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1. I N T R O D U C T I O N  A N D  N O T A T I O N  

In  this paper,  the  following general classification problem is studied. Let (fl, 9 v, P )  be a probabi l i ty  
space and 0 : ~ -~ { 1 , . . . ,  N }  a r andom variable (parameter) .  Let 

~r~ = P(O = i) > O, i = 1, . .  . , N ,  (1) 

denote  the  a priori probabilit ies of  classes. 

Pi( ' )  = P(" [ 0 = i), i = 1 , . . . , N ,  (2) 

denotes  the  probabi l i ty  measure in the case of the  ith class. 

Let  # be a domina t ing  (probabili ty) measure for P 1 , . . . ,  PN and let Xi  denote  the densi ty  of  Pi 

with respect  to  #. The  Hellinger t ransform of P 1 , . . . ,  PN is defined as follows: 

H~  (P1, • • •, P ~ )  = Eu { X ~ ' . . .  X~v N }, (3) 

where ~_ = ( c q , . . . , ~ N )  is a fixed vector with a l  >_ 0 , . . . , a N  > 0, ~1 + "'"-}- O~N - :  I and 
E~ denotes  the expecta t ion  with respect to # (see [1]). The  Hellinger t ransform is one of  the  
measures  of  affinity among  several distr ibutions used in the l i terature (see, e.g., [2,3]). I t  is easily 

seen t h a t  

0 < Ha_ ( P 1 , . . . ,  PN) -~ 1 (4) 
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108 I. FAZEKAS AND F. LIESE 

and H a = 1 holds iff measures P1 , . . . ,  PN coincide. Furthermore, Ha is close to zero iff the 'dis- 
tance' of P1 , . . - ,  PN is large in some sense. Therefore Ha  can be used to measure the possibility 
of discrimination among several distributions. We mention that  many deep investigations are 
devoted to various 'distances' between two probability measures and their application in hypoth- 
esis testing (see, e.g., [4-7]), but it seems that  the case of several distributions is not completely 
known. In [8], the limit (when the number of observations tends to infinity) of the Hellinger 
transform of Gaussian autoregressive processes is given in terms of spectral densities. We remark 
that  Mich~ilek [9] calculated the asymptotic Rdnyi's rate for Ganssian processes. 

In this paper, upper and lower bounds are given for Ha_ in the case of a filtered probabil- 
ity space (Propositions 2.8 and 2.9). An explicit formula for Ha__ is calculated in the case of 
multidimensional Gaussian AR processes in Section 3. In Section 4, the Hellinger transform of 
one-dimensional Ornstein-Uhlenbeck processes is given. In Section 5, the connection between Ha_ 
and the probability of misclassification is considered. 

2.  B A S I C  P R O P E R T I E S  O F  H E L L I N G E R  T R A N S F O R M S  

Let us introduce the notation 
X__ ~- = X~'  ..-X?~ N , (5) 

where X__ = (X1 , . . . ,  XN) is a vector with nonnegative coordinates and a_ = ( a l , . . . , a N )  is an 
arbitrary vector. 

DEFINITION 2.1. (See [1].) Let a_. = ( a l , . . . , a N ) ,  where ai >_ 0 for every i and ~-~iN=l ai = 1. 
The Hellinger transform of  the probability measures P1 , . . . ,  PN is defined by the formula 

Ha- ( P 1 , . . . ,  PN) = . . .  N ) = E , ,  (8) 

where # is a dominating measure for P1, . . . , PN and Xi  = gfff . 

For a_ o = ( 1 / N , . . . ,  1 /N) ,  Hao ( P b . . . ,  PN) is the Matusita affinity or Bhattacharyya coefficient 
(see [2,3]). For N = 2, it is the well-known Hellinger integral. The Hellinger transform is a special 

]-[ N S a ~ .  case of the f-affinity for f ( s l , . . . ,  8 N )  = 11i=1 i 

DEFINITION 2.2. Let f(s_) = f ( s l , . . .  ,SN), si >_ O, for i = 1, . . .  ,N,  be a continuous, concave, 
homogeneous function. The f -a]finity o[ P1, . . . , PN is defined by 

Af (P1 . . . .  , PN) = / f ( X 1 , . . . ,  X N)  d#. (T) 

As f is homogeneous, A f ( P 1 , . . . ,  PN) does not depend on the choice of the dominating mea- 
sure #. The f-affinity is nothing else but the negative of the f-dissimilarity of GyCrfi and 
Nemetz [3]. 

PROPOSITION 2.3. (See [3].) Let ~'8 be a a-subaJgebra o[ ~ and let P1,8,. . . ,  PN,s denote the 
restriction of  P1 , . . . ,  PN on ~8. Then 

Af (P1 , . . . ,  PN) <_ A f  (Pl , s , . . - ,  Pg,s) .  (s) 

For the proof, let # = (P1 + "'" + P N ) / N  and use the Jensen inequality. 

COROLLARY 2.4. 
Ha_ (P l , . . .  , P g )  <_ Ha- (Pl ,s , . . .  ,PN,8). (9) 

Throughout this section, -To C ~'1 C_ ... denotes a nondecreasing sequence of a-subalgebras 
of ~" for which a(Un~'n) = ~. Let Pi,n, (respectively, #n) be the restriction of P~, (respec- 

tively, #) to Yn and Xi,n ~ X n = ( X l , n ,  , X N , n )  (i = 1, N, n = O, 1, 2, ). T will = dl.~n ' -  " . . . . .  ' " ' "  
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denote a stopping time with respect to {~'n, n = 0, 1 , . . .  }. The following generalization of the 
approximation theorem of Liese and Vajda [6] holds for Hellinger transforms. 

PROPOSITION 2.5. With the above notation, 

linaoo A f  ( P L , , ' " ,  PN,,) = A f  (P1,. . . ,  PN) . (io) 

For the proof, let # be the same as in the previous proof and use the supermartingale conver- 
gence theorem for f (Xn) .  

COROLLARY 2.6. I f  n --* oo, then 

~_(P~,,,... ,PN,,) I ~ _ ( P i , . . .  ,PN). (u) 

We shall use the following multiplicative decomposition of a nonnegative supermartingale. 

LEMMA 2.7. Let (S~, :7:n, n = O, 1,. . .  ) be a nonnegative supermartingale (with ~'0 = {O, f~}). 
Then there exist a martinga/e (Mn, j r )  and a nonnegative, nonincreasing, predictable sequence 
(G~,Jr~) such that 

S~ = M,G , ,  n = 0 , 1 , . . . .  (12) 

PROOF. Let M0 = 1, Go = So, 

G~ = E{Sn  t .T'n-1} Gn-i,  n >_ 1 (13) 
Sn-i  

(here we used the convention 1/0 = 0). Let M~ = Sn/G~ if G~ # 0 and M~ = M n - i  if Gn = 0. 
Then Mn is a martingale. Since G~(w) = 0 implies that  S~(w) = 0, then (12) is satisfied. 

In the sequel, we use the notation 
S~ (_~) = X__~. (14) 

Since S~ (_a) is a nonnegative supermartingale, it admits a multiplicative decomposition 

s .  (~_) = M .  (~_) c .  (_~), (15 )  

where Gn(a_) is defined analogously to (13). 
We derive inequalities between ]Ea_(Pi,..., PN) and Gn(a_') for an appropriate _a'. Let a__ -- 

( a i , . . .  ,aN) be fixed. For any i (1 < i < N) and % we associate with a_ a new vector 

[_a, i, 7] = ( " /a l , . . .  , '~ai-1, 1 - "~ (1 - a~) , '~a i+ l , . . .  ,~/aN). (16) 

PROPOSITION 2.8. Let us assume that 

l < 3 , i < m i n  c~ 1 -ai 

is satisfied t'or ~'i t'or every i = 1 , . . . ,  N. Then for every stopping time T, 

N~(P1,T,. . .  PN,T)< min (Ep~ {G~./(~'-l)([a,i,"/~])})(~'-l)/'Y" (18) 
- -  ' - -  l<_i<_N 

PROOF. We prove (18) for i = I. Let 3, = 3'1 satisfy (17). By the multiplicative decomposition, 
we can write xo V , j • . = X~,T1MT([a, 1,q'])GT ([a_., 1, q']). (19) 
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Hence 

Eli {XI~ .,. X~I~T) : Eli 1...1TSY("I-1)I~i'~-I/'~T ([°~, 1,')']) ""T'~ZI/~ ([2, 1, "),]) } . (20) 

Applying Hhlders inequality with p = -y/(-y - 1), q = % we get 

Eli {XI~IT...X~,NT} ~ [Eli {MT([OL, I,~])}] 11"~ [Eli (X1,T GII('/-I, ([~_., 1,"/]))] (')'-1)/~' (21) 

One can easily derive tha t  Eli{X1,Tf} = Ep l{ f}  for every 3~'T-measurable ~. By the proof of 
L e m m a  2.7, we have Eli{Mn} = 1 for the martingale part  of the multiplicative decomposition, 
so Eli{MT} _< 1. Therefore, (21) implies tha t  

~'~¢I(P1,T,...,PN, T) ~ [Ep1 (G ll(''l-l) ([(:l, 1,")'])}] (')'-1)/'I' . (22) 

To prove the following inequality, we need the inverse Hhlder inequality: if ~ and 17 are positive 
random variables, 0 < p < 1, 1/q Jr l i p  = 1, then 

E{~lT} > (E {~p))llp (E {17q} ) llq . (23) 

PROPOSITION 2.9. Suppose that the probability measures P1, . . . ,  PN are equivalent and let # 
be chosen such that # and Pi are equivalent. Then for every stopping time T 

Ha(P1,T,. . . ,PN,T)>_ max Ep~ G (~ , -1)( [~ , i ,% 
- -  l < _ i < _ N  

(24) 

where 0 < "Yi < 1 for every i = 1 , . . . ,  N.  

PROOF. First we remark tha t  equivalence o f #  and Pi implies tha t  Xi,n > 0. Therefore Gn(.) > 0 
and Mn(') > 0. Now, let T be a bounded stopping time. Let -y -- G'I be fixed. Easy calculation 
and the inverse Hhlder inequality (with p = 7) show tha t  

1, 1, (25) 

(26) 

(27) 

This proves (24) for bounded stopping times. If T is an arbi t rary stopping time, then approximate  
it by T A n and use Corollary 2.6. 

REMARK 2.10. Gn(a_) can easily be calculated for Markov processes. Let y l , y 2 , . . ,  be a homo- 
geneous Markov process with transition density function Pi(', ") and initial density function Pi(') 
in the case 0 = i. Then 

1=2 L " - ° °  i = 1  i = 1  

(28) 

If, moreover, one of the measures Pi, i -- 1 , . . . ,  N ,  say P1, is such tha t  Yl, Y2, • • • are independent, 
then inequality (18) is quite simple because if we take expectation of Gn with respect to P1 and 
use (28) then the expectation sign Ep 1 can be interchanged with the product sign with respect 
to I. 
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3. THE HELLINGER T R A N S F O R M  
FOR G A U S S I A N  AR PROCESSES 

Considerations in this section have been inspired by those of Pap, Bokor and G&sp£r [10]. 
Let z(k) = (Zo T, • • • , zTVrk J , where zo, • . . ,  Zk E ]~m and T denotes the transpose of a vector. Let 
Afm(#,C) denote the m-dimensional normal distribution with mean vector # and covariance 
matrix C. 

Let us suppose that  the measure Pi is generated by an m-dimensional Gaussian AR(1) process. 
More precisely, we assume that  the observed process belongs to the model 

yi(l + 1) = Aiyi(1) + wi(l + 1), l = 0, 1, 2 , . . . ,  (29) 

if 0 = i, i = 1 , . . . ,  N. Here {wi(l), l = 1, 2 , . . .  } is a Gaussian white noise with covariance Q~; 
i.e., wi(l) ~ flfm(O, Qi) and wi(1),wi(2),. . ,  are i.i.d. Suppose that  the matrices Ai and Qi are 
known and Qi is invertible for every i = 1 , . . . ,  N. For the ith model, let the initial distribution 
be Gaussian with mean zero and with invertible covariance matrix Di; i.e., yi(0) ~ Afro(0, D~) 
(i = 1 , . . . , N ) .  Suppose that  the process is observed until time k. Pi is the distribution of 
yi(O),... ,  yi(k) (in the case of the ith model, i.e., when 0 = i). 

Then the Hellinger transform is 

N 
P 

, . . . ,  / H '~' (30) Ha_ (P1 PN ) =H k  = HP(Z(k)  I i) dz(k), 
J i=1 

where 
-i/2 { I T -I } p (z(k) I Hi) = (27r) -((k+l)m)/2 (det C/) exp --~z(k)C ~ z(k) , (31) 

for z(k) E R (k+l)m. (To emphasize that  H~_(P1,...,  PN) depends on the number of observations 
yi(O),... ,  ydk), we shall write ~lIk instead of ]HIck(P1,..., PN). Obviously, Pi and Ci depend on k, 
too.) 

Using the fact that  the integral of a density function is equal to 1 (for the density of Af(k+i)m 
(0, N (~ i=1  a iCi -1) - l ) ) ,  we obtain 

( (~--~ 1--11 1/2N 
H k =  det aiC~ -i H (detCi) -ad2 

k i = l  / ] i : l  (32) 

= det aiC~ -1 (de tCV' )  a'/2 • 
\ i = 1  / i=1 

Now, Ci is the following matrix 

AiB~ O) B~ 1) B~I)AT i ... B~I)A:(k-l) 

J A~B~O) ~.BO ) B~2) (2) T(k-2) "'* i "'" Bi Ai , 

, . . • , • 

k'(o) Ak-;B}I) A~-2B}2) Bia) Ai Bi . . .  

where B~ j)" = "'i~AJr)ATJi + L.~=0X-"J-1Alf)i~* 'ATli . The inverse of Ci is 

T --I T -I I D~-i + Ai Qi Ai 0 . . .  -A~ Qi 
--1 T -1 " ". -Qi  A, Q'[I + A i Qi Ai ". • 

C~ i =  0 "'. "'. "'. 

• " " T - 1  .. .. Q:(1 + Ai Qi A~ 
-1 0 .. .  0 -Qi  Ai 

(33) 

0) 
0 , (34) 

- A [  Q.'( 1 
Q-(1 
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axldC~ 1 - F i F ~ ,  where 

= 

'D71/2 -A~Q71/2 0 . . .  0 

I 
0-i12 • . 0 -~i "" "" 

0 ". ". ". 0 • 

• ... ".. ".. _A~Q71/2 
O-1/2 0 . . .  0 0 -~i 

(35) 

We remark that  the above matrices depend on k. We obtain 

Hk : det a,C{ -1 I-[ ( ( d e t Q i l k d e t D O  -~d2" 
i=1 i=1 

(36) 

Here ~-~N=I aiC~ -1 has the form 

D + d 2  - d l  0 . . .  0 ) 

-dT1 do + d2 "'. 

~ °qCi -1 = 0 •'. 0 ' 

i = 1  • do q -  d2 - d l  

o o 

(37) 

where 

do = EoqQ-(  1, dl = EoqQ•lAi ,  d2= EotiATQ.(1Ai, D =  E a ,  D~-I. (38) 

Eliminating the elements over the diagonal blocks, we get a matrix with diagonal blocks M ( 1 ) , . . . ,  
M(k + 1), where 

M(1)  = do, 

M(l + 1) = do + d2 - dTi M( l ) - l  di, 

M(k  + 1) = D + d2 - dTM(k) - id l .  

/ =  1 , . . . , k - i ,  

(39) 

(40) 
(41) 

Therefore (36) implies that  

~lIk = YI  (det Di) -ad2 (det Qi)-,~,/2 
i=1 

))-1/2 
det M(I 

\l=1 
(42) 

Here M(1)  -- do is positive definite• Furthermore, one can prove that M(2) _ M(1) with equality 
iff A1 . . . . .  AN• To prove this, we need the following lemmas. (Lemmas 3.1 and 3.2 were 
communicated to the authors by Losonczi and P&les. For the operator version of these lemmas, 

In].) 
LEMMA 3.1. Let U be a symmetric positive definite matrix. Then 

xTU-lx  -b zTUz )> xTz "-~ zTT,  (43) 

for each pair of vectors x, z. Equality holds in (43) if and only if x = Uz. 

PROOF. (43) can be obtained from the inequality [[U-1/2x - U1/2z[[ >_ O, where [[. ]] denotes the 
Euclidean norm. 



Hellinger Transform 113 

LEMMA 3.2. Let V1, V2, . . . , VN be symmetric positive definite matrices and let V = V1 + . . .  + VN. 
Then 

E x~Vi - l x i  >- xi V -1 xi , (44) 
i : 1  i=l 

for arbitrary vectors X l , . . .  , XN.  Equality holds in (43) if and only i f  V l l x l  = V 2 1 x 2  . . . . .  

vI~ l x, N . 

PROOF. For i = 1 , . . . ,  N, put U = V/, x = xi, and z = V-I(~JY=I zj)  in (43) and sum the 
inequalities obtained. We get 

E xTiVi-Ixi -~ ZT Xj >--¢...,~ xTv--li E X J  + E ZTXJ' (45) 
i=1 i=l j = l  j = l  

which is equivalent to (44). The condition for equality is xi = Viz; that  is, V - l x i  is independent 
of i. 

Now, we can return to the proof of M(2) > M(1). We have 

M(2) - M(1) = E a i A ~ Q ~ I A i  - aiQ(1A~ a i Q (  1 aiQ:flA~ . 
i=1 \ i = 1  \ i = 1  / 

C~ -1 Therefore, with notation Vi = iQi , we have 

M(2) - M(1) = E (A:V~) V~ -1 ( V i A i ) -  ViAi Vi ViAi >_ O. 
i=l i : 1  i=l i : l  

In the last step, we used 
v i - l x i  = A~a does not depend on i for every a. As 

M(1 + 1) - M(l)  = d~ (M(l  - 1) -1 - M(l)  -1) dl, 

it follows that  
0 < do = M(1) 5 M(2) < . . .  < M(k)  <_ do + d2 

with equality iff A1 . . . . .  AN. 
Substituting M(l) ,  l = 2 , . . . ,  k, by M(1) in equality (42), we get the estimation 

Hk _< const • c k/~, 

(44) with xi = ViAia, where a is an arbitrary vector. Equality holds if 

l = 2 , . . . , k -  1, (46) 

(47) 

(4s) 

where 
N (det Q~-I)~ 

c = 1--[ " ( 4 9 )  
i=1 det ()-~N=I a iQi  -1 ) 

C < 1 with equality iff Q1 . . . . .  QN. This estimation cannot be improved if A1 . . . . .  AN. 
Otherwise, using M(1), 2 < 1 < k, instead of M(1),  one can get a better  estimation than (48),(49). 
In the special case when Q1 . . . . .  QN = Q, one can use, e.g., M(2)  (for which M(2) > 
M(1) _> Q with equality iff A1 . . . . .  AN)  to obtain the estimation 

[ de tQ  ]k/2 
Hk _< const .  [de-~M-'(2)] (50) 

We mention two possible choices of the initial distribution. For the first, if Di is the solution 
of the equation Di = A iDiA~  + Qi, i = 1 . . . . .  N, then we have stationary AR(1)-processes. For 
the second, if all the Di's are equal to the dispersion of the stationary solution of model 0 = 1, 
then one can s tudy a possible change at t ime 0 from the first model for one of the other models. 



114 I. FAZEKAS AND F. LIESE 

4. T H E  H E L L I N G E R  T R A N S F O R M  
OF C O N T I N U O U S  T I M E  P R O C E S S E S  

First we consider one-dimensional continuous time AR(1) or Ornstein-Uhlenbeck processes. 
Let yi(t), 0 < t < T,  be the solution of the stochastic differential equation 

dyi(t) = -Aiyi(t)  dt + dw(t),  0 < t < T, (51) 

where w(t)  is a standard Wiener process and Ai > 0, i = 0 , 1 , . . . , N .  Suppose that  y~(t) is 
stationary (yi(0) ~ Af(0, 1/2Ai)). Then Eyi( t)  = 0 and cov(yi(t) ,yi(t  + s)) = exp[-A~s]/2Ai. 

It follows from formula (2.3.41) of [12] that  the Radon-Nikodym derivative with respect to P~o 
has the form 

dPAo (y(t)) = exp ~ y2(t) dt + - -  ~ [y2(T) + y2(0)] , (52) 

where P~  denotes the measure generated by the process given by equation (51). Then the 
Hellinger transform of measures P~I . . . .  , P~N is 

' 

/0 
2 ' 

where E0 denotes that  the expectation is taken with respect to the measure defined by the process 
determined by equation (51) with parameter Ao. Using Novikov's method (see, e.g., [12-14]), put 
A 2 = EN=I oQAz 2. . Then we ob ta in  

Ha(P~I,... ,PAN) 

- -  E i = - I  C~iAi - -  AO =,lili=i i -~]N=laiAi A°T Eo exp (y2(T)+y2(O))  . (54) 
V ~0 exp 2 2 

Now we need the following fact. If the common distribution of ~1 and ~2 is normal with zero 
mean and D2~1 = a 2, D2~2 = a 2, cov(~l, ~2) = Q, then (the Laplace transform) 

Therefore equation (54) implies the following proposition. 

PROPOSITION 4.1. The Hellinger transform of Ornstein-Uhlenbeck processes defined by (51) is 

H~ (P~,,. . . ,  P~N) = 2~ Ao l-I A~' exp a~Ai - Ao 
/=I 

--1/2 

(56) 

where ~0 ~ = E ~ I ~ .  
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Now we consider one-dimensional shifted Wiener processes. Let yi(t), 0 < t < T, be defined 
by the equation 

yi(t) -~- mi(t) + w(t), 0 < t < T, (57) 

i = 0, 1 , . . . ,  N, where w(t) is a standard Wiener process. Suppose that  mi(O) = 0 and mi(t) is 

absolute continuous with derivative m~(t) for which f[(m~(t)) 2 dt < co. Then it follows from 
[12, formula (2.3.17)] that  the Radon-Nikodym derivative with respect to Pmo has the form 

{1/o" /o" dPm, - 2  dPmo (y(t)) = exp (m~(t)) 2 dt + m~(t) dy(t) 

1; /o ) + ~ (rn~o(t)) 2 d t -  mto(t) dy(t) , 

(58) 

where Pro, denotes the measure generated by the process given by equation (57). Then the 
Hellinger transform of measures Pm~,..., Pm~ is 

2 dt H~(Pml, . . . ,PmN) = Eo exp - 2  i=1 

fn T N  l f o T  fOT ] }  + E aimS(t) dy(t) + -~ (rn~o(t)) 2 dt - m'o(t ) dy(t) , 
0 i=1 (59) 

where E0 denotes that  the expectation is taken with respect to the measure Pmo. Using Novikov's 
method, put m~o(t) = ~-~N=l aimS(t). Then we obtain 

= (~i (m~(t)) 2 dt + -~ a~m~(t) dt . H~_(Pml,...,PmN) exp - 2  0 i = 1  \ i = 1  / 
(60) 

Therefore we have the following proposition. 

PROPOSITION 4.2. If  mi(t), i = 1,... ,N, satisfy conditions listed above then the HeIlinger 
transform of the processes defined by (57) is given by (60). 

5. A P P L I C A T I O N S  T O  T H E  P R O B A B I L I T Y  
O F  M I S C L A S S I F I C A T I O N  

Consider the classification problem introduced in Section 1 by (1),(2). A classification rule is 
a measurable mapping 

d:  f~ ~ { 1 , . . . , N } .  (61) 

0 -- i is accepted on the event {d = i}. The Bayesian risk connected with the decision rule d is 
given by 

N 

R(d) = P{O ~ d} = E ~riPi{d ~ i}. (62) 
i=l 

It is well known that  a decision rule do with 

{do ~ i} ~ {~riXi < max(TrlX1 . . . .  ,TrNXN) } (63) 

for i = 1 , . . . ,  N minimizes the risk (i.e., the probability of error). 
probability of error is 

/ ,  

Pe = R (do) = 1 - ] max (TriXi) d#. 
J l<_i<n 

Furthermore, the resulting 

(164) 
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One can easily give an upper  bound on Pe in terms of Hellinger integrals: 

Re < ~ r  -1 lr .2 Yrlla(o)(Pi, Pj) --A..~ ~ 3 _ 
i<j 

(65) 

(here a__ (ij) = (a~iJ) ,a  (ij)) is a vector  with nonnegat ive coordinates  and a~ ij) -t- a (ij) = 1). T h e  
following inequal i ty  can be proved by the  same way as the theorem of Bha t t acha rya  and Tous- 
saint [21: 

Pe _ N---~_ l N - 2 1 7r 7'  }iI,_ ( P 1 , . .  • ,  P N )  • (66) 
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