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Abstract
A recent phase III trial of the MET kinase inhibitor cabozantinib in men with castration-resistant prostate cancer (CRPC)
failed tomeet its primary survival end point; however,mostmenwithCRPChave intact androgen receptor (AR) signaling.
As previous work supports negative regulation of MET by AR signaling, we hypothesized that intact AR signaling may
have limited the efficacy of cabozantinib in some of these patients. To assess the role of AR signaling onMET inhibition,
we first performed an in silico analysis of human CRPC tissue samples stratified by AR signaling status (+ or −), which
identifiedMET expression as markedly increased in AR− samples. In vitro, AR signaling inhibition in AR+ CRPCmodels
increased MET expression and resulted in susceptibility to ligand (HGF) activation. Likewise, MET inhibition was only
effective in blocking cancer phenotypes in cells withMET overexpression. Using multiple AR+ CRPC in vitro and in vivo
models, we showed that combined cabozantinib and enzalutamide (AR antagonist) treatmentwasmore efficacious than
either inhibitor alone. These data provide a compelling rationale to combine AR and MET inhibition in CRPC and may
explain the negative results of the phase III cabozantinib study in CRPC. Similarly, the expression ofMET in AR− disease,
whether due to AR inhibition or loss of AR signaling, suggests potential utility forMET inhibition in select patientswith AR
therapy resistance and in AR− prostate cancer.
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Introduction
Prostate cancer remains the second leading cause of cancer-related
death in men in the United States [1]. Although advanced prostate
cancer usually responds to therapies that suppress androgen-
axis signaling, resistance inevitably develops, leading to the emergence
of castration-resistant prostate cancer (CRPC). Importantly, the
clinical efficacy of novel therapies targeting androgen receptor (AR)
signaling, such as abiraterone and enzalutamide, has confirmed that
most CRPC remains AR signaling intact (AR+) [2–4]. Resistance to
these therapies inevitably develops, and approaches to improve the
response time and address the key pathways of resistance are very
much needed.

Despite promising early phase clinical trial results [5], a recently
presented phase III trial evaluating the dual MET/VEGF inhibitor
cabozantinib in CRPC did not meet its primary survival end point
[6]. Although the AR signaling status was unknown in trial
participants, the majority of men with CRPC retain active AR
signaling [7,8]. Although MET has been reported to be overexpressed
in CRPC, multiple studies have shown that AR signaling markedly
downregulates MET expression [9–17]. Hence, we hypothesized that
AR signaling status may mediate response to MET inhibition in
prostate cancer. Herein we show in CRPC tissues and cell line models
that MET expression is tightly linked to AR signaling status, with
elevated MET expression and activity observed nearly exclusively in
AR− prostate cancer. Importantly, AR inhibition by enzalutamide
results in MET overexpression and renders these functionally AR−

cells susceptible to HGF stimulation. In multiple in vitro and in vivo
models, we credential MET as a target in AR+ CRPC when combined
with antiandrogen therapy, as well as in AR− disease models.

Materials and Methods

Cell Culture
All cell lines were purchased from ATCC, except LNCaP-AR

which was a generous gift from Charles Sawyers’s laboratory. PC3,
DU145, LNCaP, and LNCaP-AR were maintained in RPMI1640,
and VCaP in DMEM-GlutaMax; all were supplemented with 10%
FBS (Invitrogen) in 5% CO2 cell culture incubator.

Drugs
Cabozantinib and enzalutamide were purchased from SelleckChem.

HGF was purchased from Invitrogen.

Invasion and Migration Assay
A total of 2 to 10 × 104 cells were seeded in the upper chamber

with 200 μl of serum-free medium and then incubate for 24 to 48
hours. For the invasion assays, 20 μg of growth factor reduced
Matrigel was coated into the inner chamber. The crystal violet
staining method used was described preciously [18]. Fluorescent-
based invasion was performed with Calcium AM green (Invitrogen),
and viable invaded cells were quantified by Tecan scanner for
fluorescent intensity. Representative images were obtained with a
fluorescent microscope.

Cell Viability and Proliferation Assay
Cell proliferation was measured by either CellTiterGlo or

IncuCyte. Approximately 1000 to 30,000 cells were seeded in
96-well plates. Following drug treatment, viable cells were measured
by CellTiterGlo every other day. IncuCyte was used to measure
confluence rate.
Antibodies and Western Blot
For Western blot analysis, 30 μg of protein was separated by

SDS-PAGE and transferred onto a polyvinylidene difluoride
membrane (GE Healthcare). The membrane was incubated for 1
hour in blocking buffer (Tris-buffered saline, 0.1% Tween, 5%
nonfat dry milk) followed by incubation overnight at 4°C with the
primary antibody. After washing with Tris-buffered saline and 0.1%
Tween, the membrane was incubated with HRP-conjugated
secondary antibody, and signals were visualized using an enhanced
chemilumenescence system as per the manufacturer’s protocol (GE
Healthcare). Antibodies used in Western blot were MET (D1C2,
CST), AR (PG-21, Millipore), PSA (Dako), ERG (Abcam), GAPDH
(CST), Actin (CST), pERK (CST), and p-Met (D26, CST).

RNA Isolation and Quantitative Real-Time PCR
Total RNA was isolated from cells using RNeasy Mini Kit (Qiagen),

and cDNA was synthesized from 1 μg of total RNA using high-capacity
cDNA reverse transcription kit (Applied Biosystems). Quantitative PCR
was performed in duplicate or triplicate using standard SYBR green
reagents and protocols on 7900 Real-Time PCR system (Applied
Biosystems). The target mRNA expression was quantified using the
ΔΔCt method and normalized to GAPDH expression.

RNA Interference
For knockdown experiments, cells were seeded in 6-well plates and

transfected with 100 nM functionally verified FlexiTube siRNA
(Qiagen) targeting MET or AllStars Negative Control siRNA
(catalogue no. SI02655450) using RNAiMAX (Life Technologies)
according to the manufacturer’s instructions. siRNA sequences for
MET knockdown were as follows: 1) AAGCCAATTTATCAG
GAGGTG (catalogue no. SI00300860) and 2) ACCGAGGGAAT
CATCATGAAA (catalogue no. SI00604814). Quantitative PCR and
Western blot assays were performed after 24 or 48 hours to assess
knockdown efficiency. Cell migration and Matrigel invasion assays
were performed as described earlier.

In Silico Analysis of MET Expression and AR Signaling in CRPC
We queried the expression of AR and core AR signaling modules

(n = 7 AR+ genes and n = 3 AR− genes includingMET) [19] from the
Grasso Prostate [8] and Taylor Prostate [20] studies in the Oncomine
database [21]. The same genes were similarly queried from
microarray-based gene expression profiling of 11 commonly used
prostate cancer cell lines, and from RNAseq data in the Robinson
et al. CRPC profiling study [22] (downloaded from cBioPortal [23]).

Xenografts
To investigate combined inhibition of the AR andMET signaling axis,

we used 30 mg/kg of cabozantinib, a dose shown previously to inhibit
p-Met by N90% [24] and inhibitMET-dependent xenograft growth in a
malignant peripheral nerve sheath model [25]. Dose of 10 mg/kg of
enzalutamide was chosen to inhibit AR signaling, as this dose has
previously been shown to block xenograft growth in LNCaP-AR tumors
[26]. VCaP or LNCaP-AR (generously provided byDr. Charles Sawyers)
[27] subcutaneous xenografts were established in the bilateral flanks of
male CB17 nu/nu mice. After 3 weeks, mice were treated by oral gavage
with vehicle, enzalutamide (10 mg/kg), and/or cabozantinib (30 mg/kg)
daily (5×/week). When the enzalutamide-only–treated group reached
approximately half the final tumor volume (estimated at 400 mm3), this
group was randomized: 14 xenografts were continued on enzalutamide
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and 11 xenografts were switched to only 30 mg/kg of cabozantinib.
Growth inhibition (as freedom from tumor volume tripling) was assessed
using the log-rank test.

Results
To investigate the relationship of MET and AR signaling across
CRPC, we queried the expression of AR and core AR signaling
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expression and corresponding increased AR− module expression,
including the three CRPC samples with the highest MET expression
(WA24, WA47, and WA25). We confirmed similar findings in 17
antiandrogen-treated metastatic prostate cancer samples from the
expression profiling study of Taylor et al. [20] and 11 commonly used
prostate cancer cell lines. In the Taylor et al. study, although several
samples had decreased expression of the AR+ module, a single
specimen with the highest MET expression (sample 199) also had
markedly reduced AR expression and AR− module overexpression
(Figure 1B). Likewise, MET expression was only observed in prostate
cancer cell lines with low AR expression, low AR+ module expression,
and elevated AR− module expression (Figure 1C). Lastly, we assessed
the relationship of MET and AR signaling in a large cohort of men
with CRPC undergoing biopsy and comprehensive exome and
transcriptome sequencing for precision medicine (SU2C Interna-
tional Dream Team, Robinson et al. [22]), which again demonstrated
marked MET overexpression nearly exclusively in samples with low
AR expression, low AR+ module expression, and high AR− module
expression (Figure 1D). Taken together, our integrative transcrip-
tional analysis across human CRPC tissue and cell line profiling
studies support the inverse correlation of MET and AR, with
correlation coefficients of −0.27 to −0.81 (Supplementary Table
1).We confirmed these in silico findings through assessing MET and
AR transcript and protein expression in a panel of prostate cell lines
with differing AR status. The results confirmed that MET and AR
expressions are inversely related at both protein and mRNA levels
(Figure 1, E and F).
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these in vitro experiments support active AR signaling mediated
repression of MET expression.
Given the overexpression of MET in AR− prostate cancer models and

the potential of MET as a target in AR inhibited AR+ CRPC models
(therapeutic AR−), we sought to credential MET as a potential
therapeutic target in AR− prostate cancer. As MET has been reported
to promote invasion upon ligand (HGF) binding-induced phosphory-
lation [28], Figure 3A shows that, in the presence of HGF,
siRNA-mediated MET knockdown in PC3 and DU145 cells (AR−/
high MET expression) significantly reduced invasion and migration.
Likewise, in the presence of HGF, levels of both p-MET and pERK were
substantially reduced after MET knockdown in both PC3 and DU145
cells (Figure 3B). Additionally, HGF-mediated invasion andmigration in
both DU145 and PC3 cells were sensitive to cabozantinib (Figure 3C).
Taken together, these experiments support MET as a mediator of
invasion in AR− prostate cancer models and suggest potential utility of
therapeutic targeting in advanced prostate cancer.
Given our results suggesting that MET is not expressed in AR+

CRPC, we first sought to determine if MET expression results in a
cabozantinib-sensitive cancer phenotype in AR+ CRPC models. As
shown in Figure 4A, MET overexpression promoted invasion in AR+
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reverses this effect (Figure 4B). Importantly, cabozantinib had no
effect on VCaP or LNCaP cell invasion under normal culture
conditions (androgen present) (Figure 4C). However, when AR
signaling in LNCaP cells was inhibited through the use of
charcoal-stripped medium, HGF significantly increased invasion in
a cabozantinib-sensitive manner (Figure 4D). Together, these results
demonstrate that while cabozantinib has no significant effect on
invasion in AR+ CRPC models when AR signaling is active (and
MET is not expressed), blocking AR signaling primes AR+ cells for
MET activation and cabozantinib sensitivity.

To more directly assess the potential of AR inhibition inducing
therapeutic vulnerability in MET in AR+ CRPC models, we
investigated combination treatment with the potent AR inhibitor
enzalutamide and cabozantinib. Measuring viable cells by CellTi-
terGlo, we found that combined enzalutamide and cabozantinib drug
treatment more significantly blocked VCaP and LNCaP cell
proliferation than either agent alone (Figure 5A). Next, IncuCyte
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was used to measure the confluence rate for LNCaP cells upon single
or combination treatment. Figure 5B shows that, whereas low-dose
cabozantinib as a monotherapy has no effect on confluence, the effect
of enzalutamide is significantly increased by combination with
low-dose cabozantinib (P b .01).

To confirm these in vitro results, we first extended these
observations to mouse xenograft experiments using the VCaP
model. As shown in Figure 5C and Supplementary Figure S3A,
although VCaP xenografts were minimally sensitive to enzalutamide
and responded better to cabozantinib alone, tumors were significantly
more responsive to combination of enzalutamide plus cabozantinib
compared with either monotherapy (P b .01 vs. enzalutamide, P b
.05 vs. cabozantinib, log-rank test) (Figure 5C and Supplementary
Figure S3A). Importantly, sequential treatment was slightly better
than enzalutamide alone, but the difference was not statistically
significant. Next, we similarly assessed the effects of combined
cabozantinib and enzalutamide in LNCaP-AR mouse xenografts. As
shown in Figure 5D and Supplementary Figure S3B, combined
cabozantinib and enzalutamide treatment was again more efficacious
than either monotherapy (P b .01). Taken together with our in silico
and in vitro studies, these results support combined blockade of AR
and MET in AR+ CRPC and may partially explain why cabozantinib
treatment failed its primary end point in a CRPC population where
the majority of men likely have active AR signaling.

Discussion
We have identified the HGF/MET axis as a potentially important
driver of resistance to potent androgen suppression and provide a
rationale for dual targeting of androgen and HGF/MET signaling in
mCRPC. Although little is known about the compensatory pathways
that facilitate resistance to next-generation AR-targeted therapies
[8,29], we hypothesized that resistance may involve MET overex-
pression that occurs in response to decreased AR signaling. Although
a recent study reported frequent MET amplification/gain in CRPC
[30], in our analysis of the Grasso, Taylor, and Robinson data sets, we
observed no correlation between MET copy number and gene
expression. Additionally, although broad low-level gains of chromo-
some 7q (containingMET) were common in CRPC, high-levelMET
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amplifications were exceedingly rare and did not result in MET
overexpression, as would be expected for a driving oncogene
(Supplementary Figure S4). Likewise, in our recent targeted profiling
study of 116 cases including both aggressive untreated prostate
cancers and CRPC, only a single AR− NePC showed low-level focal
MET amplification [31]. Hence, AR signaling may be the
predominant mechanism regulating MET expression in CRPC.
The in vitro and in vivo data further establish the strong inverse

relationship between MET expression and AR activity. From a
functional standpoint, the potential relevance was confirmed both
through MET knockdown in AR−/MET + cell lines and through
overexpression of MET in AR+/MET- cells. Cabozantinib also
reversed the effects of MET overexpression in LNCaP cells. Wanjala
et al. also showed that overexpression of MET in AR+ LAPC4 cells
(which show low MET expression in the presence of active AR
signaling) activated ERK and AKT signaling, and drove in vitro and
in vivo growth in a manner that was sensitive to crizotinib (a
multikinase inhibitor that potently inhibits MET) [30]. Thus,
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therapeutic strategies that inhibit the MET pathway are likely to work
only in those specific settings where MET is elevated, which generally
correspond to substantially AR-repressed disease states.

The data shown here demonstrate that even in AR+ CRPC, where
MET overexpression is absent, antiandrogen therapy can increase
MET expression, potentially inducing therapeutic vulnerability. In
multiple AR+ CRPC models, combined treatment with antiandrogen
and anti-MET therapy showed at least additive tumor inhibition,
which we hypothesize is due to concurrent targeting of AR signaling
and inhibition of compensatory MET activity. Our results and prior
work supporting the inverse relationship of AR signaling and MET
expression suggest that optimal timing of treatment and combination
therapy using cabozantinib (or other MET inhibitors) in prostate
cancer may be crucial to efficacy [9–14,16,17,32]. Supporting this
hypothesis, phospho-MET was recently shown to be increased in
bone marrow metastases from men with CRPC showing primary
abiraterone resistance [33].

These findings have important clinical implications, as there are
currently conflicting data regarding the efficacy of MET inhibition in
advanced prostate cancer. In a multicenter phase II randomized
discontinuation trial of cabozantinib in mCRPC, 171 men with CRPC
received 100 mg of cabozantinib daily, and those with stable disease per
RECIST (Response Evaluation Criteria In Solid Tumors) at 12 weeks
were randomized to cabozantinib or placebo [5]. Random assignment
was halted early based on the observed activity of cabozantinib, with
68% of evaluable patients demonstrating improvement on bone scan,
including complete resolution in 12%. Median progression-free
survival was 23.9 weeks with cabozantinib and 5.9 weeks with placebo
(P b .001). However, the recently presented phase III COMET-1 study
(cabozantinib 60 mg daily) did not meet the primary end point of
improved overall survival [6]. There were, however, significant
improvements in bone scan response and progression-free survival in
the cabozantinib group. Critically, neitherMETnor AR signaling status
was assessed in samples from these patients.

Our results suggest two potential strategies for more effectively
implementing MET inhibition in CRPC. First, a strategy employing
a more precision-based approach, such as selecting patients based on
MET overexpression, would likely yield greater efficacy. Second,
concurrently administering cabozantinib with androgen signaling
inhibitors may prevent this resistance pathway from driving further
tumor progression and significantly improve therapeutic response.
Importantly, this work provides a hypothesis for the failure of
cabozantinib in the phase III trial, as most men with CRPC have
intact AR signaling. Our work therefore supports trials of MET
inhibition combined with potent AR-signaling blockade in AR-
signaling-intact CRPC. A number of novel therapeutics are in
development that more selectively inhibit the HGF/MET axis, and
these warrant significant attention based on the results presented here.

In conclusion, our work elucidates the potential rationale and
impact of targeting AR and one of its compensatory pathways in
advanced prostate cancer. We demonstrated through in silico analysis
that most patients with pre-second-generation antiandrogen CRPC
(with or without prior chemotherapy) have intact AR signaling and
thus low MET expression. In vitro, MET expression increased in
response to potent AR signaling inhibition, and when expressed
(whether through AR inhibition or forced overexpression), MET
drove tumorigenic potential and sensitized them to cabozantinib.
Importantly, both in vitro and in vivo, combined cabozantinib and
enzalutamide treatment in multiple AR+ CRPC models was more
effective than either treatment alone. These results offer a potential
explanation for the failure of cabozantinib in a pivotal CRPC trial and
provide a mechanistic basis for co-targeting AR and MET in
AR-signaling-intact CRPC.
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