

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 331 (2007) 886-894

MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Journal of

A stability of the generalized sine functional equations $\stackrel{\text{\tiny{trian}}}{\to}$

Gwang Hui Kim

Department of Mathematics, Kangnam University, Suwon 449-702, Republic of Korea

Received 6 April 2006

Available online 17 October 2006

Submitted by Said Grace

Abstract

In this paper we will investigate the stability of the generalized (pexiderized) sine functional equation

$$g(x)h(y) = f\left(\frac{x+y}{2}\right)^2 - f\left(\frac{x-y}{2}\right)^2.$$

© 2006 Elsevier Inc. All rights reserved.

Keywords: Stability; Superstability; Functional equation; Sine functional equation

1. Introduction

In 1940, the stability problem raised by S.M. Ulam [11] was solved in the case of the additive mapping by Hyers [7] in the next year.

J. Baker, J. Lawrence and F. Zorzitto in [4] introduced that if f satisfies the stability inequality $|E_1(f) - E_2(f)| \le \varepsilon$, then either f is bounded or $E_1(f) = E_2(f)$. This is now frequently referred to as *Superstability*. Baker [3] showed the superstability of the cosine functional equation f(x + y) + f(x - y) = 2f(x)f(y) which is called the d'Alembert functional equation. The stability of the generalized cosine functional equation has been researched in many papers [1,2,6,8–10].

The superstability of the sine functional equation

$$f(x)f(y) = f\left(\frac{x+y}{2}\right)^2 - f\left(\frac{x-y}{2}\right)^2,$$
 (S)

0022-247X/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.09.037

^{*} This work was supported by Kangnam University Research Grant in 2006. *E-mail address:* ghkim@kangnam.ac.kr.

bounded by constant is investigated by P.W. Cholewa [5], and is improved in R. Badora and R. Ger [2].

In this paper, we introduce the pexiderized sine functional equation

$$g(x)h(y) = f\left(\frac{x+y}{2}\right)^2 - f\left(\frac{x-y}{2}\right)^2$$
(S_{gh})

of the sine functional equation (S) and its special cases as follow:

$$g(x)f(y) = f\left(\frac{x+y}{2}\right)^2 - f\left(\frac{x-y}{2}\right)^2,$$
 (S_{gf})

$$f(x)h(y) = f\left(\frac{x+y}{2}\right)^2 - f\left(\frac{x-y}{2}\right)^2,$$
 (S_{fh})

$$g(x)g(y) = f\left(\frac{x+y}{2}\right)^2 - f\left(\frac{x-y}{2}\right)^2,$$
(S_{gg})

in which f, g, h are unknown functions to be determined.

Given the mappings $f, g, h: G \to \mathbb{C}$, we define a difference operator $DS_{gh}: G \to \mathbb{C}$ as

$$DS_{gh}(x, y) := g(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2,$$

which is called the approximate remainder of the functional equation (S_{gh}) and acts as a perturbation of the equation.

The aim of this paper is to investigate the stability problem for the pexiderized sine functional equation (S_{gh}) under the condition $|DS_{gh}(x, y)| \leq \varepsilon$.

Applying h = f, g = f, or h = g = f in the obtained results, we also obtain justly the stability for the sine functional equation (S), the generalized sine functional equations (S_{gf}), (S_{fh}), and (S_{gg}) as corollaries.

In this paper, let (G, +) be a uniquely 2-divisible Abelian group, \mathbb{C} the field of complex numbers, \mathbb{R} the field of real numbers, and \mathbb{N} the field of natural numbers. We may assume that f and g are nonzero functions and ε is a nonnegative real constant. If all results of this article be given by the Kannappan's condition f(x + y + z) = f(x + z + y) in [6], we will get same results on semigroup (G, +).

2. Stability of the equation (S_{gh})

We will investigate the superstability of the pexiderized sine functional equation (S_{gh}) of the sine functional equation (S).

Theorem 1. $f, g, h: G \to \mathbb{C}$ satisfy the inequality

$$\left|g(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right| \le \varepsilon$$
(1)

for all $x, y \in G$. Then either g is bounded or h satisfies (S).

Proof. Let g be unbounded. Then we can choose a sequence $\{x_n\}$ in G such that

$$0 \neq |g(2x_n)| \to \infty, \quad \text{as } n \to \infty.$$
 (2)

Inequality (1) may equivalently be written as

$$\left|g(2x)h(2y) - f(x+y)^2 + f(x-y)^2\right| \leq \varepsilon \quad \forall x, y \in G.$$
(3)

Taking $x = x_n$ in (3) we obtain

$$\left|h(2y) - \frac{f(x_n + y)^2 - f(x_n - y)^2}{g(2x_n)}\right| \leq \frac{\varepsilon}{|g(2x_n)|},$$

that is, using (2)

$$h(2y) = \lim_{n \to \infty} \frac{f(x_n + y)^2 - f(x_n - y)^2}{g(2x_n)} \quad \forall x \in G.$$
 (4)

Using (1) we have

$$2\varepsilon \ge \left| g(2x_n + x)h(y) - f\left(x_n + \frac{x+y}{2}\right)^2 + f\left(x_n + \frac{x-y}{2}\right)^2 \right| + \left| g(2x_n - x)h(y) - f\left(x_n + \frac{-x+y}{2}\right)^2 + f\left(x_n - \frac{x+y}{2}\right)^2 \right| = \left| \left(g(2x_n + x) + g(2x_n - x)\right)h(y) - \left(f\left(x_n + \frac{x+y}{2}\right)^2 - f\left(x_n - \frac{x+y}{2}\right)^2\right) + \left(f\left(x_n + \frac{x-y}{2}\right)^2 - f\left(x_n - \frac{x-y}{2}\right)^2\right) \right|$$

for all $x, y \in G$ and every $n \in \mathbb{N}$. Consequently, we get

$$\frac{2\varepsilon}{|g(2x_n)|} \ge \left| \frac{g(2x_n + x) + g(2x_n - x)}{g(2x_n)} h(y) - \frac{f(x_n + \frac{x+y}{2})^2 - f(x_n - \frac{x+y}{2})^2}{g(2x_n)} + \frac{f(x_n + \frac{x-y}{2})^2 - f(x_n - \frac{x-y}{2})^2}{g(2x_n)} \right|$$

for all $x, y \in G$ and every $n \in \mathbb{N}$. Taking the limit as $n \to \infty$ with the use of (2) and (4), we conclude that, for every $x \in G$, there exists the limit

$$k(x) := \lim_{n \to \infty} \frac{g(2x_n + x) + g(2x_n - x)}{g(2x_n)},$$

where the obtained function $k: G \to \mathbb{C}$ satisfies the equation

$$h(x+y) - h(x-y) = k(x)h(y) \quad \forall x, y \in G.$$
(5)

From the definition of k, we get the equality k(0) = 2, which jointly with (5) implies that h has to be odd. Keeping this in mind, by means of (5), we infer the equality

$$\begin{aligned} h(x+y)^2 - h(x-y)^2 &= \left[h(x+y) + h(x-y)\right] \left[h(x+y) - h(x-y)\right] \\ &= \left[h(x+y) + h(x-y)\right] k(x) h(y) \\ &= \left[h(2x+y) + h(2x-y)\right] h(y) \\ &= \left[h(y+2x) - h(y-2x)\right] h(y) \\ &= k(y) h(2x) h(y). \end{aligned}$$

The oddness of *h* forces it to vanish at 0. Putting x = y in (5) we conclude with the above result that

$$h(2y) = k(y)h(y) \quad \forall y \in G.$$

This, in return, leads to the equation

$$h(x+y)^{2} - h(x-y)^{2} = h(2x)h(2y)$$
(6)

valid for all $x, y \in G$ which, in the light of the unique 2-divisibility of G, states nothing else but (S). \Box

Theorem 2. Suppose that $f, g, h: G \to \mathbb{C}$ satisfy the stability inequality

$$\left|g(x)h(y)-f\left(\frac{x+y}{2}\right)^2+f\left(\frac{x-y}{2}\right)^2\right|\leqslant\varepsilon,$$

which satisfies one of the cases g(0) = 0, $f(x)^2 = f(-x)^2$. Then either h is bounded or g satisfies (S).

Proof. Let *h* be unbounded. Then we can choose a sequence $\{y_n\}$ in *G* such that $h(2y_n)| \to \infty$ as $n \to \infty$. An obvious slight change in the proof steps applied in the start of Theorem 1 gives us

$$g(2x) = \lim_{n \to \infty} \frac{f(x + y_n)^2 - f(x - y_n)^2}{h(2y_n)} \quad \forall x \in G,$$
(7)

and, with an applying of (7), allows one to state the existence of a limit function

$$p(y) := \lim_{n \to \infty} \frac{h(y + 2y_n) + h(-y + 2y_n)}{h(2y_n)}$$

where $p: G \to \mathbb{C}$ obtained in that way has to satisfy the equation

$$g(x)p(y) = g(x+y) + g(x-y) \quad \forall x, y \in G.$$

From the definition of p, it yields an even function. Clearly, so is also the function $\tilde{p} := \frac{1}{2}p$. Moreover, $\tilde{p}(0) = \frac{1}{2}p(0) = 1$ and

$$g(x+y) + g(x-y) = 2g(x)\tilde{p}(y) \quad \forall x, y \in G.$$
(8)

First, let us consider the case g(0) = 0, then it forces by (8) that g is odd. Putting y = x in (8), we get a duplication formula

$$g(2x) = 2g(x)\tilde{p}(x).$$

From (8), the oddness and the duplication of g, we obtain the equation

$$g(x + y)^{2} - g(x - y)^{2} = 2g(x)\tilde{p}(y)[g(x + y) - g(x - y)]$$

= $g(x)[g(x + 2y) - g(x - 2y)]$
= $2g(x)g(2y)\tilde{p}(x)$
= $g(2x)g(2y)$,

that holds true for all $x, y \in G$, which, in the light of the unique 2-divisibility of G, states nothing else but (S).

In the next case $f(x)^2 = f(-x)^2$, it is enough to show that g(0) = 0. Suppose that this is not the case. Then in what follows, without loss of generality, we may assume that g(0) = 1.

Putting x = 0 in (3) which is equivalent to stability inequality (1), and from the above assumption, a given condition and the 2-divisibility of group *G*, we obtain the inequality

 $|h(y)| \leq \varepsilon \quad \forall y \in G.$

This inequality means that h is globally bounded—a contradiction. Thus the claimed g(0) = 0 holds, so the proof of theorem is completed. \Box

Replacing h by f in Theorems 1 and 2, respectively, we obtain the superstability for the generalized functional equation (S_{gf}) of (S) as corollaries.

Corollary 1. Suppose that $f, g: G \to \mathbb{C}$ satisfy the inequality

$$\left|g(x)f(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right| \le \varepsilon$$
(9)

for all $x, y \in G$. Then either g is bounded or f and g satisfy (S).

Proof. The case f is trivial from the Theorem 1.

Next, by showing g = f, we will prove that g also satisfies (S).

If f is bounded, choose $y_0 \in G$ such that $f(2y_0) \neq 0$, then by (9), we have

$$|g(2x)| - \left|\frac{f(x+y_0)^2 - f(x-y_0)^2}{f(2y_0)}\right| \le \left|\frac{f(x+y_0)^2 - f(x-y_0)^2}{f(2y_0)} - g(2x)\right|$$
$$\le \frac{\varepsilon}{|f(2y_0)|},$$

which shows that g is also bounded on G.

Since the unbounded assumption of g implies that f also is unbounded, we can choose a sequence $\{y_n\}$ such that $0 \neq |f(2y_n)| \rightarrow \infty$ as $n \rightarrow \infty$.

A slight change applied after (2) gives us

$$g(2x) = \lim_{n \to \infty} \frac{f(x+y_n)^2 - f(x-y_n)^2}{f(2y_n)} \quad \forall x \in G.$$
 (10)

Since we have shown in (i) that f satisfies (S) whenever g is unbounded, Eq. (10) is represented as

 $g(2x) = f(2x) \quad \forall x \in G.$

By the 2-divisibility of group G, we obtain g = f. Therefore g also satisfies (S). \Box

Corollary 2. Suppose that $f, g: G \to \mathbb{C}$ satisfy the inequality

$$\left|g(x)f(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right| \leq \varepsilon \quad \forall x, y \in G,$$

which satisfies one of the cases g(0) = 0, $f(x)^2 = f(-x)^2$. Then either f is bounded or g satisfies (S).

Secondly, substitute g by f in Theorems 1 and 2, respectively, then we obtain the superstability for the generalized functional equation (S_{fh}) of (S) as corollaries.

Corollary 3. Suppose that $f, h: G \to \mathbb{C}$ satisfy the inequality

$$\left|f(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right| \le \varepsilon \quad \forall x, y \in G.$$

Then either f is bounded or h satisfies (S).

Corollary 4. Suppose that $f, g: G \to \mathbb{C}$ satisfy the inequality

$$\left|f(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right| \le \varepsilon \quad \forall x, y \in G.$$

Then:

- (i) under the one of the cases f(0) = 0 and $f(x)^2 = f(-x)^2$, either h is bounded or f satisfies (S);
- (ii) either h is bounded or h satisfies (S).

Proof. The case (i) is trivial from Theorem 2.

(ii) As the proof of Corollary 1, we can see easily that h is bounded whenever f is bounded. Namely, the unboundedness of h implies that of f. Hence it is completed by Corollary 3 that h satisfies (S). \Box

Thirdly, replacing h by g in Theorem 1 or Theorem 2, we obtain the superstability for the generalized functional equation (S_{gg}) of (S) as corollaries.

Corollary 5. Suppose that $f, g: G \to \mathbb{C}$ satisfy the inequality

$$\left|g(x)g(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right| \leq \varepsilon \quad \forall x, y \in G.$$

Then either g is bounded or g satisfies (S).

Lastly, consider the case g = f in Corollary 5, namely, put g = h = f in Theorems 1 and 2. Then we obtain the superstability of the sine functional equation (S) which is found in Cholewa [5].

Corollary 6. [5, Theorem] Suppose that $f, g: G \to \mathbb{C}$ satisfy the inequality

$$\left|f(x)f(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right| \leq \varepsilon$$

for all $x, y \in G$. Then either f is bounded or f satisfies (S).

3. Application to the Banach algebra

Let us consider the functions into the Banach algebra, then we can obtain the same results as in Section 2 for each functional equations (S_{gh}) , (S_{gf}) , (S_{fh}) , (S_{gg}) , and (S). To simplify, we will combine two theorems into one.

Theorem 3. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g, h: G \to E$ satisfy the inequality

$$\left\|g(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right\| \leqslant \varepsilon \quad \forall x, y \in G.$$
(11)

For an arbitrary linear multiplicative functional $x^* \in E^*$,

- (i) if the superposition $x^* \circ g$ fails to be bounded, then h satisfies (S),
- (ii) if the superposition $x^* \circ h$ under the case g(0) = 0 or $f(x)^2 = f(-x)^2$ fails to be bounded, then g satisfies (S).

Proof. The proofs of each case are very similar, so it suffices to show the proof of (i). Assume (i) and fix arbitrarily a linear multiplicative functional $x^* \in E^*$. As well known we have $||x^*|| = 1$ hence, for every $x, y \in G$, we have

$$\begin{split} \varepsilon &\geq \left\| g(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2 \right\| \\ &= \sup_{\|y^*\|=1} \left| y^* \left(g(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2 \right) \right| \\ &\geq \left| x^* \left(g(x)\right) \cdot x^* \left(h(y)\right) - x^* \left(f\left(\frac{x+y}{2}\right)^2 \right) + x^* \left(f\left(\frac{x-y}{2}\right)^2 \right) \right|, \end{split}$$

which states that the superpositions $x^* \circ g$ and $x^* \circ h$ yield a solution of stability inequality (1) of Theorem 1. Since, by assumption, the superposition $x^* \circ g$ is unbounded an appeal to Theorem 1 shows that the superposition $x^* \circ h$ solves Eq. (S). In other words, bearing the linear multiplicativity of x^* in mind, for all $x, y \in G$, the sine difference S(x, y) for the function h falls into the kernel of x^* . Therefore, in view of the unrestricted choice of x^* , we infer that

$$S(x, y) \in \bigcap \{ \ker x^* : x^* \text{ is a multiplicative member of } E^* \}$$

for all $x, y \in G$. Since the algebra *E* has been assumed to be semisimple, the last term of the above formula coincides with the singleton $\{0\}$, i.e.

$$h(x)h(y) - h\left(\frac{x+y}{2}\right)^2 + h\left(\frac{x-y}{2}\right)^2 = 0 \quad \text{for all } x, y \in G,$$

as claimed. The case (ii) runs the same procedure. \Box

As in Section 2, let us consider the each case h = f, g = f, h = g, g = h = f in the inequality (11) of Theorem 3, respectively, then we can obtain the same results as in Section 2 for each functional equation.

Corollary 7. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g: G \to E$ satisfy the inequality

$$\left\|g(x)f(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right\| \leq \varepsilon \quad \forall x, y \in G.$$

For an arbitrary linear multiplicative functional $x^* \in E^*$ *,*

- (i) if the superposition $x^* \circ g$ fails to be bounded, then f satisfies (S),
- (ii) if the superposition $x^* \circ f$ under the case g(0) = 0 or $f(x)^2 = f(-x)^2$ fails to be bounded, then g satisfies (S).

Corollary 8. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, h: G \to E$ satisfy the inequality

$$\left\|f(x)h(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right\| \leq \varepsilon \quad \forall x, y \in G.$$

For an arbitrary linear multiplicative functional $x^* \in E^*$,

- (i) if the superposition $x^* \circ f$ fails to be bounded, then h satisfies (S),
- (ii) if the superposition $x^* \circ h$ under the case f(0) = 0 or $f(x)^2 = f(-x)^2$ fails to be bounded, then f and h satisfy (S).

Proof. The case (i) and f of (ii) are trivial from Theorem 3.

For the case *h*, it follows from (ii) of Corollary 4 that *h* satisfies (S). \Box

Corollary 9. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g: G \to E$ satisfy the inequality

$$\left\|g(x)g(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right\| \leq \varepsilon \quad \forall x, y \in G.$$

Then, for an arbitrary linear multiplicative functional $x^* \in E^*$, either the superposition $x^* \circ g$ is bounded or g satisfies (S).

Corollary 10. Let $(E, \|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f: G \to E$ satisfies the inequality

$$\left\|f(x)f(y) - f\left(\frac{x+y}{2}\right)^2 + f\left(\frac{x-y}{2}\right)^2\right\| \leq \varepsilon \quad \forall x, y \in G.$$

Then, for an arbitrary linear multiplicative functional $x^* \in E^*$, either the superposition $x^* \circ f$ is bounded or f satisfies (S).

Remark. If the operation of a group G is multiplication, then the investigated equations (S_{gh}) , (S_{gf}) , (S_{fh}) , (S_{gg}) , and (S) are represented by

$$g(2x)h(2y) = f(xy)^{2} - f(xy^{-1})^{2},$$

$$g(2x)f(2y) = f(xy)^{2} - f(xy^{-1})^{2},$$

$$f(2x)h(2y) = f(xy)^{2} - f(xy^{-1})^{2},$$

$$g(2x)g(2y) = f(xy)^{2} - f(xy^{-1})^{2},$$

$$f(2x)f(2y) = f(xy)^{2} - f(xy^{-1})^{2}.$$

Hence we can obtain the superstability for the above functional equations on a group (G, \cdot) with multiplication.

Acknowledgment

The author thanks the referee for valuable comment.

References

- [1] R. Badora, On the stability of cosine functional equation, Rocznik Nauk.-Dydakt. Prace Mat. 15 (1998) 1–14.
- [2] R. Badora, R. Ger, On some trigonometric functional inequalities, in: Functional Equations—Results and Advances, Kluwer Academic, Netherlands, 2002, pp. 3–15.
- [3] J.A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980) 411-416.
- [4] J. Baker, J. Lawrence, F. Zorzitto, The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979) 242–246.
- [5] P.W. Cholewa, The stability of the sine equation, Proc. Amer. Math. Soc. 88 (1983) 631-634.
- [6] P.D.P. Friis, d'Alembert's and Wilson's equations on Lie groups, Aequationes Math. 67 (2004) 12-25.
- [7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222-224.
- [8] Pl. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968) 69–74.
- [9] Pl. Kannappan, G.H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Paedagogicae Cracoviensis—Studia Math. 1 (2001) 49–58.
- [10] G.H. Kim, S.H. Lee, Stability of the d'Alembert type functional equations, Nonlinear Funct. Anal. Appl. 9 (2004) 593–604.
- [11] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.