�(y)�y(
)
m(y)

∏
i∈A(y) �i (y)

= g2∏N
j=2 fj

with g2 ∈ Q[	]. This together with (4.6) implies that the numeratorg in (4.5) is
divisible by f1. �

Since �y is a Q[	]-module map, so is IndT . Therefore

IndT :AP → Q[	]

induces a homomorphism

Ind:AP /(	) → Q. (4.9)

This map decreases degrees byd because IndT does.
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5. Gorenstein* simplicial posets

We shall prove Theorem1.1 in this section. Letk be an arbitrary field. Suppose that
a simplicial posetP is Gorenstein* overk, i.e., the order complex�(P ) of P = P−{0̂},
which is a simplicial complex, is Gorenstein* overk. According to Theorem II.5.1 in
[9], a simplicial complex� of dimensiond − 1 is Gorenstein* overk if and only if
for all p ∈ |�|,

H̃q(|�|, k)�Hq(|�|, |�| − p; k)�
{
k, q = d − 1,
0, q < d − 1.

Therefore, it follows from the universal coefficient theorem[6, Corollary 55.2] that
if a simplicial posetP is Gorenstein* overk, then it is Gorenstein* overQ. In the
sequel we may assumek = Q. According to Theorem II.5.1 in[9] again, �(P )
is an orientable pseudomanifold, so the assumption in Section4 is satisfied for the
Gorenstein* simplicial posetP because�(P ) is the barycentric subdivision of the
CW-complex�(P ).

Since a Gorenstein* simplicial poset is Cohen–Macaulay,hi = hi(P ) agrees with the
dimension of the homogeneous part of degreei in AP /(	), see the proof of Theorem
3.10 [8]. Therefore, ifhi = 0 for somei (1 ≤ i ≤ d−1), then a product ofd elements
in (AP )1 vanishes inAP /(	), in particular, the product is zero when evaluated by the
index map in (4.9).

We take a subsetI of {1, . . . , n} with cardinality d such thatI = A(y) for some
y ∈ Pd . If A(y) = A(y′)(= I ), thenm(y) = m(y′) by (4.2). Therefore we may write
m(y) asmI . Since

�y

(∏
i∈I
xi

)
=
{∏

i∈A(y) �i (y) if A(y) = I,

0 otherwise

by (3.1) and (3.2), we have

IndT (mI
∏
i∈I
xi) =

∑
A(y)=I

�(y) ∈ Q

by (4.4). Hence, if we regardmI
∏
i∈I xi as an element inAP /(	), then we have

Ind

(
mI

∏
i∈I
xi

)
=

∑
A(y)=I

�(y). (5.1)

Now suppose thathi = 0 for somei (1 ≤ i ≤ d − 1). Then the left-hand side of
(5.1) is zero as remarked above. This means that (since�(y) = ±1) there must be an
even number of elementsy ∈ Pd with A(y) = I at the right-hand side of (5.1). Since
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I is arbitrary, we conclude thatfd−1 (the number of elements inPd ) is even. This
together with (1.1) completes the proof of Theorem1.1. �

Remark. An element corresponding to�T in Section2 is
∑
I mI

∏
i∈I xi , where I

runs over all subsets of{1, . . . , n} with cardinality d andmI is understood to be zero
if there is noy ∈ Pd such thatI = A(y).
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