
Theoretical 
Computer Science 

ELSEVIER Theoretical Computer Science 158 (1996) 233-277 

On the computational complexity of 
dynamic graph problems* 

G. Ramalingam ‘* *, Thomas Reps b 

a IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA 

b Computer Sciences Department, University of Wisconsin - Madison, I210 W. Dayton St., 

Madison, WI 53706, USA 

Received February 1994; revised February 1995 
Communicated by G. Ausiello 

Abstract 

A common way to evaluate the time complexity of an algorithm is to use asymptotic 
worst-case analysis and to express the cost of the computation as a function of the size of the 
input. However, for an incremental algorithm this kind of analysis is sometimes not very 
informative. (By an “incremental algorithm”, we mean an algorithm for a dynamic problem.) 
When the cost of the computation is expressed as a function of the size of the (current) input, 
several incremental algorithms that have been proposed run in time asymptotically no better, in 
the worst-case, than the time required to perform the computation from scratch. Unfortunately, 
this kind of information is not very helpful if one wishes to compare different incremental 
algorithms for a given problem. 

This paper explores a different way to analyze incremental algorithms. Rather than express 
the cost of an incremental computation as a function of the size of the current input, we measure 
the cost in terms of the sum of the sizes of the changes in the input and the output. The change in 
approach allows us to develop a more informative theory of computational complexity for 
dynamic problems. 

An incremental algorithm is said to be bounded if the time taken by the algorithm to perform 
an update can be bounded by some function of the sum of the sizes of the changes in the input 
and the output. A dynamic problem is said to be unbounded with respect to a model of 
computation if it has no bounded incremental algorithm within that model of computation. The 
paper presents new upper-bound results as well as new lower-bound results with respect to 
a class of algorithms called the locally persistent algorithms. Our results, together with some 
previously known ones, shed light on the organization of the complexity hierarchy that exists 
when dynamic problems are classified according to their incremental complexity with respect to 

*This work was supported in part by an IBM Graduate Fellowship, by a David and Lucile Packard 
Fellowship for Science and Engineering, by the National Science Foundation under grants DCR-8552602 
and CCR-9100424, by the Defense Advanced Research Projects Agency, monitored by the Office of Naval 
Research under contract NOOO14-88-K-0590, as well as by a grant from the Digital Equipment Corpora- 
tion. 
*Corresponding author. Email: rama@watson.ibm.com. 

0304-3975/96/S15.00 0 1996-Elsevier Science B.V. Ail rights reserved 
SSDI 0304-3975(95)00079-B 



234 G. Ramalingam, T. Reps f Theoretical Computer Science 158 (1996) 233-277 

locally persistent algorithms. In particular, these results separate the classes of polynomially 
bounded problems, inherently exponentially bounded problems, and unbounded problems. 

1. Introduction 

A batch algorithm for computing a function f is an algorithm that, given some 

input x, computes the output f(x). (In many applications, the “input” data x is some 
data structure, such as a tree, graph, or matrix, while the “output” of the application, 
namelyf(x), represents some “annotation” of the x data structure - a mapping from 
more primitive elements that make up x, for example, graph vertices, to some space of 
values.) The problem of incremental computation is concerned with keeping the output 
updated as the input undergoes some changes. An incremental algorithm for comput- 
ing f takes as input the “batch input” x, the “batch output” f(x), possibly some 
auxiliary information, and the change in the “batch input” Ax. The algorithm 
computes the new “batch output” f(x + Ax), where x + Ax denotes the modified 
input, and updates the auxiliary information as necessary. A batch algorithm for 
computingfcan obviously be used as an incremental algorithm for computing f, but 
often small changes in the input cause only small changes in the output and it would 
be more efficient to compute the new output from the old output rather than to 
recompute the entire output from scratch. 

A common way to evaluate the computational complexity of algorithms is to use 
asymptotic worst-case analysis and to express the cost of the computation as a func- 
tion of the size of the input. However, for incremental algorithms, this kind of analysis 
is sometimes not very informative. For example, when the cost of the computation is 
expressed as a function of the size of the (current) input, the worst-case complexity of 
several incremental graph algorithms is no better than that of an algorithm that 
performs the computation from scratch [6,8,19,24,46]. In some cases (again with 
costs expressed as a function of the size of the input), it has even been possible to show 
a lower-bound result for the problem itself, demonstrating that no incremental 
algorithm (subject to certain restrictions) for the problem can, in the worst case, run in 
time asymptotically better than the time required to perform the computation from 
scratch [3,15,43]. For these reasons, worst-case analysis with costs expressed as 
a function of the size of the input is often not of much help in making comparisons 
between different incremental algorithms. 

This paper explores a different way to analyze the computational complexity of 
incremental algorithms. Instead of analyzing their complexity in terms of the size of 
the entire current input, we concentrate on analyzing incremental algorithms in terms 
of an adaptive parameter (16 (1 that captures the size of the changes in the input and 
output. We focus on graph problems in which the input and output values can be 
associated with vertices of the input graph; this lets us define CHANGED, the set of 
vertices whose input or output values change. We denote the number of vertices in 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 235 

CHANGED by 161 and the sum of the number of vertices in CHANGED and the 
number of edges incident on some vertex in CHANGED by )I 6 (I. (A more formal 
definition of these parameters appears in Section 2.) 

There are two very important points regarding the parameter CHANGED that we 
would like to be sure that the reader understands: 

(1) Do not confuse CHANGED, which characterizes the amount of work that it is 
absolutely necessary to perform for a given dynamic problem, with quantities that 
reflect the updating costs for various internal data structures that store auxiliary 
information used by a particular algorithm for the dynamic problem. The parameter 
CHANGED represents the updating costs that are inherent to the dynamic problem 

itself. 
(2) CHANGED is not known a priori. At the moment the incremental-updating 

process begins, only the change in the input is known. By contrast, the change in 
output is unknown - and hence so is CHANGED; both the change in the output 
and CHANGED are completely revealed only at the end of the updating process 
itself. 

The approach used in this paper is to analyze the complexity of incremental 
algorithms in terms of 116 I). An incremental algorithm is said to be bounded if, for all 
input data-sets and for all changes that can be applied to an input data-set, the time it 
takes to update the output solution depends only on the size of the change in the input 
and output (i.e., )I 6 II), and not on the size of the entire current input. Otherwise, an 
incremental algorithm is said to be unbounded. A problem is said to be bounded 

(unbounded) if it has (does not have) a bounded incremental algorithm. The use of 
I/ 6 I(, as opposed to 161, in the above definitions allows the complexity of a bounded 
algorithm to depend on the degree to which the set of vertices whose values change are 
connected to vertices with unchanged values. Such a dependence turns out to be 
natural in the problems we study. 

In addition to the specific results that we have obtained on particular dynamic 
graph problems (see below), our work illustrates a new principle that algorithm 
designers should bear in mind: 

Algorithms for dynamic problems can sometimes be fruitfully analyzed in terms of 
the parameter I( 6 II. This idea represents a modest paradigm shift, and provides 
another arrow in the algorithm designer’s quiver. The purpose of this paper is to 
illustrate the utility of this approach by applying it to a collection of different graph 
problems. 

The advantage of this approach stems from the fact that the parameter \I 6 I( is an 
adaptive parameter, one that varies from 1 to IE(G)( + I V(G)l, where IE(G)J denotes 
the number of edges in the graph and I V(G)1 denotes the number of vertices in the 
graph. This is similar to the use of adaptive parameter I E(G)( + I V(G)1 -which ranges 
from I V(G)1 to I V(G)l’ - to describe the runing time of depth-first search. Note that if 
allowed to use only the parameter ( V(G)I, one would have to express the complexity of 
depth-first search as O(( V(G)l’) - which provides less information than the usual 
description of depth-first search as an O(IE(G)I + ( V(G)l) algorithm. 



236 G. Ramalingam. T. Reps / Theoretical Computer Science 158 (1996) 233-277 

An important advantage of using 1) 6 11 is that it enables us to make distinctions 
between different incremental algorithms when it would not be possible to do so using 
worst-case analysis in terms of parameters such as 1 V(G)1 and IE(G)I. For instance, 
when the cost of the computation is expressed as a function of the size of the (current) 
input, all incremental algorithms that have been proposed for updating the solution 
to the (various versions of the) shortest-path problem after the deletion of a single 
edge run in time asymptotically no better, in the worst-case, than the time required 
to perform the computation from scratch. Spira and Pan [43], in fact, show that 
no incremental algorithm for the shortest path problem with positive edge lengths 
can do better than the best batch algorithm, under the assumption that the incremen- 
tal algorithm retains only the shortest-paths information. In other words, with 
the usual way of analyzing incremental algorithms - worst-case analysis in terms of 
the size of the current input - no incremental shortest-path algorithm would appear 
to be any better than merely employing the best batch algorithm to recompute 
shortest paths from scratch! In contrast, the incremental algorithm for the problem 
presented in this paper is bounded and runs in time 0( I( 6 11 + 16 I log 160, whereas 
any batch algorithm for the same problem will be an unbounded incremental 
algorithm. 

The goal of distinguishing the time complexity of incremental algorithms from the 
time complexity of batch algorithms is sometimes achieved by using amortized-cost 
analysis. However, as Carroll observes, 

An algorithm with bad worst-case complexity will have good amortized complexity 
only if there is something about the problem being updated, or about the way in 
which we update it, or about the kinds of updates which we allow, that precludes 
pathological updates from happening frequently [7]. 

For instance, Ausiello et al. use amortized-cost analysis to obtain a better bound on 
the time complexity of a semi-dynamic algorithm they present for maintaining 
shortest paths in a graph as the graph undergoes a sequence of edge insertions [2]. 
However, in the fully dynamic version of the shortest-path problem, where both edge 
insertions and edge deletions are allowed, “pathological” input changes can occur 
frequently in a sequence of input changes. That is, when costs are expressed as 
a function of the size of the input, the amortized-cost complexity of algorithms for the 
fully dynamic version of the shortest-path problem will not, in general, be better than 
their worst-case complexity. Thus, the concept of boundedness permits us to distin- 
guish between different incremental algorithms in cases where amortized analysis is of 
no help. 

The question of amortized-cost analysis versus worst-case analysis is really ortho- 
gonal to the question studied in this paper. In the paper we demonstrate that it can be 
fruitful to analyze the complexity of incremental algorithms in terms of the adaptive 
parameter )I 6 I/, rather than in terms of the size of the current input. Although it 
happens that we use worst-case analysis in establishing all of the results presented, in 
principle there could exist problems for which a better bound (in terms of II 6 )I ) would 
be obtained if amortized analysis were used. 



G. Ramalingam. T. Reps J Theoretical Computer Science 15% (1996) 233-277 231 

The utility of our approach is illustrated by the specific results presented in this 
paper: 

(1) We establish several new upper-bound results: for example, the single-sink 

shortest-path problem with positive edge lengths (SSSP > 0), the all-pairs shortest path 

problem with positive edge lengths (APSP > 0), and the circuit-annotation problem (see 
Section 3.2) are shown to have bounded incremental complexity. SSSP > 0 and 
APSP > 0 are shown to have 0( I( 6 11 + (6 1 log (6 I) incremental algorithms; the circuit- 
annotation problem is shown to have an O(21’6t) incremental algorithm.’ 

(2) We establish several new lower-bound results, where the lower bounds are 
established with respect to the class of locally persistent algorithms, which was 
originally defined by Alpern et al. [l]. Whereas Alpern et al. show the existence of 
a problem that has an exponential lower bound in (16 I(, we are able to demonstrate 
that more difficult problems exist (from the standpoint of incremental computation). 
In particular, we show that there are problems for which there is no bounded locally 
persistent incremental algorithm (i.e., that there exist unbounded problems). 

We show that the class of unbounded problems contains many problems of great 
practical importance, such as the closed-semiring path problems in directed graphs and 
the meet-semilattice data-flow analysis problems. 

(3) Our results, together with the results of Alpern et al. cited above, shed light on 
the organization of the complexity hierarchy that exists when dynamic problems are 
classified according to their incremental complexity with respect to locally persistent 
algorithms. In particular, these results separate the classes of polynomially bounded 
problems, inherently exponentially bounded problems, and unbounded problems. 
The computational-complexity hierarchy for dynamic problems is depicted in Fig. 11. 
(See Section 5). 

An interesting aspect of this complexity hierarchy is that it separates problems that, 
at first glance, are apparently very similar. For example, SSSP > 0 is polynomially 
bounded, yet the very similar problem SSSP > 0 (in which O-length edges are also 
permitted) is unbounded. Some other related results have been left out of this paper 
due to length considerations, including a generalization of the above-mentioned lower 
bound proofs to a much more powerful model of computation than the class of locally 
persistent algorithms, and a generalization of the incremental algorithm for the 
shortest-path problem to a more general class of problems. (See [29].) 

The remainder of the paper is organized into five sections. Section 2 introduces 
terminology and notation. Section 3 presents bounded incremental algorithms for 
three problems: SSSP > 0, APSP > 0, and the circuit-annotation problem. Section 4 
concerns lower-bound results, where lower bounds are established with respect to 
locally persistent algorithms. The results from Sections 3 and 4, together with some 

1 This complexity measure holds for the circuit-annotation problem under certain assumptions explained in 
Section 3.3. Under less restricted assumptions, the circuit-annotation problem has an O(11611 2”61’) in- 
cremental algorithm [29]. 



238 G. Ramalingam. T. Reps / Theoretical Computer Science 158 (1996) 233-277 

previously known results, shed light on the organizaton of the complexity hierarchy 
that exists when incremental-computation problems are classified according to their 
incremental complexity with respect to locally persistent algorithms. This complexity 
hierarchy is presented in Section 5. Section 6 discusses how the results reported in this 
paper relate to previous work on incremental computation and incremental algo- 
rithms. 

2. Terminology 

We now formulate a notion of the “size of the change in input and output” that is 
applicable to the class of graph problems in which the input consists of a graph G, and 
possibly some information (such as a real value) associated with each vertex or edge of 
the graph, and the output consists of a value S&) for each vertex u of the graph G. 
(For instance, in SSSP > 0, St(u) is the length of the shortest path from vertex u to 
a distinguished vertex, denoted by sink(G).) Thus, each vertex/edge in the graph may 
have an associated input value, and each vertex in the graph has an associated output 

value. 
A directed graph G = (V(G), E(G)) consists of a set ofvertices V(G) and a set of edges 

E(G), where E(G) s V(G) x V(G). An edge (b, c@E(G), where b, CE V(G), is said to be 
directed from b to c, and will be more mnemonically denoted by b + c. We say that b is 
the source of the edge, that c is the target, that b is a predecessor of c, and that c is 
a successor of b. A vertex b is said to be adjacent to a vertex c if b is a successor or 
predecessor of c. The set of all successors of a vertex a in G is denoted by Succ&), 
while the set of all predecessors of a in G is denoted by Predo(a). If K is a set of vertices, 
then Succc(K) denotes UllEK Succ&), and Predo(K) is similarly defined. Given a set 
K of vertices in a graph G, the neighborhood of K, denoted by No(K), is defined by the 
set of all vertices that are in K or are adjacent to some vertex in K: No(K) = 

K u Succo(K) u Predo(K). The set N;(K) is defined inductively to be N,(NL- l(K)), 

where N:(K) = K. 
For any set of vertices K, we will denote the cardinality of K by both (K( and Vk. 

For our purposes, a more useful measure of the “size” of K is the extended size of K, 
which is defined as follows: Let EK be the number of edges that have at least one 
endpoint in K. The extended size of K (of order l), denoted by 11 K I( 1, c or just II K I(, is 
defined to be V, + EK. In other words, (1 K I( is the sum of the number of vertices in 
K and the number of edges with an endpoint in K. The extended size of K of order i, 

denoted by II K IIi,o or just II K /Ii, is defined to be F’ - Nt L(K) + ENti-l(K) - in other words, it 
is the extended size of N’-‘(K). In this paper, we are only ever concerned with the 
extended size of order 1, except in a couple of places where the extended size of order 
2 is required. 

We restrict our attention to “unit changes”: changes that modify the information 
associated with a single vertex or edge, or that add or delete a single vertex or edge. 
We denote by G + 6 the graph obtained by making a change 6 to graph G. A vertex 



G. Ramalingam. T. Reps / Theoretical Compuier Science 158 (19%) 233-277 239 

u in G or G + 6 is said to have been modijied by 6 if 6 is inserted or deleted u, or 
modified the input value associated with u, or inserted or deleted some edge incident 
on u, or modified the information associated with some edge incident on u. The set of 
all modified vertices in G + 6 will be denoted by MODIFIEDG,+ Note that this set 
captures the change in the input. A vertex in G + 6 is said to be an aficted vertex 
either if it is a newly inserted vertex or if its output value in G + 6 is different from its 
output value in G. Let AFFECTEDG,d denote the set of all affected vertices in G + 6. 
This set captures the change in the output. We define CHANGEDG,6 to be 
MODIFIED,, d u AFFECTEDo, 6. This set, which we occasionally abbreviate further 
to just 6, captures the change in the input and output. The subscripts of the various 
terms defined above will be dropped if no confusion is likely. 

We use IIMODIFIEDIli,c+a as a measure of the size of the change in input, 

IlAFFECTEDlli,c+s as a measure of the size of the change in output, and 

(ICHANGED IIi,G+dv which we abbreviate to II6 Iii, as a measure of the size of the 
change in the input and output. An omitted subscript i implies a value of 1. 

In summary, 161 denotes I$, the number of vertices that are modified or affected, 
while )I 6 (I denotes V, + Ed, where Ed is the number of edges that have at least one 
endpoint that is modified or affected. 

An incremental algorithm for a problem P takes as input a graph G, the solution to 
graph G, possibly some auxiliary information, and input change 6. The algorithm 
computes the solution for the new graph G + 6 and updates the auxiliary information 
as necessary. The time taken to perform this update step may depend on G, 6, and the 
auxiliary information. An incremental algorithm is said to be bounded if, for a fixed 
value of i, we can express the time taken for the update step entirely as a function of 
the parameter )I 6 lli,G (as opposed to other parameters, such as I V(G)1 or I Gl).’ It is 
said to be unbounded if its running time can be arbitrarily large for fixed )I S Iii, C. 

A problem is said to be bounded (unbounded) if it has (does not have) a bounded 
incremental algorithm. 

3. Upper-bound results: three bounded dynamic problems 

This section concerns three new upper-bound results. In particular, bounded 
incremental algorithms are presented for the single-sink shortest-path problem with 
positive edge weights (SSSP > 0), the all-pairs shortest-path problem with positive 
edge weights (APSP > 0), and the circuit-annotation problem. SSSP > 0 and 
APSP > 0 are shown to be polynomially bounded; the circuit-annotation problem is 
shown to be exponentially bounded. 

‘Note that we use the uniform-cost measure in analyzing the complexity of the steps of an 
algorithm. 



240 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

3.1. The incremental single-sink shortest-path problem 

The input for SSSP > 0 consists of a directed graph G with a distinguished vertex 
sink(G). Every edge u + u in the graph has a positive real-valued length, which we 
denote by length(u + u). The length of a path is defined to be the sum of the lengths of 
the edges in the path. We are interested in computing dist(u), the length of the shortest 
path from u to sink(G), for every vertex u in the graph. If there is no path from a vertex 
u to sink(G) then dist(u) is defined to be infinity. 

This section concerns the problem of updating the solution to an instance of the 
SSSP > 0 problem after a unit change is made to the graph. The insertion or deletion 
of an isolated vertex can be processed trivially and will not be discussed here. We 
present algorithms for performing the update after a single edge is deleted from or 
inserted into the edge set of G. The operations of inserting an edge and decreasing the 
length of an edge are equivalent in the following sense: The insertion of an edge can be 
considered as the special case of an edge length being decreased from co to a finite 
value, while the case of a decrease in an edge length can be considered as the insertion 
of a new edge parallel to the relevant edge. The operations of deleting an edge and 
increasing an edge length are similarly equivalent. Consequently, the algorithms we 
present here can be directly adapted for performing the update after a change in the 
length of an edge. 

Proposition 1. SSSP > 0 has a bounded incremental algorithm. In particular, there 

exists an algorithm DeleteEdgesssp , 0 that can process the deletion of an edge in time 

0( 116 11 + 161 log 16 I) and there exists an algorithm InsertEdgesssp , ,, that can process 

the insertion of an edge in time 0( 1) 6 )I + 16 ( log 16 I). 

Although we have defined the incremental SSSP > 0 problem to be that of main- 
taining the lengths of the shortest paths to the sink, the algorithms we present 
maintain the shortest paths as well. An edge in the graph is said to be an SP edge iff it 
occurs on some shortest path to the sink. Thus, an edge u + u is an SF’ edge iff 
dist(u) = length(u + u) + dist(u). A subgraph T of G is said to be a (single-sink) 
shortest-paths tree for the given graph G with sink sink(G) if(i) T is a (directed) tree 
rooted at sink(G), (ii) V(T) is the set of all vertices that can reach sink(G) in G, and (iii) 
every edge in T is an SP edge. Thus, for every vertex u in V(T), the unique path in 
T from u to sink(G) is a shortest path. 

The set of all SP edges of the graph, which we denote by SP(G), induces a subgraph 
of the given graph, which we call the shortest-paths subgraph. We will occasionally 
denote the shortest-paths subgraph also by SP(G). Note that a path from some vertex 
u to the sink vertex is a shortest path iff it occurs in SP(G) (i.e., iff all the edges in that 
path occur in SP(G)). Since all edges in the graph are assumed to have a positive 
length, any shortest path in the graph must be acyclic. Consequently, SP(G) is 
a directed acyclic graph (DAG). As we will see later, this is what enables us to process 
input changes in a bounded fashion. If zero length edges are allowed, then SP(G) can 



G. Ramalingam, T. Reps 1 Theoretical Computer Science 158 (1996) 233-277 241 

have cycles, and the algorithms we present in this section will not work correctly in all 
instances. 

Our incremental algorithm for SSSP > 0 works by maintaining the shortest-path 
subgraph SP(G). We will also find it useful to maintain the outdegree of each vertex 
u in the subgraph V(G). 

3.1.1. Deletion of an edge 
The update algorithm for edge deletion is given as procedure DeleteEdgesssr > 0 in 

Fig. 1. 
We will find it useful in the following discussion to introduce the concept of an 

aficted edge. An SP edge x + y is said to be affected by the deletion of the edge v --) w 
if there exists no path in the new graph from x to the sink that makes use of the edge 
x + y and has a length equal to distOld(x). It is easily seen that x + y is an affected SP 

edge iffy is an affected vertex. On the other hand, any vertex x other than u (the source 
of the deleted edge) is an affected vertex iff all SP edges going out of x are affected 
edges. The vertex u itself is an affected vertex iff u + w is the only SP edge going out of 
vertex u. 

The algorithm for updating the solution (and SP(G)) after the deletion of an edge 
works in two phases. The first phase (lines 4-14) computes the set of all affected 
vertices and affected edges and removes the affected edges from SP(G), while the 
second phase (lines 15-30) computes the new output value for all the affected vertices 
and updates SP(G) appropriately. 

Phase 1: Identifying aficted vertices. A vertex’s dist value increases due to the 
deletion of edge u + w iff all shortest paths from the vertex to sink(G) make use of edge 
u + w. In other words, if SP(G) denotes the SP DAG of the original graph, then the set 
of affected vertices is precisely the set of vertices that can reach the sink in SP(G) but 
not in SP(G) - { u + w}, the DAG obtained by deleting edge u + w from SP(G). 

Thus, Phase 1 is essentially an incremental algorithm for the single-sink reachability 
problem in DAGs that updates the solution after the deletion of an edge. The 
algorithm is very similar to the topological sorting algorithm. It maintains a set of 
vertices (WorkSet) that have been identified as being affected but have not yet been 
processed. Initially u is added to this set if u + w is the only SP edge going out of u. The 
vertices in WorkSet are processed one by one. When a vertex II is processed, all SP 
edges coming into u are removed from SP(G) since they are affected edges. During this 
process some vertices may be identified as being affected (because there no longer 
exists any SP edge going out of those vertices) and may be added to the workset. 

We maintain outdegree&x), the number of SP edges going out of vertex x, so that 
the tests in lines 3 and 12 can be performed in constant time. We have not discussed 
how the subgraph SP(G) is maintained. If SP(G) is represented by maintaining 
(adjacency) lists at each vertex of all incoming and outgoing SP edges, then it is not 
necessary to maintain outdegreesp(x) separately, since outdegreesp(x) is zero iff the list 
of outgoing SP edges is empty. Alternatively, we can save storage by not maintaining 



242 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

procedure DeleteEdgesssP , ,(G, v -+ w) 
declare 

G: a directed graph; 
v + w: an edge to be deleted from G 
WorkSet, AffectedVertices: sets of vertices; 
PriorityQueue: a heap of vertices 
a, b, c, u, v, w, x, y: vertices 

preconditions 
SP(G) is the shortest-paths subgraph of G 
VOC V(G), outdegree&o) is the outdegree of vertex v in the shortest-paths subgraph SP(G) 
VVE V(G), &t(o) is the length of the shortest path from v to sink(G) 

begin 
1. if u + WESP(G) then 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. fi 
end 

Remove edge V-B w from SP(G) and from E(G) and decrement outdegreesr(v) 
if outdegree&v) = 0 then 

/* Phase 1: Identify the affected vertices and remove the affected edges from SP(G) */ 
WorkSet := {v} 
AffectedVertices := 0 
while WorkSet # 0 do 

Select and remove a vertex u from WorkSet 
Insert vertex u into AffectedVertices 
for every vertex x such that x -+ wSP(G) do 

Remove edge x + u from SP(G) and decrement outdegreesr(x) 
if outdegree&x) = 0 then Insert vertex x into WorkSet fi 

ad 

/* thase 2: Determine new distances from affected vertices to sink(G) and update SP(G). */ 
PriorityQueue := 0 
for every vertex ae AffectedVertices do 

dist(a) := min( {length(a + b) + dist(b) 1 
a + bEE(G) and b +! Affectedvertices)} v {co}) 

if dist(a) fw then InsertHeap(PriorityQueue, a, d&(a)) fi 
od 
while PriorityQueue # 0 do 

a := FindAndDeIeteMin(PriorityQueue) 
for every vertex be&c(a) such that length(a + b) + dist(b) = dist(a) do 

Insert edge a + b into SP(G) and increment outdegrees,. 
ad 
for every vertex cePred(a) such that length(c + a) + dist(a) < dist(c) do 

dist(c) := length(c -+ a) + d&(a) 
AdjustHeap(PriorityQueue, c,dist(c)) 

od 
od 

fi 
else Remove edge v + w from E(G) 

postconditions 
SP(G) is the shortest-paths subgraph of G 
Vva V(G), outdegree,, is the outdegree of vertex v in the shortest-paths subgraph SP(G) 
Vue V(G), dist(v) is the length of the shortest path from v to sink(G) 

Fig. 1. An algorithm to update the SSSP > 0 solution and SP(G) after the deletion of an edge. 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 243 

SP(G) explicitly. Given any edge x + y, we can check if that edge is in SP(G) in 
constant time, by checking if dist(x) = length(x + y) + dist(y). In this case, however, it 
is necessary to maintain outdegrees, or else the cost of Phase 1 increases to 

0( II 6 II 2). 
We now analyze the time complexity of Phase 1. The loop in lines 7-14 performs 

exactly 1 AFFECTED1 iterations, once for each affected vertex u. The iteration 
corresponding to vertex u takes time 0( (Pred(u) I). Consequently, the running time of 

Phase 1 is O(LAFFECTED (Pred(u)l) = 0( 11 AFFECTED 11). If we choose to maintain 
the SP DAG explicitly, then the running time is actually linear in the extended size of 
AFFECTED in the SP DAG, which can be less than the extended size of AFFECTED 
in the graph G itself. 

Phase 2: Determining new distances for aficted vertices and updating SP(G). Phase 2 
of DeleteEdgesssp , ,, is an adaptation of Dijkstra’s batch shortest-path algorithm that 
uses priority-first search [42] to compute the new dist values for the affected vertices. 

Consider Fig. 2. Assume that for every vertex y in set A the length of the shortest 
path from y to the sink is known and is given by dist(y). We need to compute the 
length of the shortest path from x to the sink for every vertex x in the set of remaining 
vertices, B. Consider the graph obtained by “condensing” A to a new sink vertex: that is, 
we replace the set of vertices A by a new sink vertex s, and replace every edge x + y from 
a vertex x in B to a vertex y in A by an edge x -+ s of length length(x + y) + dist(y). 

The given problem reduces to the SSSP problem for this reduced graph, which can be 
solved using Dijkstra’s algorithm. Phase 2 of our algorithm works essentially this way. 

Before we analyze the complexity of Phase 2, we explain the heap operations we 
make use of in the algorithm. The operation ZnsertHeap(H, i, k) inserts an item i into 
heap H with a key k. The operation FindAndDeleteMin(H) returns the item in heap 
H that has the minimum key and deletes it from the heap. The operation Adjust- 

Heap(H, i, k) inserts an item i into Heap with key k if i is not in Heap, and changes the 
key of item i in Heap to k if i is in Heap. In this algorithm, AdjustHeap either inserts an 
item into the heap, or decreases the key of an item in the heap. 

The complexity of Phase 2 depends on the type of heap we use. We assume that 
PriorityQueue is implemented as a relaxed heap (see [ 121). Both insertion of an item 
into a relaxed heap and decreasing the key of an item in a relaxed heap cost 0( 1) time, 
while finding and deleting the item with the minimum key costs O(logp) time, where 
p is the number of items in the heap. 

The loop in lines 21-30 iterates at most (AFFECTED ( times. An affected vertex a is 
processed in each iteration, but not all affected vertices may be processed. In particu- 
lar, affected vertices that can no longer reach the sink vertex will not be processed. 
Each iteration takes 0( I( {a} 11) t ime for lines 23-29, and O(log 1 AFFECTEDI) time 
for the heap operation in line 22. Hence, the running time of Phase 2 is 0( II AFFEC- 
TED /I + I AFFECTED I log 1 AFFECTED I). 

It follows from the bounds on the running time of Phases 1 and 2 that the total 
running time of DeleteEdge,,,, , ,, is bounded by 0( )I AFFECTED I( + (AFFEC- 
TEDIlogIAFFECTEDO, which is 0(116\l + 16llogl61). 



244 G. Ramalingam. T. Reps / Theoretical Computer Science 158 (1996) 233-277 

length@ + yJ + distfy) 

_* s, the new sink 

length(x +w ) + dist(w) 

Fig. 2. Phase 2 of DeleteEdges,,, , 0. Let A be the set of unaffected vertices and let B be the set of affected 
vertices. The correct dist value is known for every vertex in A and the new dist value has to be computed for 
every vertex in B. This problem can be reduced to a batch instance of the SSSP > 0 problem, namely the 
SSSP > 0 problem for the graph obtained as follows: we take the subgraph induced by the set B of vertices, 
introduce a new sink vertex, and for every edge x + y from a vertex in B to a vertex outside B, we add an 
edge from x to the new sink vertex, with length length(x + y) + dist(y). 

3.1.2. Insertion of an edge 
We now turn to the problem of updating distances and the set P(G) after an edge 

u + w with length c is inserted into G. The algorithm for this problem, procedure 
InsertEdgesssP , O, is presented in Fig. 3. (The algorithm presented works correctly 
even if the length of the newly inserted edge is non-positive as long as all edges in the 
original graph have a positive length and the new edge does not introduce a cycle of 
negative length. This will be important in generalizing our incremental algorithm to 
handle edges of non-positive lengths. See Section 3.1.3.) 

The algorithm is based on the following characterization of the region of affected 
vertices, which enables the updating to be performed in a bounded fashion. If the 
insertion of edge u -+ w causes u to be an affected vertex, then any new shortest path 
from u to sink(G) must consist of a shortest path from u to u, followed by the edge 
u + w, followed by a shortest path from w to sink(G). In particular, a vertex u is 
affected iff dist(u, u) + length(u + w) + d&&w) < d&&u), where dist(u, u) is the 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 245 

procedure InsertEdges, , ,,(G, u -) w, e) 
dedare 

G: a directed graph 
u -+ w: an edge to be inserted in G 
c: a positive real number indicating the length of edge u -) w 
PriorityQueue: a heap of vertices 

preconditions 
P(G) is the shortest-paths subgraph of G 
VE V(G), out~eg~ee~~(u) is the outdegree of vertex u in the short~t-paths subgraph SF(G) 
VVE V(G), &t(u) is the length of the shortest path from u to sink(G) 

begin 
1. Insert edge u -+ w into E(G) 
2. length(o 4 w) := c 
3. PriorityQueue := 8 
4. if ~e~gth(u -+ w) + dist(w) < dist(v) then 
5. dist(v) := length@ + w) + d&(w) 

6. InsertHeap(PriotityQueue, u, 0) 
7. else if length@ -+ w) + dist(w) = d&(u) then 
8. Insert u -+ w into SP(G) and increment outdegree&u) 

9. fi 
10. while PriorityQueue # 8 do 
11. u := FindAndDeIeteMin(Pr~orityQueue) 
12. Remove all edges of SP(G) directed away from u and set our~egree~~(u) = 0 
13. for every vertex X&KC(U) do 
14. if length(u + x) + dist(x) = dist(u) then Insert u -+ x into SP(G) and increment outdegreesp(u) fi 
15. ed 
16. for every vertex xePred(u) do 
17. if length(x + u) + dist(u) c d&t(x) then 
18. dist(x) := ~e~gth(x -+ u) + d&t(u) 
19. AdjustHeap(P~o~tyQueue,x,d~st(x) - dist(u)) 
20. else if iength(x + u) + dist(u) = dist(x) then 
21. Insert x -+ u into W(G) and increment outdegrees+. 
22. fi 
23. od 
24. od 

end 
~st~itio~ 

SP(G) is the shortest-paths subgraph of G 
VIE V(G), outdegree,, is the outdegree of vertex u in the shortest-paths subgraph SP(G) 
VIE V(G), dist(u) is the length of the shortest path from v to sink(G) 

Fig. 3. An algorithm to update the SSSP > 0 solution and SP{G) after the insertion of an edge u -+ w into 
graph G. 

length of the shortest path from u to u in the new graph, and d&t,, refers to the lengths 
of the shortest paths to the sink in the graph before the insertion of the edge v + w. 
The new dist value for an affected vertex u is given by dist(u, v) + ~e~gt~(~ -+ w) f 
d~st~~~(w). 

Consider T, a single-sink shortest-path tree for the vertex V. Let x be any vertex, and 
let u be the parent of x in T. (See Fig. 4.) If x is an affected vertex, then u must also be 
an affected vertex: otherwise, there must exist some shortest path P from u to sink(G) 



246 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (19%) 233-277 

Affected vertices 

Fig. 4. Tis a shortest-path tree for sink u. If x is an affected vertex, then u, the parent of x in T, must also be 
an affected vertex. Hence, the set of all vertices affected by the insertion of the edge u -+ w forms a connected 
subtree at the root of T. 

that does not contain edge u + w; the path consisting of the edge x --f u followed 
by P is then a shortest path from x to sink(G) that does not contain edge a--, w; 
hence, x cannot be an affected vertex, contradicting our assumption. In other 
words, any ancestor (in T) of an affected vertex must also be an affected vertex. 
The set of all affected vertices must, hence, form a connected subtree of Tat the root 
of T. 

The algorithm works by using an adaptation of Dijkstra’s algorithm to construct 
the part of the tree T restricted to the affected vertices (the shaded part of T in Fig. 4) 
in lines 3-6, 10, 11, and 16-19. As in Dijkstra’s algorithm, the keys of vertices in 
PriorityQueue indicate distances from u to v. However, unlike in Dijkstra’s algorithm, 
these distances are available only indirectly; the distance annotation at u (i.e., dist(u)) 
indicates the distance from u to sink(G), not that from u to u. Appropriate adjustments 
are made in line 6 - the key for vertex v is 0 - and in line 19 - the key for vertex x is 
&t(x) - &t(u). 

When the vertex u is selected from PriorityQueue in line 11, its priority is nothing 
but dist(u, v). In a normal implementation of Dijkstra’s algorithm, every predecessor 
x of u would then be examined (as in the loop in lines 16-23), and its priority in 
PriorityQueue would be adjusted if length(x + u) + dist(u, v) was less than the length 
of the shortest path found so far from x to u. Here, we instead adjust the priority of 
x or insert it into PriorityQueue only iflength(x + u) + d&(u) is less than &t(x): that 

is, only if edge x -+ u followed by a shortest path from u to sink(G) yields a path shorter 
than the shortest path currently known from x to sink(G). In other words, a vertex x is 
added to PriorityQueue only if it is an affected vertex. In effect, the algorithm avoids 
constructing the unshaded part of the tree T in Fig. 4. 

During this process, the set of all affected vertices is identified and every affected 
vertex is assigned its correct value finally. If u is affected, it is assigned its correct value 
in line 5; any other affected vertex x will be assigned its correct value in line 18. 
Simultaneously, the algorithm also updates the set of edges SP(G) as follows. If u is 
unaffected by u --f w becomes an SP edge, it is added to SP(G) in line 8. Similarly any 
edge x + u that becomes an SP edge, while x is unaffected, is identified and added to 
SP(G) in line 21. For any affected vertex u, an edge u + x directed away from I( can 



G. Ramalingam. T. Reps / Theoretical Computer Science 158 (1996) 233-277 247 

change its SP edge status. These changes are identified and made to SP(G) in lines 
12-15. 

Note that unlike procedure DeleteEdgesssp , ,,, in which the process of identifying 
which vertices are members of AFFECTED and the process of updating dist values 
are separated into separate phases, in procedure InsertEdgesssp , 0 the identification of 
AFFECTED is interleaued with updating. Observe, too, that the algorithm works 
correctly even if the length of the newly inserted edge is negative, as long as all other 
edges have a positive length and the new edge does not introduce a cycle of negative 
length. The reason is that we require edges to have a non-negative length only in the 
(partial) construction of the tree T. But in constructing a shortest-path tree for some 
sink vertex, one can always ignore edges going out of the sink vertex, as long as there 
are no negative length cycles. Consequently, it is immaterial, in the construction of T, 

whether length(o + w) is negative or not. 
We now analyze the time complexity of InsertEdgesssp s0. The loop in lines lo-24 

iterates once for every affected vertex u. Each iteration takes time O(log IAFFEC- 
TEDI) for line 11 and time 0( 11 {u} 11) for lines 12-23. Note that the AdjustHeap 
operation in line 19 either inserts a vertex into the heap or decreases the key of a vertex 
in the heap. Hence it costs only O(1) time. Thus, the running time of procedure 
InsertEdgesssp , 0 is 0( 11 AFFECTED 1) + I AFFECTED ( log I AFFECTED I ), which is 

0(11~1l + l~l1ogl~l). 

3.1.3. Incremental updating in the presence of negative edge-lengths 

We now briefly discuss the problem of updating the solution to the single-sink 
shortest-path problem in the presence of edges of non-positive lengths. The obstacle to 
obtaining a bounded incremental algorithm for this generalized problem is the 
presence of cycles of length zero, and not edges of negative lengths. We show in 
Section 4.2 that there exists no bounded locally persistent incremental algorithm for 
maintaining shortest paths if O-length cycles are allowed in the graph. However, 
bounded locally persistent incremental algorithms do exist for the dynamic SSSP- 
Cycle > 0 problem: the single-sink shortest-path problem in graphs where edges may 
have arbitrary length but all cycles have positive length. 

The algorithms DeleteEdgesssp , 0 and InsertEdgesssp , 0 work correctly even in the 
presence of O-length edges as long as there are no O-length cycles. These algorithms do 
not work correctly in the presence of negative-length edges for the same reasons that 
Dijkstra’s algorithm does not. However, a simple modification to DeleteEdgesssp >,, 
yields an algorithm for updating the solution to the SSSP-Cycle > 0 problem after the 
deletion of an edge (with no change in the time-complexity). A similar modification to 
InsertEdgesssp > 0 yields an algorithm for updating the solution to the SSSP-Cycle > 0 
problem after the insertion of an edge u + v, as long as the sink vertex was already 
reachable from vertex u. These generalizations are based on the technique of Edmonds 
and Karp for transforming the length of every edge in a graph to a non-negative 
real without changing the graph’s shortest paths [13,44], and are described in 
[28,29]. 



248 G. Ramalingam, T. Reps / Theoretical Computer Science lS8 (1996) 233-277 

The above techniques for updating the solution to the SSSP-Cycle > 0 problem fail 
for only one type of input change, namely the insertion of an edge u + Y that creates 
a path from u to the sink vertex where no path existed before. However, even such an 
imput modification can be handled in time 0 ( /I 6 /I .I6 I) by using an adaptation of the 
Bellman-Ford algorithm for the shortest-paths problem. (See [29].) 

3.2. The d~~~~ic al~-~a~rs smartest-path ~ra~lern 

This section concerns a bounded incremental algorithm for a version of the 
dynamic all-pairs shortest-path problem with positive-length edges (APSP > 0). 

We will assume that the vertices of G are indexed from 1.. 1 V(G)I. APSP > 0 
involves computing the entries of a distance matrix, dist [ 1. .I V(G)l, 1. .I V(G)/], where 
entry dist [i,j] represents the length of the shortest path in G from vertex i to vertexj. 
It is also useful to think of this information as being associated with the individual 
vertices of the graph: with each vertex there is an array of values, indexed from 
1.. I V(G)1 - the jth value at vertex i records the length of the shortest path in G from 
vertex i to vertexj. This lets us view the APSP > 0 problem as a graph problem that 
requires the computation of an output value for each vertex in the graph. However, 
APSP > 0 does not fall into the class of graph problems that involve the computation 
of a single atomic value for each vertex u in the input graph, and so, as explained 
below, some of our terminology in this section differs from the terminology that was 
introduced in Section 2. 

Since MODIFIED measures the change in the input, the definition of MODIFIED 
remains the same (and hence for a single-edge change to the graph IMODI- 
FIED/ = 2). In order to define AFFECTED, which measures the change in the 
output, we view the problem as n instances of the SSSP > 0 problem. Let 
AFFECTED, represent the set of affected vertices for the single-sink problem with 
u as the sink vertex. We define 1 AFFECTED1 for the APSP > 0 problem as follows: 

1 AFFECTED1 = c IAFFECTED,[. 
u=l 

Thus, (AFFECTED1 is the number of entries in the dist matrix that change in value. 
We define the extended size jl AFFECTED /I as follows: 

I W)l 
I/ AFFECTED j/i = C 11 AFFECTED, jj i, 

u=l 

Note that for a given change 6, some or all of the AFFECTED,, can be empty and, 
hence, Ij AFFECTED /Ii may be less than 1 Y(G)/. The parameter [I 6 Iii in which we 
measure the incremental complexity of APSP > 0 is defined as follows: 

II 6 (1 i = j/ MODIFIED /Ii + I/ AFFECTED Iii. 

The parameter (6 I is also similarly defined. 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 249 

The definitions of AFFECTED, 11 AFFECTED Iii, and {I 6 Iji given above are clearly 
in the same spirit as those from Section 2. 

We now turn our attention to the problem of updating the solution to an instance of 
the APSP > 0 problem after a unit change. 

The operations of inserting and deleting isolated vertices are trivially handled but 
for some concerns having to do with dynamic storage allocation. Whether the 
shortest-path distances are stored in a single two-dimensional array or in a collection 
of one-dimensional arrays, we face the need to increase or decrease the array size(s). 
We can do this by dynamically expanding and contracting these arrays using the 
well-known doubling/halving technique (see [lo, Section 18.41, for example). Assume 
the distance matrix is maintained as a collection of n vectors (of equal size), where n is 
the number of vertices in the graph. Whenever a new vertex is inserted, a new vector is 
allocated. Whenever the number of vertices in the graph exceeds the size of the 
individual vectors, the size of each of the vectors is doubled (by reallocation). Vertex 
deletion is similarly handled, by halving the size of the vectors when appropriate. The 
insertion or deletion of an isolated vertex has an amortized cost of O(] V(G)() under 
this scheme: doubling or halving the arrays takes time O(j V(G)12), but the cost is 
amortized over Q(] Y(G)]) vertex insertion/deletion operations. A cost of O(l Y(G)]) is 
reasonable, in the sense that the introduction or removal of an isolated vertex causes 
O(] t/(G)0 “changes” to entries in the distance matrix. Thus, in some sense for such 
operations 161 = O( I V(G)]), and hence the amortized cost of the doubling/halving 
scheme is optimal. 

We now consider the problem of updating the solution after the insertion or 
deletion of an edge. As explained in the previous section, it is trivial to generalize these 
operations to handle the shortening or lengthening of an edge, respectively. 

Proposition 2. APSP > 0 has a bounded incremental algorithm. In particular, there 
exists an algorithm DeleteEdgeABp , 0 that can process an edge deletion in time 

0( I/ 6 /I 2 f 16 I log 16 I}, and there exists an algorithm InsertEdge,psp, 0 thut can process 
an edge insertion in time 0( I/ 6 I/ t ). 

3.2.1. Deletion of an edge 

The basic idea behind the bounded incremental algorithm for DeleteEdge,,, ,0 is 
to make repeated use of the bounded incremental algorithm DeJeteEdge,,,,, as 
a subroutine, but with a different sink vertex on each call. A simple incremental 
algorithm for DeleteEdgeApsp , 0 would be to make as many calls on DeleteEdges,,, , 0 
as there are vertices in graph G. However, this method is not bounded because it 
would perform at least some work for each vertex of G; the total updating cost would 
be at least Q(\ V(G)]), which in general is not a function of /I 6 /Ii for any fixed value of i. 

The key observation behind our bounded incremental algorithm for De- 
leteEdgeArsp ,,, is that it is possible to determine exactly which calls on De- 
leteEdgesssp , 0 are necessary. With this information in hand it is possible to keep the 
total updating cost bounded. 



250 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

In the previous two sections, we have been speaking very roughly. In particular, 
because DeleteEdges,,, , 0 as stated in Fig. 1 actually performs the deletion of edge 
u + w from graph G (see lines 2 and 33), a few changes in DeleteEdge,,,, , ,, are 
necessary for it to be called multiple times in the manner suggested above. 

There is also a more serious problem with using procedure DeleteEdgesssp , 0 from 
Fig. 1 in conjunction with the ideas outlined above. The problem is that De- 
leteEdgesssp ,,, requires that shortest-path information be explicitly maintained for 
each sink z (i.e., there would have to be SP sets for each sink z). For certain 
edge-modification operations, the amount of SP information that changes (for the 
entire collection of different sinks) is unbounded. In particular, when an edge u + w is 
inserted with a length such that length(v + w) = dist(o, w), there are no entries in the 
distance matrix that change value, and consequently 

I UG)I 
11611z = )IMODIFIED112 + 1 [(AFFECTEDJ, = )IMODIFIEDl12. 

II=1 

Such an insertion can introduce a new element in the SP set for each of the different 
sinks, and thus cause a change in SP information of size a([ V(G)I). Thus, using 
DeleteEdgesssp , ,, from Fig. 1 as a subroutine in DeleteEdge,,,, ,0 would not yield 
a bounded incremental algorithm. 

The way around these problems is to define a slightly different procedure, which we 
name DeleteUpdate, for use in DeleteEdge,,,, , ,,. Procedure DeleteUpdate is pre- 
sented in Fig. 5. DeleteUpdate is very similar to DeleteEdge,,,, , 0, but eliminates the 
two problems discussed above. DeleteUpdate does not delete any edges; the deletion 
of edge v + w is performed in DeleteEdge,rsp , 0 itself (see line 1 of Fig. 6). In addition, 
DeleteUpdate does not need to update any SP information explicitly, because SP 

information is obtained when needed (in constant time) via the predicate SP(a, b, c): 

SP(a, b, c) E dist(a, c) = length(a + b) + dist(b, c)) A (&(a, c) # co). 

Predicate SP(a, b, c) answers the question “Is edge a --) b an SP edge when vertex c is 
the sink?“. This check can be done in constant time. 

The use of predicate SP(a, b,c) makes it important that the test in line 10 be 
carefully implemented. Recall that Phase 1 is similar to a (reverse) topological order 
traversal in the SP DAG for sink z. We are interested in determining in line 10 if every 
successor of x in the SP DAG has already been “visited” and placed in AffectedVerti- 
ces; if so, then x can be placed in AffectedVertices too.In procedure DeleteEdgesssp , ,, 
we used the standard technique for performing a topological order traversal: a count 
was maintained at each vertex of the number of its successors (in the SP DAG) not yet 
placed in AffectedVertices; when the count for a vertex x fell to zero, it was placed in 
the WorkSet. 

Since we cannot afford to maintain a similar count (across updates to the graph), we 
need to perform the check in line 10 differently. Note that the check in line 10 can be 
performed multiple times for the same vertex x. In fact, a vertex x can be checked 
outdegree times. If we examine all successors of vertex x each time, the cost of the 



G. Ramalingam, T. Reps / Theoretical Computer Science 1% (1996) 233-277 251 

procedure DeleteUpdate(G, u + w, z) 

declare 
G: a directed graph 
o + w: the edge that has been deleted from G 

z: the sink vertex of G 

WorkSet, AffectedVertices: sets of vertices 

a, b, c, a, v, w, x, y: vertices 

PriorityQueue: a heap of vertices 

SP(a, b, c) = (&t&a, c) = lengtho(a + b) + disto(b, c)) A (disto(a, c) #a$ 

hegin 
1. Affected Vertices := 8 
2. if there does not exist any vertex x~Succc(u) such that SP(u,x,z) then 
3. /* Phase 1: Identify vertices in AFFECTED (the vertices whose shortest distance to z has 

increased). * / 

4. J* Set AffectedVertices equal to AFFECTED. */ 

5. WorkSet := {u} 

6. while WorkSet # 8 do 
7. Select and remove a vertex u from WorkSet 

8. Insert vertex TV into AffectedVertices 

9. for each vertex xePred,(u) such that SP(x, u, z) do 

10. if for all y~Succ,(x) such that SP(x, y,z), YEAffectedVertices then Insert x into WorkSet Ii 

11. od 

12. oil 

13. /* Phase 2: Determine new distances to z for all vertices in AffectedVertices. */ 

14. PriorityQueue := 8 

15. for each vertex arzAffectedVertices do 

16. disto(a, z) := min( {lengtho(a + b) + disto(b, z) 1 
a + beE(G) and bE V(G) - AffectedVertices)} v (00)) 

17. if dist&, z) #co then InsertHeap(PriorityQueue, a, distc(a, z)) 6 

18. od 

19. while PriorityQueue # 0 do 
20. a := FindAndDeleteMin(PriorityQueue) 

21. for every vertex cePredo(a) such that length,(c + a) + disto(a, z) < disto(c, z) do 
22. disto(c, z) := length&c + a) + disto(a, z) 
23. AdjustHeap(PriorityQueue, c, dist,(c, z)) 
24. od 
25. od 
26. fi 
end 

Fig. 5. Procedure DeleteUpdate distances to vertex z after edge v + w is deleted from G. 

repeated checks in line 10 for a particular vertex x can be quadratic in the number of 
successors it has. Instead, the same total cost can be made linear in outdegree by 
using the following strategy. 

The first time vertex x is checked in line 10 we count the number of vertices y in 
(Succ(x) - AffectedVertices) that satisfy SP(x, y, z). Whenever vertex x is subsequently 
checked in line 10 we decrement its count. We add x to the WorkSet when its count 
falls to zero. 

Even this trick does not make the algorithm bounded in I( 6 11 1. The reason is that 
the vertex x checked in line 10 is not necessarily a member of AFFECTED, but we are 



252 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

forced to examine all successors of x. However, even if the tested vertex x is not 
a member of AFFECTED it is guaranteed to be a predecessor of a member of 
AFFECTED. Consequently, the algorithm is bounded in 116 /I 2. In particular, the cost 
of Phase 1 is bounded by 0( 11 MODIFIED 11 1 + 11 AFFECTED, 11 2); the cost of Phase 
2 is bounded by 0( 11 AFFECTED, II 1 + 1 AFFECTED, I log I AFFECTED, I). 

Procedure DeleteEdgeApsp rO is given in Fig. 6. Procedure DeleteEdgeApsp ,0 ac- 
tually maintains representations of two graphs: graph G itself and graph G, the graph 
obtained by reversing the direction of every edge in G. This costs at most a factor of 
two in space and time. Thus, while the value dist,(u, u) stored at vertex u of graph G is 
the length of the shortest path from u to u in G, the value &St&, u) is the length of the 
shortest path from u to u in G. Note that a single-sink problem in graph G is equivalent 
to a single-source problem in graph G. Thus, we will henceforth speak in terms of 
“solving single-source problems” synonymously with “solving single-sink problems 
in G.” 

Both of these graphs are updated, as described earlier, by updating a collection of 
single-sink shortest-path problems on the corresponding graph. Exactly which single- 
sink problems need to be updated in G is determined by solving a distinguished 
single-sink problem in G. The set AffectedVertices identified during this process 
indicates which single-sink problems must be updated in G. Similarly, the set Affec- 
tedvertices identified by solving a distinguished single-sink problem in G indicates 
which single-sink problems must be updated in G. This duality is of crucial import- 
ance to achieving a bounded incremental update algorithm. 

(1) The distinguished single-source problem is that of updating the distances from 
source-vertex v. This can be expressed as DeleteUpdate(G, w + u, u). The set Affec- 
tedvertices found during Phase 1 of this call indicates exactly which single-sink 
problems must be updated, for the following reasons: 

(i) For each vertex XEAffectedVertices found during Phase 1, there is at least one 
vertex (namely, vertex u) for which the length of the shortest path to x changed. That 
is, x is a sink for which some of the distances are out of date. 

procedure DeleteEdge,,,, , o(G, u + w) 

declare 
G: a directed graph 

v + w: an edge to be deleted from G 

AffectedSinks, AffectedSources: sets of vertices 

v, w, x: vertices of G 

begin 

1. Remove edge u + w from E(G) 

2. Remove edge w --) u from E(G) 

3. AffectedSinks := the set AffectedVertices from Phase 1 of DeleteUpdate(G, w + a, v) 

4. AffectedSources := the set AffectedVertices from Phase 1 of DeleteUpdate(G, v + w, w) 

5. for each vertex xcAffectedSinks do DeleteUpdate(G, v + w, x) od 

6. for each vertex xe AffectedSources do DeleteLJpdate(G, w -+ v,x) od 

end 

Fig. 6. Procedure DeleteEdge,p,p, ,, updates the solution to APSP > 0 after edge v + w is deleted from G. 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 253 

(ii) Conversely, if z is any vertex for which there exists a vertex y such that the 
deletion of v + w increases the length of the shortest path from y to z, then the old 
shortest path must have passed through v + w; consequently, the length of the 
shortest path from v to z must have changed as well. Thus, vertex z will be a member of 
AffectedVertices found during Phase 1 of the call on DeleteUpdate(G, w + v, v). 

(2) By the dual argument, the set AffectedVertices found during Phase 1 of the call 
on DeleteUpdate(G, v + w, w) indicates exactly which single-source problems must be 
updated. 

Consequently, the cost of DeleteEdgeApsp , ,, is bounded by 

I V(G)1 
0 11 MODIFIED 11 2 + c I( AFFECTED, I( 2 

which in turn is bounded by 0(116/, + 16llogl61). 

3.2.2. Insertion of an edge 

\ u=l 

I V(G)1 
+ 1 1 AFFECTED, 1 log 1 AFFECTED, 1 , 

u=1 

We now present a bounded incremental algorithm for the problem of updating the 
solution to APSP > 0 after an edge v + w of length c is inserted into G. Though 
similar bounded algorithms have been previously proposed for this problem (see 
[38,15,21,2]), we present the algorithm for the sake of completeness. Note that the 
algorithms described by Rohnert, Lin and Chang, and Ausiello et al. all maintain 
a shortest-path-tree data structure for each vertex, the maintenance of which can 
make the processing of an edge-deletion more expensive (and unbounded). 

As in the case of edge deletion, we may obtain a bounded incremental algorithm for 
edge insertion as follows: compute AffectedSinks, the set of all vertices y for which 
there exists a vertex x such that the length of the shortest path from x to y has 
changed; for every vertex y in AffectedSinks, invoke the bounded incremental opera- 
tion InsertEdges,,, , ,, with y as the sink. The dual information maintained in (? is 
updated in an identical fashion. 

The algorithm InsertEdge APSP, ,, presented in Fig. 8 carries out essentially the 
technique outlined above, but with one difference. It makes use of a considerably 
simplified form of the procedure InsertEdge,,sp ,0, which is given as procedure 
InsertUpdate in Fig. 7. The simplifications incorporated in InsertUpdate are ex- 
plained below. 

Recall the description of InsertEdge sssp , ,, given in Section 3.1.2. InsertEdgesss, , 0 
makes use of an adaptation of Dijkstra’s algorithm to identify shortest paths to sink 
v and update distance information. However, in InsertUpdate, the DAG of all shortest 
paths to sink v is already available (albeit in an implicit form), and this information 
can be exploited to sidestep the use of a priority queue. (Note that the insertion of the 
edge v + w cannot affect shortest paths to sink v, since the graph contains no cycles of 
negative length. Hence, the DAG of shortest paths to sink v undergoes no change 



254 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

procedure InsertLJpdate(G, u -+ w, z) 
declare 

G: a directed graph 
u + w: the edge that has been inserted in G. 
z: the sink vertex of G 
WorkSet: a set of edges 
VisitedVertices: a set of vertices 
u, x, y: vertices 
SP(a, b, c) = (disto(a, c) = lengtho(a + b) + disto(b, c)) A (disto(a, c) ZOO) 

begin 
1. WorkSet := {u -+ w} 
2. VisitedVertices := {u} 
3. AffectedVertices := 0 
4. while WorkSet # 0 do 
5. Select and remove an edge x + u from WorkSet 
6. if length&x -B u) + disto(u, z) < disto(x, z) then 
7. Insert x into AffectedVertices 
8. d&(x, z) := lengtho(x + u) + disto(u, z) 
9. for every vertex yEPredo(x) do 

10. if SP(y, x, u) and y 4 VisitedVertices then 
11. Insert y + x into WorkSet 
12. Insert y into VisitedVertices 
13. Ii 
14. od 
15. fi 
16. od 
end 

Fig. 7. Procedure InsertUpdate updates distances to vertex z after edge u + w is inserted into G. 

procedure InsertEdge.,,,, ,,,(G, u -+ w, c) 
declare 

G: a directed graph 
u + w: an edge to be inserted in G 
c: a positive real number indicating the length of edge u + w 
AffectedSinks, AffectedSources: sets of vertices 
u, w, x: vertices of G 

begin 
1. Insert edge V-B w into E(G) 
2. Insert edge w -+ v into E(G) 
3. leng&(v + w) := c 
4. length&w + u) := c 
5. AffectedSinks := the set AffectedVertices from InsertUpdate(C, w -+ v, v) 
6. AffectedSources := the set AffectedVertices from InsertUpdate(G, v -+ w, w) 
7. for each vertex xcAffectedSinks do InsertUpdate(G, u + w,x) od 
8. for each vertex x-zAffectedSources do InsertUpdate(G, w -+ u, x) od 

Fig. 8. Procedure InsertEdge,,, , 0 updates the solution to APSP > 0 after edge v--t w of length c is 
inserted in G. 



G. Ramalingam, T. Reps 1 Theoretical Computer Science 158 (19%) 233-277 255 

during InsertEdgeApsp , 0 .) As explained in Section 3.2.1, the predicate SP(a, b, u) can 
be used to determine, in constant time, if the edge a + b is part of the DAG of shortest 
paths to sink u. This permits InsertUpdate to do a (partial) backward traversal of this 
DAG, visiting only affected vertices or their predecessors. 

For instance, consider the edge x + u selected in line 5 of Fig. 7. Vertex x is the 
vertex to be visited next during the traversal described above. Except in the case when 
edge x + u is u --f w, vertex u is an affected vertex and is the successor of x in a shortest 
path from x to u. The test in line 6 determines if x itself is an affected vertex. If it is, the 
distance information is updated, and its predecessors in the shortest-path DAG to 
sink u are added to the workset for subsequent processing, unless they have already 
been visited. The purpose of the set VisitedVertices is to keep track of all the vertices 
visited in order to avoid visiting any vertex more than once. For reasons to be given 
shortly, InsertUpdate simultaneously computes AffectedVertices, the set of all vertices 
the length of whose shortest path to vertex z changes. 

We now justify the method used in InsertEdge APSP, 0 to determine AffectedSinks, 
the set of all vertices y for which there exists a vertex x such that the length of the 
shortest path from x to y has changed. This set is the set of sinks for which Insert- 
EdgeApsp ,,, must invoke InsertUpdate. Assume that x and y are vertices such that the 
length of the shortest path from x to y changes following the insertion of edge u + w. 
Then, the new shortest path from x to y must pass through the edge u + w. Obviously, 
the length of the shortest path from u to y must have changed as well. Hence, 
AffectedSinks is the set {y (the length of the shortest path from u to y changes 
following the insertion of edge u + w}. This set is precisely the set of all affected 
vertices for the single-source shortest-path problem with u as the source, i.e., the set 
AffectedVertices computed by the call InsertUpdate(c, w + u, u). This is how Insert- 
Edge,,sp , ,, determines the set AffectedSinks (see line 5 of Fig. 8); InsertUpdate is then 
invoked repeatedly, once for each member of AffectedSinks. The update to graph (? is 
performed in an analogous fashion. 

We now consider the time complexity of InsertEdgeApsp , 0. Note that for every 
vertex XEAffectedSinks, any vertex examined by InsertUpdate(G, u + w,x) is in 
N(AFFECTED,). InsertUpdate does essentially a simple traversal of the graph 
(N(AFFECTED,)), in time 0( 11 AFFECTED, II ). Thus, the total running time of line 
7 in procedure InsertEdgeApsp , 0 is 0( IlSlli). Similarly, line 8 takes time 0( IlSlli). 
Line 5 takes time 0( 11 AFFECTED, I( 1,a); line 6 takes time 0( II AFFECTED,,, II l,G). 

Thus, the total running time of procedure InsertEdgeApsp , ,, is 0( II 6 II 1). 

3.3. The dynamic circuit-annotation problem 

A circuit is a DAG in which every vertex u is associated with a function F,,. The 
output value to be computed at any vertex u is obtained by applying function F. to the 
values computed at the predecessors of vertex u. The circuit-annotation problem, also 
known as the circuit-value problem, is to compute the output value associated with 
each vertex. Alpern et al. [l] show that the incremental circuit-annotation problem 



256 G. Ramalingam, T. Reps / Theoretical Computer Science IS8 (1996) 233-277 

has a lower bound of R(2 “‘“) under a certain model of incremental computation. In 
this section we develop an algorithm for the incremental circuit-annotation problem 
that runs in time 0(2’16’1), under the assumption that the evaluation of each function 
F,, takes unit time.3 Previous to our work, no bounded algorithm for the dynamic 
circuit-annotation problem was known. 

Consider a circuit whose vertices are annotated with (output) values. The value 
annotating vertex u will be denoted by u.ualue. Vertex u is said to be consistent if its 
value equals function F, applied to the values associated with its predecessor vertices. 
The circuit is said to be correctly annotated if each vertex in the circuit is consistent. 
A vertex is said to be correct if its value is the one it would have in a correct annotation 
of the circuit. Note that a consistent vertex might be incorrect (but only if at least one 
of its predecessors is incorrect). A change to the circuit consists of the insertion or 
deletion of a vertex u, or the modification of the function F,,, or the insertion or 
deletion of an edge u + u. Obviously, if the initial circuit was correctly annotated, then 
at most vertex u could be inconsistent in the modified circuit. Consequently the 
dynamic circuit-annotation problem is: given an annotated circuit G, and a vertex u in 
G such that every vertex in G except possibly u is consistent, compute the correct 
annotation of G. The vertex u is the modi$ed vertex. 

Proposition 3. The dynamic circuit-annotation problem has a bounded incremental 
algorithm, which processes a change 6 in time 0(2”*“). 

The algorithm outlined in this section is a change-propagation algorithm. In 
a change-propagation algorithm, the output values of certain potentially afected 

vertices are recomputed. If the new value at any vertex u is different from its original 
value (i.e., the value before the update began), v’s successor vertices are deemed 
potentially affected. In order to avoid extra computation it is necessary to visit 
potentially affected vertices in a topological-sort order. This requires maintaining 
information that assists in visiting the vertices in a topological-sort order, This is the 
approach taken by Alpern et al. [l]. A DAG is said to be correctly prioritized if every 
vertex u in the DAG isassigned a priority, denoted by priority(u), such that if there is 
a path in the DAG from vertex u to vertex o then priority(u) < priority(v). Alpern et al. 
outline an algorithm for the problem of maintaining a correct prioritization of a circuit 
in the presence of modifications. They utilize the priorities in propagating changes in 
the circuit in a topological-sort order. This, however, leads to an unbounded algo- 
rithm for the dynamic circuit-annotation problem. This is because maintaining 
a topological-sort ordering or priority ordering of the DAG can require time 

3 In general, it is not true that each function FM in a circuit can be computed in unit time. For instance, it 
might be necessary to look at the values of all the predecessors of vertex u in order to compute the value at u. 
In this case, it might be more reasonable to assume that the cost of computation of F. is proportional to the 
indegree of vertex a. A variant of the incremental algorithm presented in this section runs in 0( 1) 6 11 2 .2 r6rz) 
time under this assumption. We do not describe the variant here due to space limitations. See [29] for 
details. 



G. Ramalingam, T. Reps 1 Theoretical Computer Science 158 (19%) 233-277 251 

unbounded in terms of 116 (I, since the topological ordering of the vertices might be 
greatly changed following modification 6, yet none of the output values might have 
changed. Thus, we cannot afford to maintain priorities or a topological ordering of the 
vertices of the circuit if we desire a bounded algorithm for the dynamic circuit- 
annotation problem. 

The change-propagation algorithm we describe below does not maintain any 
topological ordering of the DAG (and hence, in general, does perform extra computa- 
tions that will be undone later on). Instead, the algorithm makes use of a relative 

topological-sort ordering of a set of vertices. Let H denote the subgraph of G induced 
by a set of vertices S. Any topological sorting of H is said to yield a relative 

topological-sort ordering for S. Note in particular that if a vertex u topologically 
precedes vertex v in G and all paths in G from u to v pass through some vertex not in S, 
then u need not come before v in a relative topological-sort ordering for S. This is 
important because, in general, it is not possible to determine an actual topological- 
sort ordering of a set S (i.e., an ordering that accounts for all paths in G) in time 
bounded by a function of 1 SI (or even I/ S I\i for any fixed value of i). In contrast, under 
the assumption that each vertex has a bounded number of successors, it is possible to 
determine a relative topological-sort ordering of the vertices of S in time 0( 1 S I). 

We now outline an algorithm, called UpdateCircuit, that processes changes to 
a “binary” circuit in time 0(2”6”). (A binary circuit is one in which every vertex has 
outdegree less than or equal to 2.) The algorithm is described in Fig. 9, and it works as 

procedure UpdateCircuit (G, u) 
declare 

G: an annotated circuit 
u: the modified vertex in G 
WorkSet, ApparentlyAffected, PotentiallyAffected: sets of vertices 
u: a vertex 

preconditions 
Every vertex in V(G) except possibly u is consistent 

begin 
1. WorkSet := {u} 
2. u.originalValue := u.value 
3. loop 
4. for every vertex uaWorkSet in relatioe topological-sort order do recompute u.uaZue od 
5. ApparentlyAffected := {va WorkSet: u.oalue # u.originalValue} 
6. PotentiallyAffected := Succ(ApparentlyAffected) 
7. if PotentiallyAffected c WorkSet then exit loop fi 
8. for every vertex uo(PotentiallyAffected - WorkSet) do 
9. Insert v into WorkSet 

10. u.original Value := v.ualue 
11. od 
12. end loop 
end 
postconditions 

Every vertex in G is consistent 

Fig. 9. An algorithm for the dynamic circuit-annotation problem. 



258 G. Ramalingam, T. Reps / Theoretical Computer Science 1.58 (1996) 233-277 

follows. The algorithm initializes the set WorkSet to consist of the modified vertex, 
which is the only vertex in the circuit that can be inconsistent. In each iteration of the 
loop in lines 3-12 the values of all the vertices in WorkSet are recomputed in a relative 
topological-sort ordering. The set of all vertices in WorkSet that have a value different 
from their original value is identified in line 5. These vertices are said to be apparently 
affected - some of these vertices may not be affected but just have a wrong value 
temporarily assigned to them. The set of all successors of the apparently affected 
vertices, the potentially q’fkcted vertices, is identified in line 6. The algorithm halts if all 
the potentially affected vertices are already in WorkSet. Otherwise, the potentially 
affected vertices are added to WorkSet and the algorithm iterates through this process 
again. 

Proposition 4. Procedure UpdateCircuit computes a correct annotation of G. 

Proof. Consider the circuit as annotated when the procedure terminates. We show 
that every vertex in the circuit is correctly annotated by induction on the vertices v of 
G in “topological-sort order”: we show for every vertex u in G that the inductive 
hypothesis that every predecessor of v in G is correct implies that v is itself correct. 

Let WorkSet denote the final value of WorkSet. First consider the case that v is in 
WorkSet. Since the values for vertices in WorkSet have been computed in a relative 
topological-sort order, it follows that every vertex in WorkSet is consistent. (When- 
ever v.value is recomputed, v becomes consistent. It can subsequently become incon- 
sistent only if the value of some predecessor of v changes.) It follows that vertex v is 
also correct since, according to the inductive hypothesis, all the predecessors of v are 
correct. 

Now consider the case that v is not in WorkSet. Note that the following condition 
holds true when the procedure terminates: if w and v vertices such that we WorkSet, 
u $ WorkSet, w+ WE(G), then w.value = w . original Value. Hence, any predecessor 
w of v that is in WorkSet has the same value as it did originally. Since only the values 
of vertices in WorkSet could have changed, any predecessor of v that is not in 
WorkSet has the same value as it did initially. Hence, v and all of its predecessors have 
the same values as they did before the update. Since v was initially consistent (from the 
precondition of the procedure), it must still be consistent and, hence, correct. It follows 
that UpdateCircuit computes a correct annotation of the circuit. 

Proposition 5. Procedure UpdateCircuit computes the correct annotation of a binary 

circuit G in time 0(21AFFEmEDi). 

Proof. The proof that the computed annotation is correct follows from Proposition 4. 
The proof of the time complexity follows. 

We first show that the algorithm adds at least one affected vertex to WorkSet 
in each of the iterations except possibly the last two. Assume that after the 
execution of line 7 in the ith iteration of the outer loop (lines 3-12), every vertex 



G. Ramalingam. T. Reps / Theoretical Computer Science 158 (1996) 233-277 259 

in PotentiallyAffected-WorkSet is an unaffected vertex. In other words, all the vertices 
that are added to WorkSet in the ith iteration of the outer loop are assumed to be 
unaffected vertices. Then, we can show that the circuit must be correctly annotated at 
this point using induction on the vertices in a topological-sort order: we show for 
every vertex u in G that the inductive hypothesis that every predecessor of u in G is 
correct implies that u is itself correct. 

First consider the case that u is in WorkSet. Since the values for vertices in WorkSet 
have been computed in a relative topological-sort order, it follows that every vertex in 
WorkSet is consistent. It follows that vertex u is also correct. 

Now consider the case that u is in PotentiallyAffected-WorkSet. Thus, u is one of the 
vertices that is added to WorkSet in the ith iteration. Hence, u is an unaffected vertex, 
according to our hypothesis, and is correct. 

Let u be in neither PotentiallyAffected nor WorkSet. Then every predecessor of 
u must have the same value as it did initially. (Otherwise, u would be in Potentially- 
Affected.) Since u has the same value as it did initially, and since u was initially 
consistent, it follows that u is still consistent. It follows that u is correct. 

Thus, the circuit has a correct annotation at the end of the ith iteration. Hence, the 
subsequent iteration will not change any of the output values. (Note that re-evalu- 
ation of a consistent vertex does not change its value.) Consequently, the algorithm 
halts after the (i + 1)th iteration. 

It follows from the above argument that the algorithm makes at most JAFFEC- 
TED1 + 1 iterations. 

Because every vertex in the circuit has outdegree at most 2, at most 2’ new vertices 
can be added to WorkSet during the ith iteration. Hence, at the beginning of the ith 
iteration, 1 WorkSet 1 < xi.:’ 2j = (2’ - 1). The ith iteration itself takes time O(2’). 
The whole algorithm tak&:ime O(Ci,r IAFFECTED + 11 2’) = o@lAFFECTEDI). q 

Aside. There are obvious improvements that can be made to the above algorithm. 
WorkSet undergoes incremental changes during every iteration, and the various 
computations performed during each iteration may be performed in an incremental 
fashion. Thus, for instance, there is no need to recompute the value for every vertex 
in WorkSet during each iteration. Such changes improve the average-case 
performance, but the worst-case complexity would still be exponential in I( 6 (I. Experi- 
mental results show that with such improvements, the above algorithm is actually 
a practical one, at least in some contexts such as language-sensitive editors. See [29]. 
End Aside. 

Note that even if the circuit G is not binary, UpdateCircuit will compute the correct 
annotation of G. However, it may not do so in time bounded by any function of (16 (I. 

The reason is that in procedure UpdateCircuit, an unaffected vertex z, which by 
definition is initially correct, may be given an incorrect value at some intermediate 
iteration i. Although, z’s correct value will ultimately be restored by the time Up- 
datecircuit terminates, z’s successors are part of the WorkSet at the end of iteration i; 

because z is not affected, this may cause (WorkSet I to be unbounded in I( 6 I(. 



260 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

We can, however, use procedure UpdateCircuit to obtain an 0(2 t611) algorithm for 
general circuits as follows. Given a circuit G, we can construct a binary circuit G* that 
is equivalent to G in some sense, as follows. Let u be a vertex in G with k successors 
u1 , . . . , v& where k > 2. Replace u by k - 1 vertices ur , . . . , u& _ 1 each of out-degree 2. 
Vertex u1 has the same function and the same set of predecessors as vertex u, and two 
successors a1 and u2. For 1 < i < k - 1, vertex Ui has a single predecessor Ui- 1, and is 
associated with the identity function. Each of these vertices except u&-r has two 
successors tri and Ui+ 1. u& _ 1 has two successors u& _ 1 and u&. G * is obtained from G by 
splitting all vertices of G with outdegree greater than 2 in this fashion. 

It is not really necessary to construct the circuit G*. We can effectively simulate the 
action of UpdateCircuit on G*, given just G. This leads to an 0(2t6”) algorithm for 
general circuits. 

4. Lower-bound results: problems that are non-incremental for 
locally persistent algorithms 

The class of locally persistent algorithms was introduced by Alpern et al. [i]. What 
follows is their description of this class of algorithms, paraphrased to be applicable to 
general graph problems. 

A locally persistent algorithm may make use of a block of storage for each vertex of 
the graph. (This may be directly generalized to permit storage blocks to be associated 
with edges, too.) The storage block for vertex u will include pointers to (the blocks 
of storage for) the predecessor and successor vertices of u. The storage block for 
u will contain the output value for u. The block may also contain an arbitrary amount 
of auxiliary information, but no auxiliary pointers (to vertices, i.e., their storage 
blocks). No global auxiliary information is maintained in between successive modifi- 
cations to the graph: whatever information persists between calls on the algorithm 
is distributed among the storage blocks for the vertices. An input change is represent- 
ed by a pointer to the vertex or edge modified. A locally persistent algorithm begins 
with the representation of a change and follows pointers. The choice of which pointer 
to follow next may depend (in any deterministic way) on the information at the 
storage blocks visited so far. For example, a locally persistent algorithm may make 
use of worklists or queues of vertices adjacent to those vertices that have already 
been visited. The auxiliary information at a visited storage block may be updated 
(again in any way that depends deterministically on the information at the visited 
storage blocks). 

In summary, these algorithms have two chief characteristics. First, any auxiliary 
information used by the algorithm is associated with an edge or a vertex of the graph 
- no information is maintained globally. Second, the algorithm starts an update from 
the vertices or edges that have been modified and traverses the graph using only the 
edges of the graph. In essence, the auxiliary information at a vetex or edge cannot be 
used to access non-adjacent vertices and edges. 



G. Ramalingam. T. Reps J Theoretical Computer Science 158 (1996) 233-277 261 

In this section, we show that the problem of graph reachability is unbounded for the 
class of locally persistent algorithms (i.e., the problem has no bounded locally 
persistent incremental algorithm). We also show, using reduction from reachability, 
that two large classes of problems - the closed-semiring path problems and the 
meet-semilattice data-flow analysis problems - are unbounded for the class of locally 
persistent algorithms. These lower bound results also hold with respect to a more 
powerful model of computation (a restricted pointer machine model), but we present 
only the proof for the class of locally persistent algorithms due to space consider- 
ations. The more general proof may be found in [29]. 

Throughout the section, unless explicitly noted otherwise, the term “unbounded” is 
shorthand for “unbounded for the class of locally persistent algorithms”. 

4.1. The single-source reachability proiblem is unbounded 

Definition 6 (The single-source reachability problem: SS-REACHABILITY). Given 
a directed graph G with a distinguished vertex s (the source), determine for each vertex 
u whether u is reachable from s (i.e., whether there is a path in the graph G from s to u). 

Proposition 7. SS-REACHABILITY is unbounded for locally persistent algorithms. 

Proof. The lower bound is established by constructing a graph G and two “trivial” 
changes 6i and a2 in the graph that are far “apart” such that there is some “interac- 
tion” between the two changes. The changes are trivial in that both G + 6i and 
G + a2 have the same solution as G. The changes interact in that G + 6i + a2 has 
a different solution from G. The changes are far apart in a sense that we now define. 

Given vertices u and v in an undirected graph G, let do(u, u), the distance between 
u and u, denote the length of (i.e., the number of edges in) the shortest path between 
u and u in G. If U and W are two sets of vertices (or two subgraphs) of G, then 
d&U, W) is defined to be the shortest distance between some vertex of U and some 
vertex of W. Thus, do(U, W) = min{dc(u, u) 1 UE U, UE W}, if U and W are sets of 
vertices. Similarly, if H and F are subgraphs of G, do(H,F) = min{d,(u,u)] UE V(H), 

UE V(F)). 

Given a (directed) graph G, we will denote the underlying undirected graph by G. 
Assume that 6i and bZ are two modifications that convert graph G to graphs HI and 
HZ, respectively. Let J denote the union of the graphs G, & and &. (The union of 
two graphs G and fl is the graph (V(G) u V(H), E(G) u E(H)).) The distance 
dG(81,BZ) between the two modifications 6i and & to graph G is defined to be 
d,,(MODIFIED,,B,, MODIFIED,,,>). 

Consider the graph G shown in Fig. 10. Let 6r denote the deletion of the edge u + x 
and let a2 denote the deletion of the edge u + y. Let HI and H2 denote the graphs 
G + 6r and G + &, respectively. Obviously, none of the vertices in HI or Hz are 
affected, and thus, for any fixed value of i, I( a1 jJi,G = (1 d2 1) i,G = O(1). The proof 
involves showing that a locally persistent algorithm cannot process both the change 



262 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

Graph G ‘-ph HI %‘h Hz G@ % 

Fig. 10. Graphs used in the proof that SS-REACHABILITY is unbounded for locally persistent algo- 
rithms. 

& to G and the change d2 to G in constant time (i.e., time independent of the size of 
graph G or the length of the dotted paths indicated in the figure). 

Consider any locally persistent incremental algorithm for SS-REACHABILITY. 
Let Trace(G’, 8’) denote the sequence of steps executed by the algorithm in processing 
some change 6’ to some G’. Consider the following two instances: the application of 
modification & to graph G and the application of modification b2 to graph Hi. 
Obviously, the update procedure must behave differently in these two cases, and 
Trace(G,&) must be different from Trace(H,, 6,) (because many vertices of 
H3 = Hi + a2 are affected, whereas no vertex in G + d2 is affected). Since a locally 
persistent algorithm makes use of no global storage, this can happen only if both 
Trace(G, 6,) and Trace(H, ,6,) include a visit to some vertex w that contains different 
information in the graphs G and Hr. But Hi was obtained from G by making change 
6i. Hence, the information at vertex w must have been changed during the updating 
that followed the application of change & to G. It follows that Trace(G,6,) must 
contain a visit to vertex w. A characteristic of locally persistent algorithms is that if 
a vertex w is visited during the updating that follows the application of change 6’ to 
graph G’, then every vertex in some path in graph G’ from a modified vertex to w must 
have been visited. Consequently, Trace(G, 6,) and Trace(G, 6,), between them, include 
visits to every vertex on some path from x to y in G. Hence, the time taken for 
processing change 6r to G plus the time taken for processing change a2 to G must be 
Q(d&jl, 6,)). But, dG(bl, b,) can be unbounded, i.e., O(1 GJ). Hence, any locally 
persistent incremental algorithm for SS-REACHABILITY must be unbounded. •! 

In the following sections we show that various path problems in graphs and various 
data-flow analysis problems are all unbounded by reducing the reachability problem 
to these problems. The reductions utilize a “homomorphic embedding” of the reacha- 
bility problem into these other problems. 

4.2. Unbounded path problems 

We now show that several other graph problems are also unbounded. These graph 
problems are best described using the closed-semiring framework. 



G. Ramalingam. T. Reps / Theoretical Computer Science 158 (1996) 233-277 263 

Definition 8. A closed semiring is a system (S, @, @, 0, i) consisting of a set S, two 
binary operations @ and @ on S, and two elements 0 and i of S, satisfying the 
following axioms: 

(1) (S, @,o) is a meet-semilattice with greatest element 0. (Thus, @ is a com- 
mutative, associative, idempotent operator with identity element 6 The meet operator 
will also be referred to as the summary operator.) Further, the meet (summary) of any 
countably infinite set of elements {ai ( ieN} exists and will be denoted by @ieN ai. 

(2) (S, @,I) is a monoid. (Thus, @ is an associative operator with identity 1.) 
(3) @ distributes over finite and countably infinite meets: (or ai) @ (@j bj) = 

@.j (ai @ bj)* 
(4) a @ 0 = 6 A unary operator *, called closure, of a closed semiring (S, 8, @, 0, i) 

is defined as follows: 

a* =dd ,i$ aiT 

where a0 = i and aif = ai 60 a. 

Different path problems in directed graphs are captured by different closed semir- 
ings. An instance of a given path problem involves a directed graph G = (V, E) and an 
edge-labeling function that associates a value from S with each ecE. 

Consider a directed graph G, and a label function I that maps each edge of G to an 
element of the set S. The function 1 can be extended to map paths in G to elements of 
S as follows. The label of a path p = [e,, ez, . . . . e,] is defined by l(p) = l(eI) ~3 l(ez) ~$3 

... ~3 l(e,). If v, w are two vertices in the graph, then C(v, w) is defined to be the meet 
(summary) over all paths p from v to w of l(p): 

WY4 = @ l(P). 
“-pW 

The closed-semiring framework for path problems captures both “all-pairs” prob- 
lems and “single-source” problems. In an all-pairs problem, the goal is to compute 
C(v, w) for all pairs of vertices v, WEI’( In a single-source problem, the goal is to 
compute only the values C(s, w) where s is the distinguished source vertex. In all these 
problems, (unit-time) operations implementing the operators @, @,, and * are as- 
sumed to be available. More formally, let R = (S, @, C&&i) be a specific closed 
semiring. The SS-R problem is defined as follows. 

Definition 9. Given a directed graph G = (I’, E), a vertex s in V, and an edge-labeling 
function 1: E + S, the SS-R problem is to compute C(s, w) for every vertex w in V. We 
say that (G, s, 1) is an instance of the SS-R problem. 

In the dynamic version of the SS-R problem that we consider, the source vertex s is 
assumed to be fixed. 



264 G. Ramalingam, T. Reps / Theoretical Computer Science I58 (1996) 233-277 

For example, let R be the closed-semiring (R”’ u {CD}, min, +,co,O). Then, SS-R is 
nothing other than the single-source shortest-path problem with non-negative edge 
lengths. 

In this section we show that for any closed semiring R, the SS-R problem is 
unbounded. We first show that the SS-R problem is “at least as difficult as” the 
SS-REACHABILITY problem, even for incremental algorithms, by “reducing” the 
SS-REACHABILITY problem to the SS-R problem, and conclude that the SS-R 

problem is unbounded. 
However, some caution needs to be exercised in making inferences about the 

unboundedness of a problem via a reduction argument. If a problem P is unbounded 
and can be reduced to a problem Q in the conventional sense, it does not necessarily 
follow that the problem Q is unbounded. For instance, consider any unbounded 
problem P of computing some value S(u) for each vertex u of the graph. Consider the 
(intuitively) “more difficult” problem Q of computing S(U) and T(U) for each vertex u of 
the graph, where T(u) is defined such that it changes whenever the input changes. For 
example, let T(u) be the sum of the number of vertices and the number of edges in the 
graph. If each input change consists of the addition or deletion of a vertex or an edge, 
then by definition, whenever the input changes every vertex is affected. Consequently, 
any update algorithm is a bounded algorithm, and Q is a bounded problem. 

Showing that a problem Q is unbounded by reducing an unbounded problem P to 
Q involves the following obligations: (1) We must show how every instance of problem 
P (i.e., the input) can be transformed into an instance of problem Q, and how the 
solution for this transformed problem instance can be translated back into a solution 
for the original problem instance. (2) We must show how any change BP to the original 
problem instance can be transformed into a corresponding change 6, in the target 
problem instance, and, similarly, how the change in the solution to the target problem 
instance can be transformed into the corresponding change in the solution to the 
original problem instance. (3) We must show that the time taken for the transforma- 
tions referred to in (2) is bounded by some function of I( BP 11. (4) We must show that 
IId, 11 is also bounded by some function of (1 Sp I/. (5) Finally, since we are dealing with 
the notion of unboundedness relative to the class of locally persistent algorithms, we 
must show that the transformation algorithms referred to in (2) are locally persistent. 

-- 
Proposition 10. Let R = (S, 0, @,O, 1) be an arbitrary closed semiring. The SS-R 

problem is unbounded for the class of locally persistent algorithms. 

Proof. Given an instance of a single-source reachability problem (G,s), there is 
a linear-time reduction to an instance of SS-R given by (G,s,le.i). In the target 
problem instance, the summary value at u, C(s, u) is i if v is reachable from s, and 
0 otherwise. 

It is obvious that all the requirements laid down above for reduction among 
dynamic problems are met by the above reduction. Therefore, SS-R is a unbounded 
problem. 0 



G. Ramalingam. T. Reps 1 Theoretical Computer Science 158 (1996) 233-277 265 

It follows from the above proposition that SSSP 2 0 is an unbounded problem. 
However, as we saw in Section 3.1, the very similar problem SSSP > 0 has a bounded 
locally persistent incremental algorithm. This illustrates that only certain input 
instances may be the reason why a problem is unbounded. For example, graphs with 
O-length cycles are what causes SSSP 2 0 to be unbounded. If the problematic input 
instances are unrealistic in a given application, it would be appropriate to consider a 
suitably restricted version of the problem that does not deal with these difficult instances. 

4.3. Non-incremental data-Jlow analysis problems 

In this section we show that all non-trivial meet-semilattice data-flow analysis 
problems are unbounded. Data-flow analysis problems are often cast in the following 
framework. The program gives rise to aflow graph G with a distinguished entry vertex 
s. Without loss of generality, s may be assumed to have no incoming edges. The 
problem requires the computation of some information S(u) for each vertex u in the 
flow graph. The values S(u) are elements of a meet semilattice L; a (monotonic) 
function M(e): L + L is associated with every edge e in the flow graph; and a constant 
CEL is associated with the vertex s. The desired solution S(u) is the maximal fixed 
point of the following collection of equations: 

S(s) = c, S(u) = n M(u+ u)(S(u)) for u # s. 
v--t WE(G) 

Each semilattice L and constant ceL, often the greatest or least element of the 
semilattice, determines a data-flow analysis problem, which we call the (L,c)-DFA 
problem. An input instance of the problem consists of a graph G and a mapping 
M from the edges of G to L + L. 

We now show that an arbitrary meet-semilattice data-flow analysis problem P is 
unbounded by reducing SS-REACHABILITY to P. 

Proposition 11. Let L be a meet-semilattice, and let CCL. Then, the problem (L, c)-DFA 

is unbounded for the class of locally persistent algorithms. 

Proof. Let f be a function from L to L such that f (c) # T. Given an instance ((V, E), s) 
of the single-source reachability problem we can construct a corresponding instance 
((Vu (t>, E u {(t 4 s)}). t, M) of problem P where, 

M(e)=f ife=t+s, M(e) = Ix.x if e # t + s. 

The solution of this problem instance is given by: S(t) = c; if u # t, then S(u) is f (c) if 
u is reachable from s, and T otherwise. It follows from the unboundedness of 
SS-REACHABILITY that P is unbounded. Cl 

The interpretation of the above result is that any locally persistent incremental 
algorithm for problem P is an unbounded algorithm. This does not by itself imply that 
the data-flow analysis problem P that arises in practice is an unbounded one for 



266 G. Ramalingam. T. Reps / Theoretical Computer Science 158 (1996) 233-277 

locally persistent algorithms (in other words, if there is some flexibility in defining the class 
of valid input instances for problem P). The above reduction shows that some “difficult” 
input instances cannot be handled in time bounded by a function of I( 6 (I. However, these 
input instances may be unrealistic input instances in the context of the data-flow analysis 
problem under consideration. We now argue that, in fact, this is not the case. 

The first possible restriction on input instances relates to the flow graph. Ordinarily, 
frameworks for batch data-flow analysis problems impose the assumption that all 
vertices in a flow graph be reachable from the graph’s start vertex. Some data-flow 
analysis algorithms also assume that the data-flow graph is a reducible one. With 
either of these restrictions on input instances, the above reduction of SS-REACHA- 
BILITY to problem P is no longer valid. However, we follow Marlowe [23], who 
argued that these assumptions should be dropped for studies of incremental data-flow 
analysis (see [23, Section 3.3.11). 

The second possible restriction on input instances relates to the mapping M. Is it 
possible that realistic flow-graphs will never have a labeling corresponding to the 
“difficult” input instances shown to exist above? We argue below hat this is not so. 

The reduction above associated every edge with either the identity function or 
a functionfsuch thatf(c) # T. The identity function is not an unrealistic label for an 
edge. (A skip statement, or more generally, any statement that modifies the state in 
a way that is irrelevant to the information being cmputed by the data-flow analysis 
problem P is usually associated with the identity function.) As for the functionJ we 
now show that every non-trivial input instance must have an edge labeled by 
a function g such that g(c) # T. Consider any input instance (G, s, M) such that 
M(e)(c) = T for every edge eEE(G). Since M(e) must be monotonic, M(e)(T) must 
also equal T. Then, the input instance (G,s,M) has the trivial solution given by: 

S(s) = c, S(U) = T for u # s. 

Hence, the edge-labeling M from the reduction used in the proof of Proposition 11 is, 
in fact, realistic. 

In conclusion, note that the reduction used in the proof of Proposition 11 is 
independent of the class of incremental algorithms proposed (i.e., locally persistent or 
otherwise). That is, the incremental version of every data-flow analysis problem is at 
least as hard as the dynamic single-source reachability problem. In other words, for 
a class of algorithms to have members that are bounded for any data-flow analysis 
problem, there must be an algorithm of the class that solves the single-source 
reachability problem in a bounded fashion. 

5. A computational-complexity hierarchy for dynamic graph problems 

The results from Sections 3 and 4, together with some previously known results, 
allow us to begin to understand the structure of the complexity hierarchy that exists 
when dynamic problems are classified according to their incremental complexity with 
respect to locally persistent algorithms. Their computational-complexity hierarchy for 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 261 

UNBOUNDED 

EXPONENTIAL 

MEET-SEMlLAlTlCE DATA-FLOW ANALYSIS PROBLEMS [section 4.31 

SINGLE-SOURCE/SINK CLOSED-SEMIRING PATH PROBLEMS [Section 4.21 

SINGLE-SOURCE/SINK SHORTEST PATH (>= 0) [section 4.21 

SINGLE-SOURCE/SINK REACHABlLlTY [Section 4.11 

lIti!! 21’6” c WEIGHTED CIRCUIT-ANNOTATION PROBLEM (IrJ]) 

POLYNOMIAL 

CIRCUIT-ANNOTATION PROBLEM [I], [Section 3.31 

PRlORITY ORDERING [l] 

11611 log II611 AU-PAIRS SHORTEST PATH (a 0) [Section 3.21 

SINGLE-SOURCE/SINK SHORTEST PATH (> 0) [Section 3.11 

II611 AlTRIBUTE UPDATING (31) 

Fig. 11. The computational-complexity hierarchy for dynamic problems that exists when problems are 
classified according to their incremental complexity in terms of the parameter 116 11 with respect to locally 
persistent algorithms. (In the figure, we do not distinguish between )( 6 11 1 and 1) S IIt. (IS II represents 1) 6 11 1 in 
all cases except for APSP > 0.) 

dynamic problems is depicted in Fig. 11. In the remainder of this section we describe 
the results from other papers that have a bearing on this way of classifying dynamic 
problems; some additional discussion of these problems can be found in Section 6. 

The problem of incremental attribute evaluation for noncircular attribute gram- 
mars - how to reevaluate the attributes of an attributed derivation trees after 
a restructuring operation has been applied to the tree - was shown by Reps to be 
linear in 1) 6 I( [31] (see also [32,33]). Thus, the algorithm he gave for the problem is 
asymptotically optimal ([3 l] is also the first paper that we are aware of in which an 
incremental algorithm is analyzed in terms of the parameter 1) 6 II). 

The concept of a locally persistent algorithm is due to Alpern et al. [ 11. Alpern et al. 
also established two results concerning the performance of incremental algorithms in 
terms of the parameter I( 6 11. Their results concerned two problems: the dynamic 
circuit-annotation problem and the problem of maintaining a priority ordering in 
a DAC. In the dynamic priority-ordering problem, as the DAG is modified the goal is 
to maintain priorities on the graph vertices such that if there is a path from u to w then 
priority(u) > priority(w).4 Alpern et al. established the following results concerning 

“Note that the dynamic priority-ordering problem is somewhat different from the other problems we have 
looked at in that the priority-ordering problem concerns a relation on graph vertices and labels, rather than 
afunction from vertices to labels; that is, many labelings are possible for a given graph. For problems like 
this, Alpem et al. define (16 (1 to be the size of the minimal change to the current labeling needed to reach any 
of the solutions for the modified graph. 



268 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

these problems: 
(1) They showed that, with both edge insertions and deletions permitted, the 

problem of maintaining priorities in a DAG (as well as determining whether an edge 
insertion introduces any cycles) can be solved in time 0( )I 6 11 2 log 116 [I ). Their algo- 
rithm processes unit changes in time 0( II 6 )I log (16 II). 

(2) They showed that any locally persistent incremental algorithm for the dynamic 
circuit-annotation problem is R(2”“‘). (Each function associated with a vertex is 
assumed to be computable in unit time.) 

The latter result separates the class of inherently exponentially bounded dynamic 
problems from the class of polynomially bounded dynamic problems. Recall that in 
Section 3.3 we give a bounded algorithm for the dynamic circuit-annotation problem 
(where the bound is an exponential function of 116 II). Previous to our work, no 
bounded algorithm for the dynamic circuit-annotation problem was known. 

6. Relation to previous work 

A key contribution of this paper is that it sheds light on the general problem of 
analyzing the computational complexity of incremental algorithms. Our work is 
based on the idea of measuring the cost of an incremental algorithm in terms of the 
parameter I( 6 II -which is related to the sum of the sizes of the changes in the input and 
the output - rather than in terms of the size of the entire (current) input. The advantage 
of this approach is that an analysis in terms of /I 611 characterizes how well an 
algorithm performs relative to the amount of work that absolutely must be performed. 
The paper presents new upper-bound results as well as new lower-bound results. 
Together with some previously known results, our results help one to understand the 
complexity hierarchy that exists when dynamic problems are classified according to 
their incremental complexity with respect to locally persistent algorithms. 

Ryder and Paul1 have remarked about the “inappropriateness of worst-case analy- 
sis for dynamic algorithms [40]“; similar remarks have appeared in several other 
papers. However, our work shows that for some dynamic problems it is not that 
worst-case analysis is inappropriate, but rather that an analysis carried out in terms of 
the parameter (input) is inappropriate. For example, when the cost of the computation 
is expressed as a function of [input I, in the worst case no incremental algorithm for 
SSSP > 0 can perform better than the best batch algorithm; however, we have shown 
that there is an incremental algorithm for SSSP > 0 with (worst-case) performance 

0(/1~1l + l~l1oglw. 
The remainder of this section discusses how our results relate to previous work on 

incremental computation and incremental algorithms. 

6.1. Previous work on classifying incremental problems 

The problem of classifying dynamic problems has been addressed in two previous 
papers, one by Reif [30] and one by Berman et al. [3]. One aspect of our work that 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 269 

sets it apart from both of these papers is that we analyze incremental complexity in 
terms of the adaptive parameter (( 6 (I, rather than in terms of the size of the current 
input. 

The paper by Reif primarily concerns an algorithm for the connectivity problem in 
undirected graphs when edge deletions but not edge insertions are permitted [30].5 At 
the end of the paper, Reif lists a number of dynamic problems “. . . with linear time 
sequential RAM algorithms on a single input instance, but which seem to require 
a complete recomputation in the worst case if a single symbol of the input is 
modified”. He observes that the problems on his list are not only interreducible, but 
that the reductions meet two properties: 

(Pl) The reductions between problems in the group can be performed in linear time 
by a sequential RAM. 

(P2) There exist suitable encodings such that if one symbol of input to an already 
computed reduction is modified, the reduction can be updated in constant time 
by a sequential RAM. 

Reif draws the following conclusion: 
Consider the dynamic problem of processing a sequence of n single bit modifica- 
tions to an input instance of . . . size n, where the problem satisfies (Pl) and (P2). It 
follows from (Pl) and (P2) that if any of the resulting dynamic problems can be 
solved in t(n) = o(n’) time, then all these dynamic problems can be solved in O@(n)) 
time. 
Whereas Reif considers reductions between dynamic decision problems, the reduc- 

tions that we present in Section 4 are among dynamic optimization problems (where 
the output is a set or a mapping). Because our goal is to characterize incremental 
complexity in terms of the parameter ()6 (I, an additional property is needed beyond 
that of “linear-time reducibility with constant-time updatability” (i.e., Pl and P2). To 
see why, suppose that there exists an O(f( I( dB II)) updating algorithm for problem B, 
where f is a polynomial. In order to guarantee that a reduction of problem A to 
B provides an 0( f ( I/ bA I( )) updating algorithm for problem A, problem encodings and 
reductions must meet the following property (in addition to Pl and P2): 

(P3) For every instate IA of problem A and modification dA, the parameter I)6BI),8 
must be 0( I/ dA l\r,), where ZB is the transformed form of la and 6, is the image of 
modification dA. 

As in much of the previous work on incremental computation, Reif is concerned 
with measuring incremental complexity in terms of the size of the input, whereas in 
this paper we explore the consequences of measuring incremental complexity in terms 

’ The only other permitted operations are queries of the form “Does there exist a path in the current graph 
between two given vertices?“, which must be answered on-line. For a graph in which the sum of the number 
of vertices and edges is n on which one performs n operations, Reif’s algorithm has total cost 
O(ng + nlogn), where g is the genus of the graph. 



270 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (19%) 233-277 

of I( 6 )I. On the other hand, it is not clear that it would make sense to measure the 
complexity of dynamic decision problems in terms of (16 (I. 

A different approach to the problem of classifying dynamic problems was proposed 
in a paper by Berman et al. [3]. Berman et al. classify dynamic problems through the 
notion of an incremental relative lower bound (IRLB). An IRLB relates the worst-case 
time required for a dynamic problem to the running time of the time-optimal 
algorithm for the batch problem. Some of the differences between their approach and 
ours are as follows: 

(1) Whereas the work of Berman et al. establishes relative lower bounds for 
dynamic problems, our work concerns “inherent” complexity bounds, that is, bounds 
expressed in terms of some parameter of the problem itself. (In addition, we discuss 
upper bounds as well as lower bounds.) 

(2) The results of Berman et al. on IRLB’s are expressed in terms of the time 
required by the time-optimal algorithm for the corresponding batch problem and, in 
some cases, the size of the input. Our results are expressed in terms of II6 I). 

It is only fair to point out that both out work and the work of Berman et al. fail to 
address adequately the issue of the use and maintenance of auxiliary information by 
an incremental algorithm. Such information is crucial to the performance of some 
incremental algorithms, such as Reps’s algorithm for updating the attributes of an 
attributed tree after a tree modification [31-333. A second example is the incremental 
string-matching algorithm described in [3, Section 3.31, which falls outside the class of 
incremental algorithms for which their bounds apply because of the amount of 
auxiliary information that the algorithm stores and maintains. 

In the classification scheme of Berman et al., the class of problems with O(1) IRLB’s 
is the class with the poorest incremental behavior. For these problems, it is possible to 
show that a single modification, such as the insertion or deletion of a single edge in 
a graph, can change the problem to one whose solution shares nothing in common 
with the solution of the original problem (thereby reducing the batch problem to 
a “one-shot” dynamic problem).6 Thus, in the worst case, an incremental algorithm 
for a problem with an O(1) IRLB cannot perform better than the best batch algorithm 
for the problem. However, this merely leaves us with the following conundrum: “In 
what sense is a proposed incremental algorithm an improvement over the (best) batch 
algorithm?” - or more generally, “How does one compare different incremental 
algorithms for a given problem, if they all have equally bad worst-case behavior (i.e., 
equally bad when their cost is measured in terms of the size of the current input)?” 

Our work shows that if you measure work relative to the amount of work that 
absolutely must be performed, the picture looks somewhat different. In other words, 

6The arguments that Berman et al. use to establish relative lower bounds for various problems are similar 
to the ones used by Spira and Pan [43] and Even and Gazit [lS] to establish that no incremental algorithm 
for the all-pairs shortest-path problem can do better in the worst case than the best batch algorithm for the 
problem. 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 211 

expressing the cost of an incremental algorithm in terms of the parameter 1) 6 )I can 
sometimes be a fruitful way to compare different algorithms for a problem with an 
O(1) IRLB (thereby leading to a way out of the conundrum). 

Although knowing that a problem has an IRLB of O(1) is certainly a property of 
interest (since the knowledge that there are modifications for which an incremental 
algorithm will perform no better than the best batch algorithm answers the question 
“How bad can things get?“), we believe that our work demonstrates that the notion of 
an O(1) IRLB does not characterize the class of problems with inherently poor 
incremental performance. In particular, using an argument of the kind given by 
Berman et al. we can show that SSSP > 0 is in the class of problems with O(1) IRLB’s: 

Given an input graph G = (V, E) for SSSP > 0, modify G by adding a new vertex 
u to V. For each vertex USE V - (0, sink(G)}, add an edge Ui --) u with weight k/3, 

where k is the length of the shortest edge in the original graph whose target is 
sink(G); in addition, add an edge u + sink(G), also with weight k/3. This construc- 
tion can be carried out in O(( VI) steps. The solution of SSSP > 0 for the modified 
graph is immediate: dist(sink(G)) = O,dist(u) = k/3, and for each vertex WE V 
- {u,sink(G)},dist(w) = 2k/3 (since the shortest path from each such vertex w to 

sink(G) is [w,u,sink(G)]). To create a graph that has the same solution as the 
original graph, we merely have to remove a single edge, namely u + sink(G). Thus, 
we conclude that SSSP > 0 has an IRLB of O(1). 

However, as we have shown in Section 3.1 of this paper, there is a bounded incremen- 
tal algorithm for SSSP > 0 with time complexity 0( 1) 6 I/ + 161 log ISI). 

The fact that SSSP > 0 has an 0( 1) IRLB and a polynomially bounded incremental 
algorithm is what leads us to conclude that the notion of an O(1) IRLB does not 
characterize the class of problems with inherently poor incremental performance. 
Thus, it is natural to ask: “What does characterize the problems with inherently poor 
incremental performance?” Although we do not claim to have given such a character- 
ization, we believe that this paper provides a model for how this question might 
ultimately be resolved: 

(1) As shown by the results presented both in this paper and in others, the 
computational complexity of dynamic problems can sometimes be measured in 
a more refined manner by measuring costs in terms of the parameter (16 11. 

(2) For the class of unbounded problems in our hierarchy of dynamic problems, 
there exist families of modifications for which the amount of updating that must be 
performed is not related to I( 6 )I by any fixed function. In this paper we have shown the 
existence of unbounded problems only in a single (and somewhat impoverished) 
model of incremental computation, namely the model of locally persistent algorithms. 
This model of incremental computation is flawed because it excludes from considera- 
tion any algorithm that makes use of locally stored pointers. These lower bound 
results, however, do hold with respect to more powerful models of computation. (See 
[29].) We believe that the class of unbounded problems provides an example of the 
kind of characterization of the problems with inherently poor incremental performance 
that one should look for in other (as yet unspecified) models of incremental computation. 



272 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

6.2. Previously known results where incremental complexity is measured in terms of 1) 6 11 

There have been a few previous papers in which incremental complexity has been 
measured in terms of the parameter /I 6 I(. 

Attribute updating. The first paper that we are aware of in which an incremental 
algorithm is analyzed in terms of 116 11 is a paper by Reps [31] (see also [32,33]).’ The 
problem discussed in that paper is incremental attribute evaluation for noncircular 
attribute grammars - how to reevaluate the attributes of an attributed derivation tree 
after a restructuring operation (such as the replacement of a subtree) has been applied 
to the tree. The algorithm given is linear in (1 S j( and hence asymptotically optimal. 
Subsequently, other optimal algorithms were given for a variety of attribute-grammar 
subclasses, e.g., absolutely non-circular grammars [33] and ordered attribute gram- 
mars [36,45]. 

All of the algorithms cited above are locally persistent. In the case of the algorithms 
for noncircular attribute grammars and absolutely noncircular attribute grammars, 
the cost of an operation that moves the editing cursor in the tree is proportional to the 
length of the path along which the cursor is moved. (It is necessary to perform 
a unit-cost update to the auxiliary information used by the attribute updating 
algorithm at each vertex on the path along which the editing cursor is moved.) For 
ordered attribute grammars, however, a random-access movement of the editing 
cursor in the tree is a unit-cost operation. 

There are also a variety of other attribute-updating algorithms described in the 
literature, including one that handles k simultaneous subtree replacements in an 
n-node tree and runs in amortized time 0(( (16 (( + k) * log n) [34], and another that 
permits unit-cost, random-access cursor motion for non-circular attribute grammars 

and runs in amortized time 0( )I 6 (1 .,/k) [35]. These algorithms have “hybrid” 
complexity measures, in the sense that the running time is a function of the size of the 
current input as well as 1) 6 II ( i.e., the running time is of the form 0( f (I input 1, II 6 II)). 

Priority ordering and the circuit-value problem. A paper by Alpern et al. [l] 
concerning the dynamic circuit-value problem and the problem of maintaining a pri- 
ority ordering in a DAG presents results on the incremental complexity of both 
problems in terms of the parameter II 6 /I. The results from their work that are related 
to the ideas presented in this paper are as follows: 

(1) They showed that, with both edge insertions and deletions permitted, the 
problem of maintaining priorities in a DAG (as well as determining whether an edge 
insertion introduces any cycles) can be solved in time 0( I( 6 II 2 log 1) 6 II). In the case of 
unit changes, their algorithm runs in time 0( )I 6 I( log 1) 6 II). 

(2) They defined the concept of a locally persistent incremental algorithm, and 
showed that a lower-bound on any locally persistent algorithm for the dynamic 
circuit-value problem is R(2”‘“). 

‘In these papers, the parameter (( 6 I( is referred to as (AFFECTEDI. 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 273 

(3) They gave an (unbounded) algorithm for the dynamic circuit-value problem 
that used their dynamic priority-ordering algorithm as a subroutine. In this algo- 
rithm, after a change to the graph, first priorities are updated; then, vertex re- 
evaluations are scheduled (via a worklist algorithm that uses a priority queue for the 
worklist). This algorithm runs in time 

II ~PriorityOrdering II ’ log II 6PriorityOrdering II + II 6CireuitVolue II lot3 II 6CircuitValue /I. 

Because the quantity II 8PrioriryOrdering /I is not bounded by any function of I( BCi,fuitValue (I, 

this algorithm for the dynamic circuit-value problem is unbounded. 

6.3. Previous work on incremental shortest-path algorithms 

Section 3.2 of this paper presents a bounded algorithm for the dynamic all-pairs 
shortest-path problem with positive edge weights (APSP > 0) (assuming the collec- 
tion of vertices is fixed in advance). Previous to this work no bounded algorithm was 
known for updating the solution to the all-pairs shortest-path problem after the 
deletion of an edge. Although they do not use the concept of boundedness, Rohnert 
[38], Even and Gazit [15], Lin and Chang [21], and Ausiello et al. [2] do provide 
bounded algorithms for updating the solution to the all-pairs shortest-path problem 
after the insertion of an edge. 

There have been three previous papers on handling edge deletion in APSP > 0 - by 
Dionne [ 111, Rohnert [38], and Even and Gazit [ 15]- in which the analysis might be 
misinterpreted, on first reading, as demonstrating that the algorithms are bounded. In 
fact, the algorithms given in all three papers have unbounded incremental complexity 
in general. 

As we stated in the introduction, it is important not to confuse (16 11, which 
characterizes the amount of work that it is absolutely necessary to perform for a given 
dynamic problem, with quantities that reflect the updating costs for various internal 
data structures that store auxiliary information used by a particular algorithm for the 
dynamic problem. (Although costs of the latter sort do, in some sense, reflect “the size 
of the change”, they do not represent an updating cost that is inherent to the dynamic 
problem itself; one must ask how these costs compare with 116 I( .) For example, with 
both Rohnert’s and Even and Gazit’s algorithms for edge-deletion, the total updating 
cost depends on potentially unbounded costs that arise because of the need to update 
various data structures used in the two algorithms. By contrast, in our algorithm for 
APSP > 0 all costs are bounded by )I 6 11, including all costs for updating the data 
structures used by the algorithm. 

In addition to maintaining the distance matrix for the graph, many of the incremen- 
tal algorithms for the all-pairs shortest-path problem are also capable of handling 
requests of the form “List a shortest path from vertex x to vertex y” in time 
proportional to the number of vertices in the path reported by the algorithm. Our 
procedures DeleteEdge,rsp , 0 and InsertEdge,psp s0 can be generalized to maintain 



274 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

one shortest path between any pair of vertices without increasing their asymptotic 
time complexity. 

Other previous work on how to maintain shortest paths in graphs incrementally 
includes papers by Murchland [25,26], Loubal [22], Rodionov [37], Halder [18], 
Pape [27], Hsieh et al. [20], Cheston [8], Goto et al. [16], Cheston and Corneil [9]; 
however, none of the papers in this group analyze either the single-source or the 
all-pairs problem in terms of the parameter )I 6 11, and furthermore, when such an 
analysis is made, none of the algorithms presented in these papers turns out to be 
bounded. 

6.4. Other related work 

For batch algorithms, the concept of measuring the complexity of an algorithm in 
terms of the sum of the sizes of the input and the output has been explored by Cai and 
Paige [4,5] and by Gurevitch and Shelah [17]. In this paper, we measure the 
complexity of an dynamic algorithm in terms of the sum of the sizes of the changes in 
the input and the output. 

A number of papers in the literature on dynamic algorithms concern incremental 
data-flow analysis [6,23,24,39,40,46]. However, only one other paper has ever 
examined the question of whether incremental data-flow analysis is, in any sense,an 
“intrinsically hard” problem: Berman et al. [3] show that a number of incremental 
data-flow analysis problems have O(1) IRLB’s, which puts them in the class of 
problems with the poorest incremental behavior (in the sense of Berman et al.). On the 
other hand, what an O(1) IRLB signifies is merely that the worst-cast behavior of 
a dynamic algorithm for such a problem can be no better than that of the best 
algorithm for the batch version of the problem. In addition, the fact that SSSP > 0 has 
an O(1) IRLB and a bounded dynamic algorithm re-opens the question of whether 
incremental data-flow analysis really is inherently difficult. Our results from Section 4 
show that, under the model of locally persistent algorithms, incremental data-flow 
analysis problems are unbounded - and hence in this model they are inherently 
difficult problems. (However, this model is a very restricted model of incremental 
computation, and the question is open as to whether there exist any bounded 
incremental data-flow analysis algorithms outside the class of locally persistent 
algorithms.) 

To establish lower bounds on dynamic problems, it is necessary to have a model of 
incremental computation. In this paper all lower-bound results apply to the locally 
persistent algorithms, a model of incremental computation that was defined by Alpern 
et al. Cl]. The paper by Spira and Pan that establishes lower bounds on updating 
minimum spanning trees and single-source shortest paths in positively weighted 
graphs makes an assumption that is not exactly the same as restricting attention to 
only locally persistent algorithms, but is similar in spirit: 

. . . we have discussed updating where only the answer to the problem considered is 
retained. It seems likely that if intermediate information in obtaining the original 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 215 

solution is kept, improvements will be possible. We have not investigated this ([43, 
p. 3801). 

What is unsatisfactory about these models of incremental computation is that, at best, 
only very limited use of auxiliary storage is permitted. Berman et al. [3] do discuss 
a model of incremental computation that has somewhat fewer restrictions on the use 
of auxiliary storage; however, in their model the cost of initializing any auxiliary 
storage used must be less than the cost of running the optimal-time batch algorithm 
for the problem. There are certainly reasonable dynamic algorithms that, because of 
the amount of auxiliary information that the algorithms store and maintain, lie 
outside the class of algorithms covered by the model of Berman et al. (For instance, see 
[3, Section 3.33.) Thus, a desirable goal for future research is to develop a better model 
of incremental computation that better addresses the issue of the use and maintenance 
of auxiliary storage by dynamic algorithms. 

As a final closing remark, it should be noted that although most dynamic algo- 
rithms that have been proposed are unbounded in the sense of the term used in this 
paper, from a practical standpoint such algorithms may give satisfactory performance 
in real systems. For instance, Hoover presents evidence that his unbounded algorithm 
for the circuit-value problem performs well in practice [ 193; Ryder et al. [41] present 
evidence that the unbounded incremental data-flow analysis algorithm of Carroll and 
Ryder [6] performs well in practice; Dionne reports excellent performance for some 
unbounded algorithms for APSP > 0 [ 111. 

References 

Cl1 

I21 

c31 

c41 

c51 

C61 

c71 

C81 

B. Alpern, R. Hoover, B.K. Rosen, P.F. Sweeney and F.K. Zadeck, Incremental evaluation of 
computational circuits, in: Proc. of the First Ann. ACM-SIAM Symp. on Discrete Algorithms, San 
Francisco, CA, 22-24 Jan. 1990 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 
1990) 32-42. 
G. Ausiello, G.F. Italiano, A.M. Spaccamela and U. Nanni, Incremental algorithms for minimal 
length paths, in: Proc. of the First Ann. ACM-SIAM Symp. on Discrete Algorithms, San Francisco, 
CA, 22-24 Jan. 1990 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990) 
12-21. 
A.M. Berman, M.C. Paul1 and B.G. Ryder, Proving relative lower bounds for incremental algorithms, 
Acta Informatica 27 (1990) 665-683. 
J. Cai and R. Paige, Binding performance at language design time, in: Con& Record ofthe Fourteenth 
ACM Symp. on Principles of Programming Languages, Munich, W. Germany, January 1987 (ACM, 
New York, NY, 1987) 85-97. 
J. Cai and R. Paige, Languages polynomial in the input plus output, in: Proc. ofthe Second Internat. 
Conf: on Algebraic Methodology and Software Technology (AMAST), Iowa City, Iowa 22-25 May 
1991 (1991). 
M. Carroll and B. Ryder, Incremental data flow update via attribute and dominator updates, in: Con& 
Record of the Fifteenth ACM Symp. on Principles of Programming Languages, San Diego, CA, 13-15 
January 1988 (ACM, New York, NY, 1988) 274-284. 
M.D. Carroll, Data flow update via dominator and attribute updates, Ph.D. Dissertation, Rutgers 
University, New Brunswick, NJ, 1988. 
G.A. Cheston, Incremental algorithms in graph theory, Ph.D. Dissertation and Tech. Rep. 91, Dept. of 
Computer Science, University of Toronto, Toronto, Canada, 1976. 



276 G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 

[9] G.A. Cheston and D.G. Cornell, Graph property update algorithms and their application to distance 
matrices, INFOR 20(3) (1982) 178-201. 

[IO] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (MIT Press, Cambridge, 
MA, 1990). 

[l l] R. Dionne, Etude et extension dun algorithme de Murchland, INFOR 16(2) (1978) 132-146. 
[12] J.R. Driscoll, H.N. Gabow, R. Shraiman, and R.E. Tarjan, Relaxed heaps: an alternative to Fibonacci 

heaps with applications to parallel computation, Commun. ACM 31 (1988) 1343-1354. 
[13] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow 

problems, J. ACM 19 (1972) 248-264. As cited in Ref. [45]. 
[14] S. Even and Y. Shiloach, An on-line edge-deletion problem, J. ACM 28(l) (1981) l-4. 
[lS] S. Even and H. Gazit, Updating distances in dynamic graphs, in: IX Symp. on Operations Research, 

Osnabrueck, W. Ger., 27-29 Aug. 1984, Methods of Operations Research, Vol. 49, ed. P. Brucker and 
R. Pauly (Anton Hain, Kiinigstein, 1985) 271-388. 

[16] S. Goto and A. Sanglovanni-Vincentelli, A new shortest path updating algorithm, Networks 8(4) 
(1978) 341-372. 

[17] Y. Gurevich and S. Shelah, Time polynomial in input or output, J. Symbolic Logic 54(3) (1989) 1083-1088. 
[18] A.K. Halder, The method of competing links, Transportation Sci. 4 (1970) 36-51. 
[19] R. Hoover, Incremental graph evaluation, Ph.D. Dissertation and Tech. Rep. 87-836, Dept. of 

Computer Science, Cornell University, Ithaca, NY, 1987. 
[ZO] W. Hsieh, A. Kershenbaum and B. Golden, Constrained routing in large sparse networks, in: Proc. 

IEEE Internat. Conf on Communications, Philadelphia, PA (1976) 38.14-38.18. 
[21] C.-C. Lin and R.-C. Chang, On the dynamic shortest path problem, J. Inform. Process. 13(4) (1990) 

470-476. 

[22] P. Loubal, A network evaluation procedure, Highway Res. Record 205 (1967) 96-109. 

[23] T.J. Marlowe, Data flow analysis and incremental iteration, Ph.D. Dissertation and Tech. Rep. DCS- 
TR-255, Rutgers University, New Brunswick, NJ, 1989. 

[24] T.J. Marlowe and B.G. Ryder, An efficient hybrid algorithm for incremental data flow analysis, in: 
Conf Record of the Seventeenth ACM Symp. on Principles of Programming Languages, San Francisco, 
CA, 17-19 Jan. 1990, (ACM, New York, NY, 1990) 184-196. 

[25] J.D. Murchland, The effect of increasing or decreasing the length of a single arc on all shortest 
distances in a graph, Tech. Rep. LBS-TNT-26, London Business School, Transport Network Theory 
Unit, London, UK, 1967. 

[26] J.D. Murchland, A fixed matrix method for all shortest distances in a directed graph and for the 
inverse problem, Doctoral dissertation, Universitlt Karlsruhe, W. Germany. 

[27] U. Pape, Netzwerk-veraenderungen und korrektur kuerzester weglaengen von einer wurzelmenge zu 
allen anderen knoten, Computing 12 (1974) 357-362. 

[28] G. Ramalingam and T. Reps, On the computational complexity of incremental algorithms, TR-1033, 
Computer Sciences Department, University of Wisconsin, Madison, WI, 1991. 

[29] G. Ramalingam, Bounded incremental computation, Ph.D. Dissertation and Tech. Rep. TR-1172, 
Computer Sciences Department, University of Wisconsin, Madison, WI, 1993. 

[30] J.H. Reif, A topological approach to dynamic graph connectivity, Informat. Process. Lett. 25(l) (1987) 
65-70. 

[31] T. Reps, Optimal-time incremental semantic analysis for syntax-directed editors, in: Conf Record of 
the Ninth ACM Symp. on Principles of Programming Languages, Albuquerque, NM, 25-27 January 
1982 (ACM, New York, NY, 1982) 169-176. 

[32] T. Reps, T. Teitelbaum and A. Demers, Incremental context-dependent analysis for language-based 
editors, ACM Trans. Program. Lang. Syst. 5(3) (1983) 449-477. 

[33] T. Reps, Generating Language-Based Environments (MIT Press, Cambridge, MA, 1984). 
[34] T. Reps, C. Marceau and T. Teitelbaum, Remote attribute updating for language-based editors, in: 

Conf Record of the Thirteenth ACM Symp. on Principles of Programming Languages, St. Petersburg, 
FL, 13-15 Jan. 1986 (ACM, New York, NY 1986). 

[35] T. Reps, Incremental evaluation for attribute grammars with unrestricted movement between tree 
modifications, Acta Infirm. 25 (1988) 155-178. 

[36] T. Reps and T. Teitelbaum, The Synthesizer Generator: A System for Constructing Language-Based 
Editors (Springer, New York, NY, 1988). 



G. Ramalingam, T. Reps / Theoretical Computer Science 158 (1996) 233-277 211 

[37] V. Rodionov, The parametric problem of shortest distances, U.S.S.R. Comput. Math. Math. Phys. 8(5) 
(1968) 336-343. 

[38] H. Rohnert, A dynamization of the all pairs least cost path problem, in: Proc. of STACS 85: Second 
Ann. Symp. on Theoretical Aspects of Computer Science, Saarbruecken, W. Ger., 3-5 Jan. 1985, Lecture 
Notes in Computer Science, Vol. 182, ed. K. Mehlhorn (Springer, New York, NY, 1985) 279-286. 

[39] B.K. Rosen, Linear cost is sometimes quadratic, in: Con& Record of the Eighth ACM Symp. on 
Principles ofProgramming Languages, Williamsburg, VA, 26-28 January 1981 (ACM, New York, NY, 
1981) 117-124. 

[40] B.G. Ryder and MC. Paull, Incremental data flow analysis algorithms, ACM Trans. Program. Lang. 
Syst. 10(l) (1988) l-50. 

[41] B.G. Ryder, W. Landi and H.D. Pande, Profiling an incremental data flow analysis algorithm, IEEE 
Trans. Software Eng. SE-16(2) (1990). 

[42] R. Sedgewick, Algorithms (Addison-Wesley, Reading, MA, 1983) 129-140. 
[43] P.M. Spira and A. Pan, On finding and updating spanning trees and shortest paths, SIAM J. Comput. 

4(3) (1975) 375-380. 
[44] R.E. Tarjan, Data Structures and Network Algorithms (Society for Industrial and Applied Mathemat- 

ics, Philadelphia, PA, 1983). 
[45] D. Yeh, On incremental evaluation of ordered attributed grammars, BIT 23 (1983) 308-320. 
[46] F.K. Zadeck, Incremental data flow analysis in a structured program editor, Proc. of the SIGPLAN 84 

Symp. on Compiler Construction, Montreal, Can., 20-22 June 1984, ACM SlGPLAN Notices 19(6) 
(June 1984) 132-143. 


