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Lyapunov Functions for Nonlinear Time-Varying
Systems

Kumpatt S. NARENDRA AND Jamms H. Tavror

Yale Universily, New Haven, Connecticut 06520

For a quite general class of dynamic systems having a single
memoryless time-varying nonlinearity in the feedback path some
frequency domain stability criteria are developed using Lyapunov’s
second method. Four classes of nonlinearities are considered, and it
is seen that as the behaviour of the nonlinearity is restricted, the
stability conditions are relaxed. For the first three classes of non-
linearities, the results for time invariant systems are well known,
and for two of the classes the result has previously been extended
to apply to time-varying situations. The result concerning a signifi-
cant new class of nonlinearities as well as the extension of the third
previously known time-invariant result to cover time-varying systems
are original with this paper.

I. INTRODUCTION

Recently V. M. Popov (1961) developed the first frequency domain
criterion for nonlinear time-invariant systems of the form considered
in this paper utilizing Lyapunov’s second method. Basically, if the
system is characterized by a forward loop transfer function G'(s) and
a single first and third quadrant continuous nonlinearity [¢f(s) > O
all ¢ 5 0, f(0) = 0]in the feedback path, then if @ > 0 exists such that
G(s)- (s + «) is positive real,’ the system is absolutely stable.

Since this classic work was presented, considerable effort has been
expended to produce stability criteria with more general frequency
domain multipliers than (s + «); both Lyapunov’s second method and
the passive operator approach have been fruitful. As would be expected,
it is necessary to add constraints to the nonlinearity in order to relax
conditions on the linear portion of the system. Brockett and Willems
(1965) first considered monotonic nonlinearities, i.e., df(e)/dec = 0
for all . Further contributions of this type were made by Narendra and

1 Henceforth denoted “G(s)- (s + «) = p.r.”’. If Re H(jw) > 0 strictly, then
it will be denoted “H (s) = s.p.r.” (strictly positive real).
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NONLINEAR TIME-VARYING SYSTEM STABILITY 379

Neuman (5/1966), Narendra and Cho (1967), and Thathachar, Srinath
and Ramapriyan (1967).

This paper presents a unified approach to this type of problem, which
yields not only all of the frequency domain multipliers obtained in
previous works, but some novel results for time-varying nonlinear
systems [k(¢)f(co) in the feedback path}in the form of upper bounds on
1/k dk/dt. A new class of nonlinearities is also introduced which allows
significant further relaxations of the constraints on G/(s) and/or higher
upper bounds on 1/k dk/di. A summary of all results is detailed in
Table 1.

Since the proof of the stability theorem for all nonlinearity classes is
quite complex, the theorem is first simply stated in Section IV, then seven
lemmas central to the theorem proof are listed in Section VI, and finally
the proof is carried out for the first two classes and outlined for the
remainder in Section VII.

II. SYSTEM REPRESENTATION

The systems considered in this paper are assumed to be characterized
by the n dimensional vector state equation

& = Az — bk(2)f(o0)
. (2.1)
gy = h x,
TABLE I

A Synopsis or RESULTS

System class

Mualtiplier form
F/F-IV  FM/FM-TV FMO/EMo-Tv FMOS/EMOS-

Popov (s + No) P/P * * *
Zext N.A. P/P * *
Z¥uo N.A. N.A. P/O */0
ZrH08 N.A. N.A. N.A. 0/0
Symbols:
N.A ~frequency domain multiplier form not applicable to the nonlinearity
class

P  -previous result

O  -—original result

*  —multiplier for broader class of systems applies with no change
*/0 -as (*) except for a new larger upper bound on 1/k dk/dt.

TV —time-varying; nonlinearity classes defined in text.
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for time invariant nonlinear systems k(¢) = 1 and for time-varying
linear systems f(ay) = o4 with no loss of generality.

This is equivalent to a linear plant in the forward path with transfer
function

G(s) = B"(sI — A) ™ (2.2)

with a single memoryless nonlinearity (which may or may not be time-
varying) in the feedback portion of the loop.

It is assumed that the plant is completely controllable, completely
observable and asymptotically stable [i.e., all eigenvalues of A have
negative real parts]. Due to its controllability, the phase-variable canoni-
cal form ean be used with no loss of generality;c.f. Johnson and Wonham
(1964):

W=, b, e bl 0| 7
A=\ T Ta T,

By inspection,
hn'gn_1+hn—lsn_2+ et hest+

G(s) = 24

(s) '+ s+ s T mst @ 24)
This transfer function is assumed to have both real zeros at s = —u;,

1=1,2, -+ m and complex zeros at s = —\; £ jus, 2= 1,2, -+, my

where (my + 2my) = (n — 1). The complex zeros are the roots of
s + w4+ pi, sO

ms = 2N;

b= \E 4 mz (2.5)
and

(pi—37) 2 0 (2.6)

A sector S,, of the s-plane is defined by A = (1/n)p; thus a zero is said
to lie in 8. if its real part is greater than one half its imaginary part.
In the polar coordinate 6 the condition is

Sp= {6:(r —tan'n) < 0 < (x + tan"" n)} (2.7)

Whenever the real zeros are ordered in one or more groups, it will be
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agsumed that their magnitudes increase with increasing index in each
group, e.g.,

m< < o < g
‘ (2.8)

Moyl < Nnyt2 *°° < Mimy

No relationship between 7./s of different groups are assumed. As can be
demonstrated, when the real or complex zeros are divided into two
groups (as in some multipliers; see Zgymo and Zpumos to follow) there is no
loss of generality in assuming that no zero appears in both groups.

The time-varying gain k() is always assumed to be nonnegative and
bounded, i.e., 0 < k(¢) < K < o, It is also absolutely continuous, thus
ensuring the existence of dk/dt.

In this paper, four classes N of nonlinearities f(¢) will be considered
(and referred to by abbreviation):

(i) First and third quadrant nonlinearities (F); any continuous
function is allowed as long as f(0) = 0 and 0 < f(¢)/os £ F < o« for
all finite nonzero values of o.

(ii) Monotonic nonlinearities (FM); this is a subeclass of (i) in
which it is assumed that df{c)/de = 0 for all o.

(i) Monotonic odd nonlinearities (FMO); this is a subeclass of
(ii) in which it is further assumed that f(—¢) = — f(¢) for all o.

(iv) Monotonic odd saturating nonlinearities (FMOS); this is a
subelass of (iii) in which o d’f/ds® £ 0 all o, i.e., the slope df/ds is never
increasing as | o | increases.

As a measure of nonlinearity, it is useful to introduce the parameter
Foin:

[ ofe) )
Fmin = {ntin F(U')} = In‘;iﬂ i\f‘r f(z) dzJ} (29)
0

By studying the form of each elass, it can be seen that the following
ranges for Fri, are permitted:

(1) F: 0 < Fpin < 0
(i1) FM and FMO: 1 < Fpin < ©
(il) FMOS: 1 < Fnin £ 2

By inspection, for linear systems Frnin = 2.
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III. FORM OF LYAPUNOV FUNCTION

The form of the Lyapunov function used in this report is an extension
of that used by Popov, viz.:

V(e ) = Lo"Pe + Z:)) 8: k(1) fo ey (3.1)

where P is an n X n symmetric positive definite matrix [P = P” > 0],
all 8; > 0 and the signals used in the upper limits of the integral terms
are derived from the state vector by the relations

0; = i 79 = h. (3.2)

It is obvious that V(z, t) is a positive definite decrescent form since
k(¢) and f(o)/o are nonnegative and bounded. In fact

0< 12"Pz 2 Viz,t) £ 32" [P + I—{FZO B

It can be seen that in the case of linear time-varying systems this
form reduces to

Viz, t) = z"Pz + k(t)z"Mz] (3.3)

where

= M" = Zﬂﬂ”m =0 (34)

M can be positive definite (>0) only if the vectors r; satisfy
rank [roérlé 1,,,] = n;

otherwise M is only semidefinite (=0).
The existence of this class (3.3) of quadratic Lyapunov function as
a necessary and sufficient condition for the asymptotic stability of a
linear time-invariant feedback system for all values of the feedback
gain parameter 0 < k < K was conjectured by Narendra and Neuman
(1966) and subsequently proven by Thathachar and Srinath (1967).
Making no further assumptions about the signals "z other than
= h, one sees that

V = 3 2"(PA + A"P)z — k(t)f(s0)a"[Pb — Bo(ho b + AH)]
— Bo h"b [E(D)f(o0)]* — Bo Mo k(t)ao f(o0) (35)

+ 2 8 KOS o) Tz — bOfe) + 2 8 % [ ) e
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To obtain this expression, Bo\ok(t)aof(so) is added to and subtracted
from the formal time derivative of (3.1). This term is positive semi-
definite for all classes of nonlinearities considered here.

The strategy of Lyapunov’s second method is to show that for a given
set of conditions, V is negative definite. Establishing that the total time
derivative of a generalized norm V is always negative except at the
null state = 0 where V = 0 is sufficient to ensure the absolute stability
of the system under consideration. For a more detailed and rigorous
discussion of this method, c.f. Lefschetz (1965).

IV. STABILITY THEOREM

In the theorem that follows, it will be seen that the stability conditions
for a nonlinear time-varying system of the type considered in this paper
are dependent upon the existence of a frequency domain multiplier Z (s).

TuEOREM. If in the system described by Eq. (2.1), G(s), f(c) and
k(t) satisfy the properties of Section II, and in addition a multiplier
Z(s) € Zx(s) exists such that

(1) G(8)Z(s) = s.p.r. (4.1)
(i) Z{s — Ax) € Zy(s) (4.2)
(iid) fle) € N and 1/kdk/dt £ AxFain, (4.3)

the system is absolutely stable. The four classes N of nonlinearities are
defined in Section 11; the corresponding multiplier classes are defined sub-
sequently.
A discussion of this theorem is deferred until these definitions are
made:
(1) f(o) € F: for this general class of nonlinearities, one is re-
stricted to the use of the Popov multiplier;

Zp(s) = s+ o (4.4)

where A\ = 0. Clearly Ar = No.
(2) f(e) € FM: by constraining f(s) to be monotonic, it is possible
to use a more general RL multiplier;

ml s + k(]
Zym(s) = Bo(s + No) + Z Yi - (4.5)

i=1 s - Ni
where 0 = N < 7. It can be shown that any general RL impedance
with poles at s = —7: may be expanded into this form, even though it

might seem restrictive to have the numerator of each term be (s -+ No).



384 NARENDRA AND TAYLOR

The phase of this multiplier, as that of the Popov multiplier, must be
in the range (0, 90°), but it no longer needs to increase monotonically
with frequency as in the case of (s <+ M\o). Again it is evident that
AFM = )\0.

(3) f(¢) € FMO: the additional condition that f(¢) be odd allows
the use of a much more general RLC multiplier:

s+ Ao & ST
s+ + i=u21+1 vi s+ n;
n2 S+§‘i m2 .82+¢58+¢i

D P I o S g
g==1 182+1T¢S+pi i=ngtl IS2+7r~;S+pi

Zyno(s) = Bols + o) + Z i

(4.6)

All parameters must be nonnegative. As above, the first two terms
represent an RL impedance and 0 £ N\ < m is required. The third
term is the expansion of a special RC function, since it is required that
1 £ 7: £ 2. In the fourth term, {; < =;, and in the fifth, ¢; < =;
and ¢; < p; are required. In addition, it is necessary to define the fol-
lowing parameters for the last two terms:

(e S e
0<p= L['i%ﬁ__‘#)_ <<1 +[(’;:‘£2 ~ MT)’ . 1>jl” (4.7)

My

= (ma+1), - m

l(l:zﬁm ((1 n (L;T’:f)w - 1)]”2 i=1,2 - m
i RN CE B )

Hi

i=(m+1) -

These parameters must satisfy

(xo+— S ) Sty =az0  (49)

Bo f=notl =1 50
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and
i — ) —vi=ea”20; ¢=1,2,+,m (4.10)

In this case, it is not as readily apparent what the maximum value of
A such that Z%(s) = Z(s — A) € Zpyois. Z*(s) may be expressed in
the same form as (4.6), except that some parameters are changed.
Denoting the parameters of Z¥(s) by stars, it is evident that the fol-
lowing are invariant: 8", vt 8%, i, and k.5, Le. B = B ete. Also
it may be seen that A* = N — A, and similarly for \:*, 7" and (raps) ™.
Hence for Z* € Zpno one requires
(1) Term 1: A £ N, by inspection.
(ii) Term 2: A £ Mo, also by inspection.
(iii) Term 3: A = (2 — 7;)n: which can be seen from the
requirement that 22,
(iv) Terms 4 and 5: A < min {¢, &} which is evident since
by inspection »; and &; are invariant.
Hence the maximum value of A is the smallest of these maxima, or

AFMO = min {)\0, (2 - 71;)71{, €, ééi)} (4:.1].)

Since s* + s + pi = (s + N + gui) (s + Ns — jui), it is important
to note that (4.10) requires that any pole of Zgyo lie in the sector
S (2.7).

(4) f(¢) € FMOS: the form of the multiplier Zgmos is exactly that
of Zzmo (4.6); the difference lies chiefly in relaxed parameter constraints
(or, for the same parameters, a larger value of A). Again, all parameters
are nonnegative. The first two terms (RL) are unchanged. In the third
(RC) term, 1 < 7; < o is allowed. This now permits any RC impedance
with poles at s = —7; to be represented by this expansion.

In the fourth and fifth terms, {; < 7, and ¢; < 7, ¥: < p; are still
required, and the parameters »; and & must be defined as before (4.7),
(4.8). However, the inequalities of (4.9) and (4.10) are relaxed, viz.

1 m2 N2 ; m2 :

<>\o+— > Ki)*'zﬂ—(aiw-i'&)— > Kiw‘zéléo (4.12)
Bo i=ngt1 i=1 Bo i=ng+1 Bo

hi— ) — @ —ai=e’ 20, i=12-,m

MNi— %) —vi=ea 20, 4= (n+ 1), -, m

v

(4.13)

where a; are arbitrary real numbersin therange 0 < o; £ (1 — &i/v:) £ 1
which may be adjusted to maximize min {e , e”}.
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Using the arguments of section (3), one can see that
Arpos = min { Ny, Puyi1, €@, ééi)}- (4.14)

It is noteworthy that the poles of the fourth and fifth terms now may
lie in S, rather than S;, which is an important relaxation of constraints.

V. COMMENTS

The theorem for f(¢) € F is simply a generalization of Popov’s result
to extend its application to nonlinear time-varying systems; this well-
known result was obtained for the linear case [Fnim = 2] by Brockett and
Forys (1964), and in its final form by Narendra and Cho (1967).

For f(s) € FM, the theorem is an extension of a result of Narendra
and Neuman (5/1966) to cover nonlinear time-varying systems. This
result was originally obtained by Narendra and Cho (1967) using the
passive operator technique.

The development of the result for f(¢) € FMO is as follows: Narendra
and Neuman (5/1966) obtained a multiplier corresponding to the first
three terms (Zgr + Zzre) for a time-invariant system. Both Thathachar,
Srinath and Ramapriyan (1967) [using a Lyapunov function approach
similar to that of this paper] and Narendra and Cho (1967) [using the
passive operator technique] obtained the more complex RLC terms,
again only for time-invariant situations. The upper bound on dk/dt is
original with this study.

In the case that f(¢) € FMOS, the result is completely new. The im-
portance of this new class of nonlinearity is two-fold:

(1) If Z € Zpyo exists such that G(8)Zeyo(s) = s.p.r. and Agyo is
found, then if one can say that f(s) is a saturating function, this same
Z(s) will vield Aymos = Armo, Where the increase is generally signifi-
cant.

(2) If only a multiplier with poles in S, (not Si) may be used to
satisfy G(s)Z(s) = s.p.r., then only a saturating nonlinearity may be
included in the system.

It is important to note that the expansions are not unique, so since A
is determined by the parameters of Z, one must obtain the best expan-
sion. This is elear from the following example: say

445+ 5 _ (s+247) (s+2—7)
s+ 2 s+ 2 ’

The best expansion is Z(s) = (s + 1) + (s + 3)/(s + 2) in which

f(¢) € FMO and Z(s) =
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case by (4.11), A = min {1, [2 — (3/2)]2} = 1. However, it can be seen
that Z(s) = (s + 1%) 4+ L(s + 4)/(s + 2) also, in which case A = 0.

It may seem that the parameter constraints and the computation of A
for the most general RLC multiplier (4.6) are quite complex, and in the
general form, this is so. It is well to reeall however that in a practical
problem 7 is in general not large, so there are in reality few terms in
Z(s) (no more than n), and the computation involved is not foo
formidable.

In a more general cagse than that presented here, it may not be possible
to say that f(o, t) = f(o)k(t), in which ease (4.3) of the theorem need
only be modified to read

” of(z, t)
TR dz

max () < Ay (415)

. Uf(ay t) -

In this paper, it is assumed that # and K, while bounded, are arbi-
trarily large. If this is not the case, then it is relatively simple to extend
the theorem by the standard transformation G*(s) = [G(s) + 1/FK];
condition (iii) of the theorem becomes

di k
a—t‘ é AN Fmink (1 - K) (4.15)

In conclusion, Table I is included as a synopsis of the results presented
in this paper.

V1. BASIC LEMMAS

First consider the inequalities satisfied for each class of nonlinearities:
Lemma 1. For all FM nonlinearities,

(o1 — oa)[f(o1) — floz)] 2 0 all 01,0,
Lemma 2. For all FMO nonlinearities,
gif(61) + 05f(e2) = [01f(02) £ 02f(01)] =2 0 all o1, 00
Levma 3. For all FMOS nonlinearities,
ogoif(or) + [1 — aoloaf(o2) =% [oof(01) — o1f(o2)] = 0O

foralloyand oy, and 0 £ ap < 1.
Next we eonsider various lemmas concerning G(s):
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Lemua 4. If
G(8)|omn = 0,  then the vector’e, ¢ = h"(nI + A)™"

has the properties
(1) ¢"(sI — A)7b = G(s)/(s + n)
(ii) b = 0
(iii) ¢"Az = B"z — nc'z
LemMma 5. If

G(8)|smrtsu = 0,  then thevector’d,  d" = h"(pl + 7A + AA)™

has the properties

(i)

v e G G(s)

d(SI A) b s +as+p (3—!—)\—]-‘7”)(3""‘)\"‘.7“)
(i) d'b = 0

(iii) d"Az = "z [see Lemma 6 below]
Lemma 6. Under the conditions of Lemma 5

¢ =d'A
has the properties
. T _ A —1 — SG(S)
(i) €' (sI )b PR

(ii) €b = 0
(iii) e"Az = A"z — pd'x — we'x
LemMa 7. [Lefschetz form of the Kalman—Yakubovich lemma]. Given
the stable matriz A, a symmetric matrizc D > 0, vectors b # 0, and k, and
scalars 7 = 0,° ¢ > 0, then a necessary and sufficient condition for the

2 Zeros of the numerator of G(s) must not be eigenvalues of A in order for
(gI + A)tand (oI + A + AA)™! to exist. This is ensured by the observability

of the system.
3 The reviewer has pointed out a recent correction to this lemma (Lemma 7)

by Lefschetz, Meyer and Wonham (1967) via.
“If =0 then £kT4b =07

The significance of this is as follows: if » = 0 then the Kalman relation requires
that H (jo) = kT(jol — A)™'b be strictly positive real. This transfer function is of
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exisience of a solution as o matrix P (necessarily >0) and a vector g of the
system
(a) AP + PA = —qq" — D
(b) Pb — k= ()
s that € be small enough and that the Kalman relation
(¢) 7+ 2Re[k"(jwl — A)7'0] > 0
be satisfied for all w.
The proofs of lemmas one through six are given in Narendra and
Taylor (1967), and Lemma 7 is proved in Lefschetz (1965).

VII. OUTLINE OF THE THEOREM PROOF

In the proof of the theorem there are five basic steps:

(i) Choose the signals o; = "z to be used in the integrals of V
corresponding to each multiplier term.

(ii) Insert the correct form of r;’b and r;"Az in V [Eq. (3.5)] ac-
cording to Lemmas 4 through 6.

(iii) Lemmas 1 through 3 define positive semidefinite forms for
each class of nonlinearities. These forms are added to and subtracted
from V.

(iv) Lefschetz’ lemma (Lemma 7) is applied to the first three terms
of V in order to render them negative definite. This requires that the
Kalman relation be satisfied, and from this the frequency domain eri-
terion is derived.

(v) Group all remaining terms of V into negative semidefinite
forms. Any restrictions required to ensure this become stability con-
ditions in the theorem.

These steps will be illustrated in the proof of the theorem for FM non-
linearities that follows. (f(¢) € F is actually a special case of this proof;
the nonlinearity class is broader than FM because no FM positive semi-
definite forms are needed in V to yield the Popov multiplier.)

the same form as (2.4) with each k; replaced by %; . As w becomes arbitrarily large,

kn Jw + kn——l

H(]w) ~ j"’(jw + Um)

and

o bn — ny _ —kTAb

H(w) = =
Re HUe) = = Far ~at o’

so if kTAb < 0, H(jw) = s.p.r. is ensured for large w.
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() o = 7z = %—cm = %hT(n; I+ A%
@ 7

(i) »"p = 0,7 Az = é— lyi o0 — Bini 0]

(iii) add and subtract vik(£) (oo — 04)[f(o0) — f(o:)]
At this point one has

V= %xT(PA + A"P)z — k()f(o0)z" I:Pb — Be(Aeh + ATR)

- S tn m] B WS ()]
. (6.1)
— gviw)(aa — o)[f(a0) — f(o0)]

— Bo fo"" J(2) de l:)\o E()F(ao) — g_ic]

= 5o [ e (= ) oo - ]

(iv) The first three terms of the above are negative definite as long
as for all real w,

Boh™b 4 Re {[Bo(Noh - ATR)
+ 2 vih = )l (ol ~ 4)70) > 0. (6.2)

In order to recast this requirement into the form Z(s)G(s) = s.p.r.
note that »

b + hTA (oI — )7 = B[(jul — A) + A}(jel — A = joG(jw)

by inspection, and

jw + (?h' - Zi)
(h — )" (joI — A) "D = L G(jw)

Jo + ms
by Lemma 4. Since each §; is an arbitrary positive constant (the v:
determine the magnitude of the multiplier terms it may be chosen so
that 8; = vi/(n: — o), or

(m - g~> = o (6.3)
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this is always possible since \ is by definition smaller than any pole of
Zx1 and hence Ny < 9; for each 7. Using these relations, (6.2) becomes

{[&Mw + o) + i e j_)“’] G(.Yw)}

g0 defining Zpy as in T2, this is tantamount to requiring that
G(8)Zgn = 8.p.1.

(v) By substituting Eq. (6.3) in V, the remaining terms are seen
to be negative semidefinite as long as

dk
— o = %' =X k(t)Fmill

which completes the proof of the theorem for f(¢) € FM.

In the proof of the theorem for the other classes, precisely the same
procedure is followed. The algebra involved, while considerably more
tedious, is equally straightforward. The crux of each proof lies in the
choice of the signals used in the integral upper limits and the positive
semidefinite forms (psf’s) added to and subtracted from V. For the sake
of completeness, this information is included in tabular form below. The
vectors ¢, d, and e are as defined in Lemmas 4 through 6, and the scalars
v; and £; are as defined in Egs. (4.7) and (4.8). Subseripting is omitted
for simplicity.
f(¢) € FMO; see (4.6) for multiplier expansion:

(i) Terms 1 and 2 (Zgy): signals and psf’s as above.
(ii) Term 3 (Zgc):
o =1z =2y

8
psf = aof(o0) + af(e) + of(a) — ayf(o)
(iii) Term 4 (5 ﬂ%) ;
‘ o= (M= pt)d'z + v’z
o= (& — w) d'z + t'x |
pst® = aqf(a0) + orf(er) + orf(on) — ouf(e)
psf® = (o0 — a)[f(o0) — fle2)] = .
pst® = o1f(ey) + oof(02) + o3f(as) — a2f(o1)

+¢s+tl/>
4 7ws+p

(iv) Term 5 (
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as term 4 except

I

(g0 — a1)[f(o0) — f(o1)]
pst? = aof(00) + 02f(02) + 0af(00) — aaf(r2)

f(e) € FMOS; see (4.6) for multiplier expansion:
(i) Terms 1 and 2: as above
(ii) Term 3: as above except

pst = aof(o0) + of(e0) — auf(a)
(iii) Term 4: as above exeept
pst? = aoof(oo) + (1 — a)orf(e1) + orf(o0) — aof (1)
pst® = Loif(01) + oof(02)] + ouf(on) — oof (1)
(iv) Term 5: as above except
pst? = 63f(03) + 02f(00) — aof (c2)
pst? = Hoyf(o1) + 0af(02)] + 01f(02) — aaf(on)

Recervep: October 27, 1967; revised: April 22, 1968
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