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a b s t r a c t

This paper focuses on the improvement of singularity avoidance of three dimensional
planar redundantmanipulators by increasing its degrees of freedomwithout increasing the
number of motors controlling the manipulator. Consequently, the method to build a three
dimensional planarmanipulator with six-degrees of freedomusing threemotors instead of
six is discussed in detail. A comparison of the manipulability index values for the proposed
manipulator is made with the manipulability index values of PUMA arm to demonstrate
the effectiveness of using the proposed manipulator for singularity avoidance.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A robotic system is considered kinematically redundant when it possesses more degrees of freedom than those required
to execute a given task [1,2]. Usually, the kinematics of non redundant robots is solved by deriving analytical solutions
for several manipulator configurations [3]. When a manipulator is redundant, it is anticipated that the inverse kinematics
has infinite solutions. This implies that, for a given location of the manipulator’s end-effectors, it is possible to induce self-
motion in the structurewithout changing its location [4,5]. Therefore, classicalmethods cannot be used to solve their inverse
kinematics. Many previous investigations have focused on the redundancy resolution of this type of manipulator, based on
the manipulator’s Jacobian pseudoinverse.

A redundant manipulator with a degree-of-redundancy is well suited to a multiple criteria problem on top of the basic
motion task, such as obstacle avoidance, singularity avoidance, and torque minimization. For the multiple task problems,
the cost function should be determined in accordance with the additional task having higher priority.

A considerable portion of the workspace of a robot manipulator is occupied by singularities. These regions correspond
to robot configurations, at which the joint rates necessary to achieve an end-effector motion along one or more directions
are extremely high. In other words, in the neighborhood of singular postures, even a small change in 1t requires a large
change in 1θ , which is practically unfeasible and hazardous [6]. When planning robotic applications, a common problem
is the need to avoid singular arm configurations, where the robot performance is seriously degraded in order to be able to
move and apply uniform forces in all directions, the manipulator must stay as far away as possible from singularities [7].

Consider a manipulator with n degrees of freedom, whose joint variables are denoted by θi = θi(t); i = 1, 2, . . . , n. A
manipulation variable describing the robot’s task is also defined as anm component vector xj = xj(t); j = 1, 2, . . . ,m. Then,
θ and x are related by the forward kinematic transformation:

x = f (θ). (1)
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By differentiating this equation with respect to time and defining J = df /dθ , the following equation is obtained:

ẋ = J θ̇ . (2)

If J is a square matrix (m = n), and has a rank equal tom (full rank), then joint velocities required to achieve the desired
end-effector velocity will be unique and can be evaluated by:

θ̇ = J−1ẋ. (3)

But in the control of redundant robots with (m > n), the vast majority of research involved resolution through the use
of the pseudoinverse J+ of the Jacobian matrix J [8]:

θ̇ = J+ẋ. (4)

This solution minimizes
θ̇2. Because of this minimizing property, the early hope of [9] shows that singularities will

automatically be avoided. It is also shown that without modification, this approach does not avoid singularity [10,11].
Moreover, [12] pointed out that it does not produce cyclic behavior, which denotes a serious practical problem.

For these reasons, another component belonging to the null space of the Jacobian has to be added to the pseudoinverse
solution to realize the secondary objective function. The basic redundancy resolution scheme is the gradient projection
method [13], by which the general solution is written as:

θ̇ = J+ẋ + (In − J+J)z (5)

where J+ denotes the pseudo-inverse of J and it is defined in the following manner

J+ = JT (JJT )−1 (6)

such that

JJT = Im. (7)

The pseudo-inverse defined by Eq. (6) satisfies the following conditions [14,15]:

JJT J = J (8)

J+JJ+ = J+ (9)

(J+J)T = J+J (10)

(JJ+)T = JJ+. (11)

In addition, the matrix (In − J+J) satisfies the following useful properties:

(In − J+J)(In − J+J) = (In − J+J) (12)

J(In − J+J) = 0 (13)

(In − J+J)T = (In − J+J) (14)

(In − J+J)J+ = 0. (15)

In Eq. (5), z is an arbitrary (n∗1) vector in the θ̇ space. The second term on the right-hand side of this equation belongs to
the null space of J , and it corresponds to a self-motion of the joints that does not move the end-effector. This term, which
is called a homogeneous solution or an optimization term, can be used to optimize a desired function ϕ (θ) [10]. In fact,
taking z = α∇ϕ where ∇ϕ is the gradient of this function with respect to θ minimizes the function ϕ (θ) when α < 0 and
maximizes when α > 0. Eq. (5) is rewritten as:

θ̇ = J+ẋ + α(In − J+J)∇ϕ (16)

with

∇ϕ =


∂ϕ

∂θ1
· · ·

∂ϕ

∂θn


. (17)

The value of α allows a trade-off between the minimization and the optimization of ϕ (θ). As mentioned earlier, the
secondary performance criteria can be optimized, and ϕ (θ) is used for minimizing the norm of the joint velocities, avoiding
obstacles, singular configurations, and joints limits, or minimizing driving joint torques.

Clearly, the effect of singularity is experienced not only at the singular configuration but also in its neighborhood, because
the manipulating ability of the robot in this region gets severely restricted [16]. For this reason, it is important to be
able to characterize the distance from singularities through suitable measures; these can then be exploited to counteract
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Fig. 1. Manipulability ellipsoid [19].

undesirable effects. During the past three decades, many researchers have suggested various methods to fully utilize the
redundancy of robots.

One of the earliest and most recognized Jacobian based manipulator performance measures were explained in [17]. This
measure is the manipulability measure, where

M =


det(JJT ). (18)

Let the singular decomposition of J be [18]:

J = U


V T (19)

where U ∈ Rm×mand V ∈ Rn×n are orthogonal matrices and

Σ =

 σ1 0
σ2 0

·

0 σm

 ∈ Rm×n (20)

with

σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0. (21)

The scalars σ1, σ2, . . . , σm are called singular values of J , and they are equal to the m larger values of the n roots
{
√

λi, i = 1, 2, . . . , n}, where λi (i = 1, 2, . . . , n) are the eigenvalues of the matrix JT J [19]. Further, let ui be the ith column
vector of U . Then the principal axes of the manipulability ellipsoid are σ1u1, σ2u2, . . . , σmum; see Fig. 1. In the direction of
themajor axis of the ellipsoid, the end-effectormoves at high speed. On the other hand, in the direction of theminor axis, the
end-effector moves at low speed, and if the ellipsoid is almost a sphere, the end-effector uniformly moves in all directions.
A larger ellipsoid allows faster end-effector movements.

The number of nonzero singular value is

r = rank(J). (22)

Since U and V are orthogonal, they satisfy

UUT
= UTU = Im (23)

VV T
= V TV = In. (24)

Let us consider the meaning of the singular value decomposition of J in relation to the linear transformation y = Jx.
Letting yU = UTy and xV = V T x, from Eq. (19) we have

yU = ΣxV . (25)

This implies that the transformation from x to y can be decomposed into three consecutive transformations: the
orthogonal transformation from x to xV by V T , which does not change length; from xV to yU , in which the ith element of
xV is multiplied by σ i and becomes the ith element of yU without changing its direction; the orthogonal transform from yU
to y by U , which does not change its length. Therefore, the singular value decomposition highlights a basic property of linear
transformation [19].

A scheme to obtain the singular value decomposition follows. First, we calculate the singular values by:

σi =


λi, i = 1, 2, . . . , n. (26)
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Next we obtain U and V . We define a diagonal matrix


r using r nonzero singular values by:

Σr =

σ1 0
.

.
0 σr

 . (27)

This is the r × r principal minor of


. We let the ith row vectors of U and V be ui and vi respectively, and let

Ur = [u1, u2, . . . , ur ] (28)

and

Vr = [v1, v2, . . . , vr ]. (29)

Then from Eq. (19):

J = Ur


r

V T
r . (30)

Also from Eqs. (23) and (24):

UT
r Ur = Ir (31)

V T
r Vr = Ir . (32)

Hence we have

JT JVr = VrΣ
2
r (33)

Ur = JVrΣ
−1
r . (34)

Since Eq. (33) can be decomposed into:

JT Jvi = viσ
2
i , i = 1, 2, . . . , r. (35)

We see that vi is the eigenvector of unit length for eigenvalue λi of JT J . Then we can determine Vr from the eigenvectors
of JT J for the eigenvalues λ1, λ2, . . . , λr . The part of V other than Vr , which consists of the vectors vr+1, vr+2, . . . , vn, is
arbitrary, as long as it satisfies Eq. (24). From the obtained V we can determine Ur using Eq. (34) and the other part of U by
Eq. (23).

Because of the singular configuration the robotic manipulator reaches during certain task execution is one of the
challenges faced by the researchers; avoidance of the singular configurations is studied here. The manipulability values
have been calculated for a proposed manipulator, and the results are compared to the manipulability values of PUMA
manipulator in all the workspace of the manipulators to show the effectiveness of using the proposed manipulator for
singularity avoidance.

2. Kinematics of the proposed manipulator

Consider the six degrees of freedom for the three dimensional planar manipulator shown in Fig. 2, where li denotes the
i-th link, θi denotes the i-th joint angle, and (xtp, ytp, ztp) is the target point. To find the position coordinates (xtp, ytp, ztp), the
following equations can be used:

xtp = cos[θ1](l1 cos[θ2] + l2 cos[θ2 + θ3] + l3 cos[θ2 + θ3 + θ4] + l4 cos[θ2 + θ3
+ θ4 + θ5] + l5 cos[θ2 + θ3 + θ4 + θ5 + θ6]) (36)

ytp = sin[θ1](l1 cos[θ2] + l2 cos[θ2 + θ3] + l3 cos[θ2 + θ3 + θ4] + l4 cos[θ2 + θ3
+ θ4 + θ5] + l5 cos[θ2 + θ3 + θ4 + θ5 + θ6]) (37)

ztp = (l1 sin[θ2] + l2 sin[θ2 + θ3] + l3 sin[θ2 + θ3 + θ4] + l4 sin[θ2 + θ3 + θ4
+ θ5] + l5 sin[θ2 + θ3 + θ4 + θ5 + θ6]). (38)

As long as the manipulability measure, M of manipulator is based on the Jacobian matrix J , the Jacobian matrix of the
manipulator is calculated as:

J =



∂xtp
∂θ1

∂xtp
∂θ2

∂xtp
∂θ3

∂xtp
∂θ4

∂xtp
∂θ5

∂xtp
∂θ6

∂ytp
∂θ1

∂ytp
∂θ2

∂ytp
∂θ3

∂ytp
∂θ4

∂ytp
∂θ5

∂ytp
∂θ6

∂ztp
∂θ1

∂ztp
∂θ2

∂ztp
∂θ3

∂ztp
∂θ4

∂ztp
∂θ5

∂ztp
∂θ6

 . (39)
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Fig. 2. A three dimensional planar redundant manipulator configuration.

Fig. 3. A three dimensional planar redundant manipulator configuration using the method of Ref. [20].

Improving the ability of the manipulator in the singularity avoidance, the method in [20] is used. This method considers
the angles between the adjacent links as equal, which means θ3 = θ4 = θ5 = θ6. Fig. 3 shows the configuration of the new
manipulator.

For the proposed manipulator (Fig. 4), as long as the angles (θ3, θ4, θ5, θ6) are equal, there is no need for a motor for
each angle, greatly decreasing the weight of the manipulator. This means that instead of using six motors to control the
manipulator, only three is required. The first motor is used to control the first joint angle (θ1), and the second motor is used
to control the second joint angle (θ2), as shown in Fig. 5.

The third motor is used to control the joint angles (θ3, θ4, θ5, θ6), and it is connected to the second link using a worm
gear. Controlling the second motor means controlling the angle between the first link and the second link i.e. the angle θ3.
Fig. 6 shows the second joint angle and as with the first link, the second link and the gear (wheel) are fixed; rotating the
worm will rotate the gear and the second link simultaneously by the angle θ3. Transferring this movement to the next link
requires a planetary gear, shown in Fig. 6. This planetary gear consists of two bevel gears and an arm. The first bevel gear is
fixed to the first link, while the arm is fixed to the wheel gear and the second link, whichmeans that rotating the wheel gear
will result in the rotation of the arm with the same angular velocity of the wheel gear, which in turn will rotate the second
bevel gear around the first fixed bevel gear.

The mechanism of the third link is shown in Fig. 7. It is similar to the one used in the second link; the only difference
is instead of using worm as a driver and the wheel gear as the component being driven, two bevel gears are used. The first
bevel gear (driver) is fixed to the second bevel gear of the previous link, i.e. the first bevel gear of Fig. 7 is fixed to the second
bevel gear of Fig. 6. Because the second bevel gear of the third link is fixed to the third link, rotating the first bevel gear of
the link will also rotate the second bevel gear, which will in turn rotate the third link. This movement can be translated to
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a b

Fig. 4. Themanipulator used in experiments. (a) The draft of themanipulator using the SolidWorks software; (b) themechanical design of themanipulator.

the next link the same way the rotation was translated from the second link to the third link. In other words, a planetary
gear is used to translate the rotation to the next link, as shown in Fig. 7.

This method has two advantages, namely, the usage of three motors instead of six, which reduces the number of
motors controlling the manipulator, reducing the complexity of manipulator control, while also increasing the ability of
the manipulator to avoid singularity, as will be explained later in this paper.

Calculating the manipulability measure for the new manipulator uses equations (39) and (18), detailed below:

M = sqrt


sin2(θ3)


l1 cos (θ2) + l2 cos (θ2 + θ3) + l3 cos (θ2 + 2θ3) + l4 cos (θ2 + 3θ3)

+ l5 cos (θ2 + 4θ3)
2

(l21(8l
2
3 cos

2(θ3) + 2l2(2l3 cos(θ3) + l4(2 cos(2θ3) + 1) + 2l5(cos(θ3) + cos(3θ3)))

+ 12l24 cos(2θ3) + 6l24 cos(4θ3) + 24l25 cos(2θ3) + 16l25 cos(4θ3) + 8l25 cos(6θ3)
+ 8l3 cos(θ3)(l4(2 cos(2θ3) + 1) + 2l5(cos(θ3) + cos(3θ3)))
+ 36l4l5 cos(θ3) + 24l4l5 cos(3θ3) + 12l4l5 cos(5θ3) + l22 + 9l24 + 16l25)

+ 2l1(l3(16l25 cos
2(θ3) cos(2θ3) + l24(2 cos(2θ3) + 1) + 2l5l4(3 cos(θ3) + 2 cos(3θ3)))

+ 2l4l25(cos(θ3) + cos(3θ3)) + l2(2l23 cos(θ3) + l3(l4(4 cos(2θ3) + 3) + 2l5(3 cos(θ3) + 2 cos(3θ3)))

+ 2(2l24(2 cos(θ3) + cos(3θ3)) + l5l4(8 cos(2θ3) + 4 cos(4θ3) + 5) + 3l25(3 cos(θ3) + 2 cos(3θ3)

+ cos(5θ3))))) + 2l22(8l
2
4 cos

2(θ3) + 2l3(2l4 cos(θ3) + l5(2 cos(2θ3) + 1))

+ 3l25 (2 cos (2θ3) + 1)2 + 8l4l5(2 cos(θ3) + cos(3θ3)) + l23)

+ 12l23l
2
5 cos(2θ3) + 12l3l4l25 cos(θ3) + 4l2(l4l25(2 cos(2θ3) + 1)

+ l3(2l24 cos(θ3) + l5l4(4 cos(2θ3) + 3) + 4l25(2 cos(θ3) + cos(3θ3))))

+ 12l23l4l5 cos(θ3) + 3l23l
2
4 + 12l23l

2
5 + 4l24l

2
5)


. (40)

This equation proves that the first joint angle does not have a big impact on the value of manipulability. The
manipulability values for the whole workspace for our manipulator are calculated using Eq. (40), and for our manipulator,
l1 = 19, l2 = 18, l3 = 17, l4 = 16, l5 = 15, with all the dimensions in cm. To be able to draw the manipulability values
for the entire workspace, we need to know the values of the joint angles, which lead the manipulator to its minimum and
maximum reach. Calculating these angles requires the determination of s, the distance between the end-effector and the
origin:

s =


x2tp + y2tp + z2tp. (41)
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a b

Fig. 5. The design of the second joint angle (first link with second motor) of the manipulator. (a) The draft of the second joint angle using the SolidWorks
software; (b) the mechanical design of the second joint angle.

a b c

Fig. 6. The design of the third joint angle (second link with third motor) of the manipulator. (a) The mechanical design of the third joint angle; (b) the
draft of the third joint angle using the SolidWorks software; (c) the draft of the entire manipulator using the SolidWorks software.

Substitute Eqs. (36)–(38) in Eq. (41), and we get

s = 2l1(l2 cos(θ3) + l3 cos(2θ3) + l4 cos(3θ3) + l5 cos(4θ3)) + 2l3l4 cos(θ3) + 2l3l5 cos(2θ3)

+ 2l4l5 cos(θ3) + 2l2(l3 cos(θ3) + l4 cos(2θ3) + l5 cos(3θ3)) + l21 + l22 + l23 + l24 + l25. (42)

It is very obvious that the minimum and maximum reach of the end-effector of the manipulator does not depend on the
first and the second angles. To determine the joint angle (θ3), which moves the manipulator to its minimum and maximum
reach, we find

ds
dθ3

= 0 (43)

−2l3l4 sin (θ3) − 2l5l4 sin (θ3) − 4l3l5 sin (2θ3) + 2l2 (l3 (− sin (θ3)) − 2l4 sin (2θ3) − 3l5 sin (3θ3))
+ 2l1 (l2 (− sin (θ3)) − 2l3 sin (2θ3) − 3l4 sin (3θ3) − 4l5 sin (4θ3)) = 0. (44)

Using the proposed manipulator with its links length (l1 = 19, l2 = 18, l3 = 17, l4 = 16, and l5 = 15), we get
(0 ≤ θ3 ≤ 72.277). This means that the end-effector of the manipulator reaches its minimum value when (θ3 = 72.277),
and reaches its maximum value when (θ3 = 0). Fig. 8 shows the manipulability value of the proposed manipulator within
the joint angles’ range (0 ≤ θ2 ≤ π ) and (0 ≤ θ3 ≤ 72.277).

It is noted from this figure that the manipulability index have very good values, which are greater than zero in most of
the areas of the workspace, and it is also apparent that the closer the joint angles are from the zero value, the closer the
manipulability index are from singularity. This type of singularity is called boundary singularities. It is also obvious that
every manipulator must have singular configurations, i.e. the existence of singularities (boundary singularities) cannot be
eliminated, even by careful design.

3. Kinematics of PUMA arm

The PUMA (Programmable Universal Machine for Assembly) robot is a six-degree of freedom industrial robot, and is
most commonly used in automated spot welding applications and cars assembly. It is the most common robot in university
laboratories and one of the most common assembly robots.
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a b c

Fig. 7. The design of the fourth joint angle (third link) of the manipulator. (a) The mechanical design of the fourth joint angle; (b) the draft of the fourth
joint angle using the SolidWorks software; (c) the draft of the entire manipulator using the SolidWorks software.
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Fig. 8. The manipulability index value in whole the workspace of the proposed manipulator.

Fig. 9. PUMA arm configuration.

The proposedmanipulator can be used instead of the first three degrees of freedom of the PUMAmanipulator in the same
application since both have three motors to control the manipulator; in other words, the proposedmanipulator can be used
for the same applications of the PUMA manipulator by adding the 3-R wrist. However, only the main three joints shown in
Fig. 9 are being considered.
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Fig. 10. The manipulability index value in whole the workspace of PUMA arm.

Using the PUMA arm of [18,19], which is shown in Fig. 9. The position equations of this arm are:

x = cos[θ1](l2 cos[θ2] + l3 cos[θ2 + θ3]) (45)
y = sin[θ1](l2 cos[θ2] + l3 cos[θ2 + θ3]) (46)
z = l2 sin[θ2] + l3 sin[θ2 + θ3]. (47)

The Jacobian matrix for this case is given by:

J =

−Sin[θ1](l2Cos[θ2] + l3Cos[θ2 + θ3]) −Cos[θ1](l2Sin[θ2] + l3Sin[θ2 + θ3]) −Cos[θ1]l3Sin[θ2 + θ3]

Cos[θ1](l2Cos[θ2] + l3Cos[θ2 + θ3]) −Sin[θ1](l2Sin[θ2] + l3Sin[θ2 + θ3]) −Sin[θ1]l3Sin[θ2 + θ3]

0 l2Cos[θ2] + l3Cos[θ2 + θ3] l3Cos[θ2 + θ3]

 . (48)

To calculate the manipulability measure for PUMA arm, due to it being a non-redundant manipulator, (m = n) [19],
Eq. (18) reduces to:

M = |det(J)| (49)

and this leads to:

M = |l2l3 sin(θ3)(l2 cos(θ2) + l3 cos(θ2 + θ3))| . (50)

It is noted again that the first joint angle does not affect the value of the manipulability index. For a better comparison
between the results of manipulability values for the proposed manipulator and the PUMA arm, both manipulators should
have the samemaximum reach,meaning that the total links length of the PUMA arm should be equal to the total links length
of the proposed manipulator (19 + 18 + 17 + 16 + 15 = 85 cm). For PUMA arm, the manipulability measure attains its
maximumwhen l1 = l2) for any given θ1 and θ2 [18,19]. This means that we will get the maximum values of manipulability
when (l1 = l2 = 42.5 cm). Fig. 10 shows the manipulability value of the PUMA arm when the joint angle’s range are
(0 ≤ θ2 ≤ π ) and (0 ≤ θ3 ≤ π ).

It is noted from Figs. 8 and 10 that better results for manipulability can be obtained by using the proposed manipulator.
In Fig. 8, the peak of the manipulability measure is 185415 when θ2 = 2.318 rad, and θ3 = 0.439 rad, while the peak in
Fig. 10 is 118188 when θ2 = 2.526 rad and θ3 = 1.230 rad, which proves that the proposed manipulator can be used to
improve the manipulability measure.

4. Simulation results

Demonstrating the effectiveness of the proposed method in a three dimensional manipulator, the same manipulator of
Fig. 3, with the lengths of links 1 = [19, 18, 17, 16, 15]T is shown in this case, with the lengths measured in cm. The goal is
to move the end-effector on the path defined as:

x = 15 sin(t) + 20 (51)
y = 10 cos(t) + 30 (52)
z = 5 cos(t) + 8. (53)
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Fig. 11. The configuration of the proposed manipulator when the end-effector following the desired path.

Table 1
The angles (θ1, θ2 , and θ3), the singular values (σ1, σ2 , and σ3) and the manipulability using the proposed manipulator.

xt yt zt θ1 θ2 θ3 σ1 σ2 σ3 Manip

1 20.0000 40.0000 13.0000 63.4349 86.9009 41.7154 76.0249 44.7213 34.2755 116534
2 24.6353 39.5106 12.7553 58.0560 89.6960 40.6166 78.0117 46.5622 34.0107 123540
3 28.8168 38.0902 12.0451 52.8910 88.0268 39.9802 79.16 46.8204 33.8354 125404
4 32.1353 35.8779 10.9389 48.1497 86.5144 39.8923 79.3184 46.4826 33.8099 124655
5 34.2658 33.0902 9.5451 44.0001 85.9709 40.4194 78.3678 45.8268 33.958 121955
6 35.0000 30.0000 8.0000 40.6013 86.4968 41.5771 76.2752 44.7787 34.2448 116963
7 34.2658 26.9098 6.4549 38.1434 88.0862 43.3282 73.1071 43.0402 34.5752 108793
8 32.1353 24.1221 5.0611 36.8934 89.3935 45.5645 69.0828 40.1815 34.809 96624.5
9 28.8168 21.9098 3.9549 37.2462 86.1587 48.1190 64.5662 36.2006 34.8036 81347.6

10 24.6353 20.4894 3.2447 39.7506 82.4998 50.7470 60.0806 34.4745 32.0421 66367.2
11 20.0000 20.0000 3.0000 45 78.7586 53.1072 56.2604 33.88 28.2835 53911.3
12 15.3647 20.4894 3.2447 53.1343 75.3234 54.7690 53.7247 33.2839 25.6101 45795.3
13 11.1832 21.9098 3.9549 62.9593 72.6697 55.3421 52.8843 33.0439 24.5991 42987.0
14 7.8647 24.1221 5.0611 71.9421 71.3102 54.7330 53.7781 33.2984 25.3717 45433.7
15 5.7342 26.9098 6.4549 77.9708 71.4496 53.2210 56.0824 33.8439 27.5145 52223.8
16 5.0000 30.0000 8.0000 80.5377 72.8291 51.2208 59.2957 34.3784 30.4138 61998.1
17 5.7342 33.0902 9.5451 80.1688 75.0357 49.0565 62.9431 34.725 33.5836 73403.7
18 7.8647 35.8779 10.9389 77.6359 77.7404 46.9267 66.6597 36.7302 34.8434 85311.4
19 11.1832 38.0902 12.0451 73.6379 80.7280 44.9453 70.1926 39.6971 34.7659 96873.2
20 15.3647 39.5106 12.7553 68.7502 83.8410 43.1842 73.3674 42.3934 34.5528 107469.

Fig. 11 illustrates the configurations of the manipulator when the end-effector is following the desired path. The angles
(θ1, θ2, and θ3) have been calculated for both themanipulator, and the singular values (σ1, σ2, andσ3) of J of themanipulators,
and the manipulability values have also been calculated for both manipulators to show how far from the singularity the
manipulator is. Tables 1 and 2 show the angles (θ1, θ2, and θ3), the singular values (σ1, σ2, and σ3), and the manipulability
of the manipulators at all points on the desired path.

Fig. 12 shows the values of joint angles for the proposed manipulator, while Fig. 13 shows the values of joints angles for
Puma arm when they follow the points on the target path.

As mentioned earlier, the bigger the dimensions of the ellipsoid are, the farther the manipulator will be from its
singularity avoidance. As long as the dimensions of the ellipsoid depend on the singular values (σ1, σ2, and σ3) of J of the
manipulators, Tables 1 and 2 show the effectiveness of the proposed manipulator for increasing the values of (σ1, σ2, and
σ3), which drives the manipulator far from its singularity configurations. Fig. 14 shows the values of (σ1, σ2, and σ3), using
both manipulators to demonstrate how the proposed manipulator can increase the singular values of J , while Fig. 15 shows
the manipulability ellipsoids of both manipulators on the desired points.

Because the manipulability measure Eq. (18) is equal to (M = σ1σ2σ3) as well, using the proposed manipulator leads to
an increase in the value of manipulability, which grants the capability of controlling the manipulator far from its singularity
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Table 2
The angles (θ1, θ2 , and θ3), the singular values (σ1, σ2 , and σ3) and the manipulability using PUMA arm.

xt yt zt θ1 θ2 θ3 σ1 σ2 σ3 Manip

1 20.0000 40.0000 13.0000 63.4349 72.9842 113.5512 55.563 29.8003 29.7868 49320.9
2 24.6353 39.5106 12.7553 58.0560 70.7114 110.7828 57.1223 29.5633 28.4467 48038.5
3 28.8168 38.0902 12.0451 52.8910 68.7391 109.1700 58.0376 29.3963 27.0606 46167.8
4 32.1353 35.8779 10.9389 48.1497 67.2689 108.9468 58.1645 29.3716 25.985 44392.5
5 34.2658 33.0902 9.5451 44.0001 66.4720 110.2824 57.4059 29.5136 25.466 43145.8
6 35.0000 30.0000 8.0000 40.6013 66.4481 113.2056 55.7566 29.7744 25.5171 42361.4
7 34.2658 26.9098 6.4549 38.1434 67.2170 117.5796 53.3424 30.0137 25.8934 41455.4
8 32.1353 24.1221 5.0611 36.8934 68.7245 123.0912 50.4727 29.9822 26.1782 39615
9 28.8168 21.9098 3.9549 37.2462 70.8675 129.2652 47.6588 29.3428 25.9736 36322.6

10 24.6353 20.4894 3.2447 39.7506 73.5162 135.4680 45.4685 27.8596 25.1179 31817.8
11 20.0000 20.0000 3.0000 45 76.5047 140.9004 44.1554 25.7986 23.8423 27159.9
12 15.3647 20.4894 3.2447 53.1343 79.5410 144.6408 43.5487 24.0025 22.763 23793.7
13 11.1832 21.9098 3.9549 62.9593 82.0894 145.9116 43.3888 23.3321 22.5883 22867.3
14 7.8647 24.1221 5.0611 71.9421 83.5601 144.5580 43.5599 24.0452 23.606 24725.1
15 5.7342 26.9098 6.4549 77.9708 83.7829 141.1596 44.1061 25.6834 25.4796 28863.2
16 5.0000 30.0000 8.0000 80.5377 83.0220 136.5696 45.1569 27.5875 27.4985 34256.8
17 5.7342 33.0902 9.5451 80.1688 81.6149 131.4972 46.7879 29.4005 28.9148 39774.8
18 7.8647 35.8779 10.9389 77.6359 79.7844 126.3996 48.8984 30.6012 29.732 44489.5
19 11.1832 38.0902 12.0451 73.6379 77.6648 121.5720 51.2375 31.0477 30.0345 47779.1
20 15.3647 39.5106 12.7553 68.7502 75.3572 117.2232 53.5357 30.736 30.0019 49367.3

Fig. 12. The values of joint angles for the proposed manipulator when the end-effector following the desired path.

Fig. 13. The values of joint angles for Puma arm when the end-effector following the desired path.
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Fig. 14. The values of (σ1, σ2 , and σ3), the singular values of J for both manipulators.

Fig. 15. Manipulability ellipsoid for both manipulators.

configurations. The values of the manipulability measure for both manipulators can be checked in Tables 1 and 2. These
values are shown in Fig. 16.

5. Conclusion

The singularity avoidance of a three dimensional planar redundant manipulator has been studied in this paper. The
paper proposed a method to increase the singularity avoidance ability of a three dimensional planar manipulator, by way of
increasing its degrees of freedom. It is also possible to increase the degrees of freedom of the planar manipulator using the
same number of motors, in order to increase the value of the manipulability measure. The manipulability ellipsoids for the
proposed manipulator have been obtained and compared with the ellipsoids of the PUMA arm. The manipulability measure
values of both manipulators (proposed manipulator and PUMA arm) have been calculated and analyzed, and the results of
the illustrated examples show the ability of the proposed manipulator to be used exclusively for singularity avoidance.
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Fig. 16. Manipulability measure values for both manipulators.
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