A stability of the generalized sine functional equations ${ }^{\text {** }}$

Gwang Hui Kim
Department of Mathematics, Kangnam University, Suwon 449-702, Republic of Korea

Received 6 April 2006
Available online 17 October 2006
Submitted by Said Grace

Abstract

In this paper we will investigate the stability of the generalized (pexiderized) sine functional equation $$
g(x) h(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} .
$$

© 2006 Elsevier Inc. All rights reserved.
Keywords: Stability; Superstability; Functional equation; Sine functional equation

1. Introduction

In 1940, the stability problem raised by S.M. Ulam [11] was solved in the case of the additive mapping by Hyers [7] in the next year.
J. Baker, J. Lawrence and F. Zorzitto in [4] introduced that if f satisfies the stability inequality $\left|E_{1}(f)-E_{2}(f)\right| \leqslant \varepsilon$, then either f is bounded or $E_{1}(f)=E_{2}(f)$. This is now frequently referred to as Superstability. Baker [3] showed the superstability of the cosine functional equation $f(x+y)+f(x-y)=2 f(x) f(y)$ which is called the d'Alembert functional equation. The stability of the generalized cosine functional equation has been researched in many papers [1,2,6,8-10].

The superstability of the sine functional equation

$$
\begin{equation*}
f(x) f(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} \tag{S}
\end{equation*}
$$

[^0]bounded by constant is investigated by P.W. Cholewa [5], and is improved in R. Badora and R. Ger [2].

In this paper, we introduce the pexiderized sine functional equation

$$
\begin{equation*}
g(x) h(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} \tag{gh}
\end{equation*}
$$

of the sine functional equation (S) and its special cases as follow:

$$
\begin{align*}
& g(x) f(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} \tag{gf}\\
& f(x) h(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} \tag{fh}\\
& g(x) g(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} \tag{gg}
\end{align*}
$$

in which f, g, h are unknown functions to be determined.
Given the mappings $f, g, h: G \rightarrow \mathbb{C}$, we define a difference operator $D S_{g h}: G \rightarrow \mathbb{C}$ as

$$
D S_{g h}(x, y):=g(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}
$$

which is called the approximate remainder of the functional equation $\left(\mathrm{S}_{g h}\right)$ and acts as a perturbation of the equation.

The aim of this paper is to investigate the stability problem for the pexiderized sine functional equation ($\mathrm{S}_{g h}$) under the condition $\left|D S_{g h}(x, y)\right| \leqslant \varepsilon$.

Applying $h=f, g=f$, or $h=g=f$ in the obtained results, we also obtain justly the stability for the sine functional equation (S), the generalized sine functional equations ($\mathrm{S}_{g f}$), ($\mathrm{S}_{f h}$), and ($\mathrm{S}_{g g}$) as corollaries.

In this paper, let $(G,+)$ be a uniquely 2 -divisible Abelian group, \mathbb{C} the field of complex numbers, \mathbb{R} the field of real numbers, and \mathbb{N} the field of natural numbers. We may assume that f and g are nonzero functions and ε is a nonnegative real constant. If all results of this article be given by the Kannappan's condition $f(x+y+z)=f(x+z+y)$ in [6], we will get same results on semigroup $(G,+)$.

2. Stability of the equation $\left(\mathrm{S}_{g h}\right)$

We will investigate the superstability of the pexiderized sine functional equation $\left(\mathrm{S}_{g h}\right)$ of the sine functional equation (S).

Theorem 1. $f, g, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
\left|g(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon \tag{1}
\end{equation*}
$$

for all $x, y \in G$. Then either g is bounded or h satisfies (S).
Proof. Let g be unbounded. Then we can choose a sequence $\left\{x_{n}\right\}$ in G such that

$$
\begin{equation*}
0 \neq\left|g\left(2 x_{n}\right)\right| \rightarrow \infty, \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

Inequality (1) may equivalently be written as

$$
\begin{equation*}
\left|g(2 x) h(2 y)-f(x+y)^{2}+f(x-y)^{2}\right| \leqslant \varepsilon \quad \forall x, y \in G . \tag{3}
\end{equation*}
$$

Taking $x=x_{n}$ in (3) we obtain

$$
\left|h(2 y)-\frac{f\left(x_{n}+y\right)^{2}-f\left(x_{n}-y\right)^{2}}{g\left(2 x_{n}\right)}\right| \leqslant \frac{\varepsilon}{\left|g\left(2 x_{n}\right)\right|},
$$

that is, using (2)

$$
\begin{equation*}
h(2 y)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}+y\right)^{2}-f\left(x_{n}-y\right)^{2}}{g\left(2 x_{n}\right)} \quad \forall x \in G \tag{4}
\end{equation*}
$$

Using (1) we have

$$
\begin{aligned}
2 \varepsilon \geqslant & \left|g\left(2 x_{n}+x\right) h(y)-f\left(x_{n}+\frac{x+y}{2}\right)^{2}+f\left(x_{n}+\frac{x-y}{2}\right)^{2}\right| \\
& +\left|g\left(2 x_{n}-x\right) h(y)-f\left(x_{n}+\frac{-x+y}{2}\right)^{2}+f\left(x_{n}-\frac{x+y}{2}\right)^{2}\right| \\
= & \left\lvert\,\left(g\left(2 x_{n}+x\right)+g\left(2 x_{n}-x\right)\right) h(y)-\left(f\left(x_{n}+\frac{x+y}{2}\right)^{2}-f\left(x_{n}-\frac{x+y}{2}\right)^{2}\right)\right. \\
& \left.+\left(f\left(x_{n}+\frac{x-y}{2}\right)^{2}-f\left(x_{n}-\frac{x-y}{2}\right)^{2}\right) \right\rvert\,
\end{aligned}
$$

for all $x, y \in G$ and every $n \in \mathbb{N}$. Consequently, we get

$$
\begin{aligned}
\frac{2 \varepsilon}{\left|g\left(2 x_{n}\right)\right|} \geqslant & \left\lvert\, \frac{g\left(2 x_{n}+x\right)+g\left(2 x_{n}-x\right)}{g\left(2 x_{n}\right)} h(y)-\frac{f\left(x_{n}+\frac{x+y}{2}\right)^{2}-f\left(x_{n}-\frac{x+y}{2}\right)^{2}}{g\left(2 x_{n}\right)}\right. \\
& \left.+\frac{f\left(x_{n}+\frac{x-y}{2}\right)^{2}-f\left(x_{n}-\frac{x-y}{2}\right)^{2}}{g\left(2 x_{n}\right)} \right\rvert\,
\end{aligned}
$$

for all $x, y \in G$ and every $n \in \mathbb{N}$. Taking the limit as $n \rightarrow \infty$ with the use of (2) and (4), we conclude that, for every $x \in G$, there exists the limit

$$
k(x):=\lim _{n \rightarrow \infty} \frac{g\left(2 x_{n}+x\right)+g\left(2 x_{n}-x\right)}{g\left(2 x_{n}\right)},
$$

where the obtained function $k: G \rightarrow \mathbb{C}$ satisfies the equation

$$
\begin{equation*}
h(x+y)-h(x-y)=k(x) h(y) \quad \forall x, y \in G . \tag{5}
\end{equation*}
$$

From the definition of k, we get the equality $k(0)=2$, which jointly with (5) implies that h has to be odd. Keeping this in mind, by means of (5), we infer the equality

$$
\begin{aligned}
h(x+y)^{2}-h(x-y)^{2} & =[h(x+y)+h(x-y)][h(x+y)-h(x-y)] \\
& =[h(x+y)+h(x-y)] k(x) h(y) \\
& =[h(2 x+y)+h(2 x-y)] h(y) \\
& =[h(y+2 x)-h(y-2 x)] h(y) \\
& =k(y) h(2 x) h(y) .
\end{aligned}
$$

The oddness of h forces it to vanish at 0 . Putting $x=y$ in (5) we conclude with the above result that

$$
h(2 y)=k(y) h(y) \quad \forall y \in G
$$

This, in return, leads to the equation

$$
\begin{equation*}
h(x+y)^{2}-h(x-y)^{2}=h(2 x) h(2 y) \tag{6}
\end{equation*}
$$

valid for all $x, y \in G$ which, in the light of the unique 2-divisibility of G, states nothing else but (S).

Theorem 2. Suppose that $f, g, h: G \rightarrow \mathbb{C}$ satisfy the stability inequality

$$
\left|g(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon
$$

which satisfies one of the cases $g(0)=0, f(x)^{2}=f(-x)^{2}$. Then either h is bounded or g satisfies (S).

Proof. Let h be unbounded. Then we can choose a sequence $\left\{y_{n}\right\}$ in G such that $h\left(2 y_{n}\right) \mid \rightarrow \infty$ as $n \rightarrow \infty$. An obvious slight change in the proof steps applied in the start of Theorem 1 gives us

$$
\begin{equation*}
g(2 x)=\lim _{n \rightarrow \infty} \frac{f\left(x+y_{n}\right)^{2}-f\left(x-y_{n}\right)^{2}}{h\left(2 y_{n}\right)} \quad \forall x \in G \tag{7}
\end{equation*}
$$

and, with an applying of (7), allows one to state the existence of a limit function

$$
p(y):=\lim _{n \rightarrow \infty} \frac{h\left(y+2 y_{n}\right)+h\left(-y+2 y_{n}\right)}{h\left(2 y_{n}\right)}
$$

where $p: G \rightarrow \mathbb{C}$ obtained in that way has to satisfy the equation

$$
g(x) p(y)=g(x+y)+g(x-y) \quad \forall x, y \in G .
$$

From the definition of p, it yields an even function. Clearly, so is also the function $\tilde{p}:=\frac{1}{2} p$. Moreover, $\tilde{p}(0)=\frac{1}{2} p(0)=1$ and

$$
\begin{equation*}
g(x+y)+g(x-y)=2 g(x) \tilde{p}(y) \quad \forall x, y \in G \tag{8}
\end{equation*}
$$

First, let us consider the case $g(0)=0$, then it forces by (8) that g is odd. Putting $y=x$ in (8), we get a duplication formula

$$
g(2 x)=2 g(x) \tilde{p}(x)
$$

From (8), the oddness and the duplication of g, we obtain the equation

$$
\begin{aligned}
g(x+y)^{2}-g(x-y)^{2} & =2 g(x) \tilde{p}(y)[g(x+y)-g(x-y)] \\
& =g(x)[g(x+2 y)-g(x-2 y)] \\
& =2 g(x) g(2 y) \tilde{p}(x) \\
& =g(2 x) g(2 y),
\end{aligned}
$$

that holds true for all $x, y \in G$, which, in the light of the unique 2-divisibility of G, states nothing else but (S).

In the next case $f(x)^{2}=f(-x)^{2}$, it is enough to show that $g(0)=0$. Suppose that this is not the case. Then in what follows, without loss of generality, we may assume that $g(0)=1$.

Putting $x=0$ in (3) which is equivalent to stability inequality (1), and from the above assumption, a given condition and the 2 -divisibility of group G, we obtain the inequality

$$
|h(y)| \leqslant \varepsilon \quad \forall y \in G
$$

This inequality means that h is globally bounded-a contradiction. Thus the claimed $g(0)=0$ holds, so the proof of theorem is completed.

Replacing h by f in Theorems 1 and 2, respectively, we obtain the superstability for the generalized functional equation $\left(\mathrm{S}_{g f}\right)$ of (S) as corollaries.

Corollary 1. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
\left|g(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon \tag{9}
\end{equation*}
$$

for all $x, y \in G$. Then either g is bounded or f and g satisfy (S).
Proof. The case f is trivial from the Theorem 1.
Next, by showing $g=f$, we will prove that g also satisfies (S).
If f is bounded, choose $y_{0} \in G$ such that $f\left(2 y_{0}\right) \neq 0$, then by (9), we have

$$
\begin{aligned}
|g(2 x)|-\left|\frac{f\left(x+y_{0}\right)^{2}-f\left(x-y_{0}\right)^{2}}{f\left(2 y_{0}\right)}\right| & \leqslant\left|\frac{f\left(x+y_{0}\right)^{2}-f\left(x-y_{0}\right)^{2}}{f\left(2 y_{0}\right)}-g(2 x)\right| \\
& \leqslant \frac{\varepsilon}{\left|f\left(2 y_{0}\right)\right|},
\end{aligned}
$$

which shows that g is also bounded on G.
Since the unbounded assumption of g implies that f also is unbounded, we can choose a sequence $\left\{y_{n}\right\}$ such that $0 \neq\left|f\left(2 y_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

A slight change applied after (2) gives us

$$
\begin{equation*}
g(2 x)=\lim _{n \rightarrow \infty} \frac{f\left(x+y_{n}\right)^{2}-f\left(x-y_{n}\right)^{2}}{f\left(2 y_{n}\right)} \quad \forall x \in G \tag{10}
\end{equation*}
$$

Since we have shown in (i) that f satisfies (S) whenever g is unbounded, Eq. (10) is represented as

$$
g(2 x)=f(2 x) \quad \forall x \in G
$$

By the 2-divisibility of group G, we obtain $g=f$. Therefore g also satisfies (S).
Corollary 2. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\left|g(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon \quad \forall x, y \in G
$$

which satisfies one of the cases $g(0)=0, f(x)^{2}=f(-x)^{2}$. Then either f is bounded or g satisfies (S).

Secondly, substitute g by f in Theorems 1 and 2, respectively, then we obtain the superstability for the generalized functional equation $\left(\mathrm{S}_{f h}\right)$ of (S) as corollaries.

Corollary 3. Suppose that $f, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\left|f(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon \quad \forall x, y \in G
$$

Then either f is bounded or h satisfies (S).
Corollary 4. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\left|f(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon \quad \forall x, y \in G
$$

Then:
(i) under the one of the cases $f(0)=0$ and $f(x)^{2}=f(-x)^{2}$, either h is bounded or f satisfies (S);
(ii) either h is bounded or h satisfies (S).

Proof. The case (i) is trivial from Theorem 2.
(ii) As the proof of Corollary 1 , we can see easily that h is bounded whenever f is bounded. Namely, the unboundedness of h implies that of f. Hence it is completed by Corollary 3 that h satisfies (S).

Thirdly, replacing h by g in Theorem 1 or Theorem 2, we obtain the superstability for the generalized functional equation $\left(\mathrm{S}_{g g}\right)$ of (S) as corollaries.

Corollary 5. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\left|g(x) g(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon \quad \forall x, y \in G
$$

Then either g is bounded or g satisfies (S).

Lastly, consider the case $g=f$ in Corollary 5, namely, put $g=h=f$ in Theorems 1 and 2. Then we obtain the superstability of the sine functional equation (S) which is found in Cholewa [5].

Corollary 6. [5, Theorem] Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\left|f(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right| \leqslant \varepsilon
$$

for all $x, y \in G$. Then either f is bounded or f satisfies (S).

3. Application to the Banach algebra

Let us consider the functions into the Banach algebra, then we can obtain the same results as in Section 2 for each functional equations $\left(\mathrm{S}_{g h}\right),\left(\mathrm{S}_{g f}\right),\left(\mathrm{S}_{f h}\right),\left(\mathrm{S}_{g g}\right)$, and (S). To simplify, we will combine two theorems into one.

Theorem 3. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g, h: G \rightarrow E$ satisfy the inequality

$$
\begin{equation*}
\left\|g(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right\| \leqslant \varepsilon \quad \forall x, y \in G . \tag{11}
\end{equation*}
$$

For an arbitrary linear multiplicative functional $x^{*} \in E^{*}$,
(i) if the superposition $x^{*} \circ g$ fails to be bounded, then h satisfies (S),
(ii) if the superposition $x^{*} \circ h$ under the case $g(0)=0$ or $f(x)^{2}=f(-x)^{2}$ fails to be bounded, then g satisfies (S).

Proof. The proofs of each case are very similar, so it suffices to show the proof of (i). Assume (i) and fix arbitrarily a linear multiplicative functional $x^{*} \in E^{*}$. As well known we have $\left\|x^{*}\right\|=1$ hence, for every $x, y \in G$, we have

$$
\begin{aligned}
\varepsilon & \geqslant\left\|g(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right\| \\
& =\sup _{\left\|y^{*}\right\|=1}\left|y^{*}\left(g(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right)\right| \\
& \geqslant\left|x^{*}(g(x)) \cdot x^{*}(h(y))-x^{*}\left(f\left(\frac{x+y}{2}\right)^{2}\right)+x^{*}\left(f\left(\frac{x-y}{2}\right)^{2}\right)\right|,
\end{aligned}
$$

which states that the superpositions $x^{*} \circ g$ and $x^{*} \circ h$ yield a solution of stability inequality (1) of Theorem 1. Since, by assumption, the superposition $x^{*} \circ g$ is unbounded an appeal to Theorem 1 shows that the superposition $x^{*} \circ h$ solves Eq. (S). In other words, bearing the linear multiplicativity of x^{*} in mind, for all $x, y \in G$, the sine difference $S(x, y)$ for the function h falls into the kernel of x^{*}. Therefore, in view of the unrestricted choice of x^{*}, we infer that

$$
S(x, y) \in \bigcap\left\{\operatorname{ker} x^{*}: x^{*} \text { is a multiplicative member of } E^{*}\right\}
$$

for all $x, y \in G$. Since the algebra E has been assumed to be semisimple, the last term of the above formula coincides with the singleton $\{0\}$, i.e.

$$
h(x) h(y)-h\left(\frac{x+y}{2}\right)^{2}+h\left(\frac{x-y}{2}\right)^{2}=0 \quad \text { for all } x, y \in G
$$

as claimed. The case (ii) runs the same procedure.
As in Section 2, let us consider the each case $h=f, g=f, h=g, g=h=f$ in the inequality (11) of Theorem 3, respectively, then we can obtain the same results as in Section 2 for each functional equation.

Corollary 7. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g: G \rightarrow E$ satisfy the inequality

$$
\left\|g(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right\| \leqslant \varepsilon \quad \forall x, y \in G
$$

For an arbitrary linear multiplicative functional $x^{*} \in E^{*}$,
(i) if the superposition $x^{*} \circ g$ fails to be bounded, then f satisfies (S),
(ii) if the superposition $x^{*} \circ f$ under the case $g(0)=0$ or $f(x)^{2}=f(-x)^{2}$ fails to be bounded, then g satisfies (S).

Corollary 8. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, h: G \rightarrow E$ satisfy the inequality

$$
\left\|f(x) h(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right\| \leqslant \varepsilon \quad \forall x, y \in G .
$$

For an arbitrary linear multiplicative functional $x^{*} \in E^{*}$,
(i) if the superposition $x^{*} \circ f$ fails to be bounded, then h satisfies (S),
(ii) if the superposition $x^{*} \circ h$ under the case $f(0)=0$ or $f(x)^{2}=f(-x)^{2}$ fails to be bounded, then f and h satisfy (S).

Proof. The case (i) and f of (ii) are trivial from Theorem 3.
For the case h, it follows from (ii) of Corollary 4 that h satisfies (S).
Corollary 9. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g: G \rightarrow E$ satisfy the inequality

$$
\left\|g(x) g(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right\| \leqslant \varepsilon \quad \forall x, y \in G .
$$

Then, for an arbitrary linear multiplicative functional $x^{*} \in E^{*}$, either the superposition $x^{*} \circ g$ is bounded or g satisfies (S).

Corollary 10. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f: G \rightarrow E$ satisfies the inequality

$$
\left\|f(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}+f\left(\frac{x-y}{2}\right)^{2}\right\| \leqslant \varepsilon \quad \forall x, y \in G .
$$

Then, for an arbitrary linear multiplicative functional $x^{*} \in E^{*}$, either the superposition $x^{*} \circ f$ is bounded or f satisfies (S).

Remark. If the operation of a group G is multiplication, then the investigated equations ($\mathrm{S}_{g h}$), $\left(\mathrm{S}_{g f}\right),\left(\mathrm{S}_{f h}\right),\left(\mathrm{S}_{g g}\right)$, and (S$)$ are represented by

$$
\begin{aligned}
& g(2 x) h(2 y)=f(x y)^{2}-f\left(x y^{-1}\right)^{2} \\
& g(2 x) f(2 y)=f(x y)^{2}-f\left(x y^{-1}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f(2 x) h(2 y)=f(x y)^{2}-f\left(x y^{-1}\right)^{2} \\
& g(2 x) g(2 y)=f(x y)^{2}-f\left(x y^{-1}\right)^{2} \\
& f(2 x) f(2 y)=f(x y)^{2}-f\left(x y^{-1}\right)^{2}
\end{aligned}
$$

Hence we can obtain the superstability for the above functional equations on a group (G, \cdot) with multiplication.

Acknowledgment

The author thanks the referee for valuable comment.

References

[1] R. Badora, On the stability of cosine functional equation, Rocznik Nauk.-Dydakt. Prace Mat. 15 (1998) 1-14.
[2] R. Badora, R. Ger, On some trigonometric functional inequalities, in: Functional Equations-Results and Advances, Kluwer Academic, Netherlands, 2002, pp. 3-15.
[3] J.A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980) 411-416.
[4] J. Baker, J. Lawrence, F. Zorzitto, The stability of the equation $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc. 74 (1979) 242-246.
[5] P.W. Cholewa, The stability of the sine equation, Proc. Amer. Math. Soc. 88 (1983) 631-634.
[6] P.D.P. Friis, d'Alembert's and Wilson's equations on Lie groups, Aequationes Math. 67 (2004) 12-25.
[7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222-224.
[8] Pl. Kannappan, The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968) 69-74.
[9] Pl. Kannappan, G.H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Paedagogicae Cracoviensis-Studia Math. 1 (2001) 49-58.
[10] G.H. Kim, S.H. Lee, Stability of the d'Alembert type functional equations, Nonlinear Funct. Anal. Appl. 9 (2004) 593-604.
[11] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.

[^0]: * This work was supported by Kangnam University Research Grant in 2006.

 E-mail address: ghkim@kangnam.ac.kr.

