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We obtain BPS configurations of the BLG theory and its variant including mass terms for scalars 
and fermions in addition to a background field with different world-volume and R-symmetries. Three 
cases are considered, with world-volume symmetries SO(1,1) and SO(2) and preserving different 
amounts of supersymmetry. In the former case we obtain a singular configuration preserving N = (3,3)

supersymmetry and an one-quarter BPS configuration corresponding to intersecting M2-M5-M5-branes. 
In the latter instance the BPS equations are reduced to those in the self-dual Chern–Simons theory with 
two complex scalars. In want of an exact solution, we find a topological vortex solution numerically in 
this case. Other solutions are given by combinations of domain walls.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The Bagger–Lambert–Gustavsson (BLG) theory [1–5] is an N = 8,
supersymmetric Chern–Simons type gauge theory based on a
ternary gauge algebra coupled to matter in (2 + 1)-dimensions
with SO(8) R-symmetry. The theory is deemed to have Osp(8|4)

superconformal symmetry based on strong evidences [6] and is 
thus a candidate for a world-volume theory of M2-branes. It con-
tains eight scalar fields interpreted as eight directions transverse to 
the world-volume of M2-branes in M-theory and eight correspond-
ing fermions in addition to a gauge field. Imposing complete an-
tisymmetry of the structure constant of the ternary gauge algebra 
along with the closure of the supersymmetry algebra constrains 
the gauge group to be SO(4). The theory has a sixteen-dimensional 
moduli space lending itself to the interpretation as a theory of two 
M2-branes [7–9]. Various aspects and variants of the BLG theory 
have been considered [10–21].

In this Letter we shall be concerned with BPS configurations 
in the BLG theory and a particular modification of it. This entails 
the inclusion of mass terms for the scalars and the fermion and 
a flux term [20]. BPS states of the BLG theory have been classi-
fied [22] according to world-volume symmetries, namely, SO(1,2), 
SO(1,1) and SO(2). A BPS configuration of the modified theory 
with SO(1,2) world-volume symmetry and SO(4) R-symmetry has 
been studied earlier [9]. In this Letter we study BPS configura-
tions in three cases with SO(1,1) and SO(2) world-volume symme-
tries. We consider BPS configurations in the BLG theory preserv-
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ing N = (3,3) supersymmetry with SO(1,1) world-volume sym-
metry and SO(3) × SO(3) × SO(2) R-symmetry and obtain a so-
lution to the BPS equations. The solution has scalars diverging 
at a finite distance of a world-volume coordinate. We then con-
sider the deformed variant with SO(1,1) world-volume symmetry 
and SO(4)×SO(4) R-symmetry preserving N = (4,0) supersymme-
try. Finally we deal with an N = 4 BPS configuration with SO(2)

world-volume symmetry and SU(2) × SO(4) R-symmetry. In the
former case we obtain a configuration which may be interpreted 
as a system of intersecting M2-M5-M5-branes, following the pop-
ular interpretation of the BLG theory. The other solutions turn out 
to be combination of domain walls interpolating between pairs 
of classical vacua. In the latter case the problem, upon choosing 
an appropriate ansatz, is mapped to the self-dual U (1)2 Chern– 
Simons theory with two complex scalar fields. This problem has 
been studied earlier [27–29]. In want of an analytic solution to the 
BPS equations we present a numerical one corresponding to a sin-
gle vortex. In considering these examples we find that casting the 
BPS equations in terms of gauge-invariant variables used earlier [9] 
furnishes a useful guideline for the choice of ansätze for scalars in 
the BPS equations.

The Letter is organized as follows. In the following section we 
recall some aspects of the modified BLG theory. In Section 3 we 
obtain solution to the BPS configurations with SO(1,1) symmetry 
in the world-volume and SO(3) × SO(3) × SO(2) R-symmetry. In
Section 4 we discuss the SO(1,1)-invariant BPS configuration with 
SO(4) × SO(4) R-symmetry and its domain-wall solution. In Sec-
tion 5 we proceed to discuss the SO(2)-invariant BPS configuration 
having SU(2) × SO(4) R-symmetry, map it to the Chern–Simons
theory with two complex scalars and present a numerical solution 
for an Abelian topological vortex, before concluding in Section 6.
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2. BLG theory

Let us begin with a brief description of the BLG theory and its
deformation by a background four-form field. The modified BLG
theory is an N = 8 supersymmetric theory in (2 + 1)-dimensions,
given by the Lagrangian

L = LBLG + Lmass + Lflux, (1)

where the first term

LBLG = −1

2
Tr

(
Dμ X I)(Dμ X I) + Tr

i

2
Ψγ μDμΨ

+ i

4
TrΨ ΓI J

〈
X I , X J ,Ψ

〉 − 1

12
Tr

〈
X I , X J , X K 〉2

+ 1

2
εμνλ

(
f abcd Aμab∂ν Aλcd

+ 2

3
f cda

g f ef gb Aμab Aνcd Aλef

)
(2)

is the original BLG Lagrangian. Here μ = 0,1,2 designates the
world-volume directions, I = 1, . . . ,8 indexes the flavors and a =
1,2,3,4 the gauge algebra. X I

a , Ψa and Aμab are the scalars, the
Majorana–Weyl spinor and the gauge field, respectively. The three-
and eight-dimensional gamma matrices are denoted γ and Γ , re-
spectively. The ternary bracket of the gauge algebra is denoted as
〈,,〉, while its structure constants are denoted by f abcd . Repeated
indices are summed over in the above expression and in the fol-
lowing unless stated otherwise. Denoting the generators of the
ternary algebra as τa , the metric tensor raising and lowering gauge
indices is written as

hab = Trτaτb. (3)

We use the generators to write the fields valued in the ternary
algebra as

X I = hab X I
aτb, (4)

Ψ = habΨaτb. (5)

Here Dμ denotes the covariant derivative,

Dμ X I
a = ∂μ X I

a − Ãμ
b
a X I

b. (6)

In the presence of a four-form field G I J K L the BLG Lagrangian
is augmented by a mass term

Lmass = −1

2
m2δ I J Tr

(
X I X J ) + c Tr

(
Ψ Γ I J K LΨ

)
G̃ I J K L (7)

and a flux term

Lflux = −cG̃ I J K L Tr
(

X I 〈X J , X K , X L 〉). (8)

The four-form field satisfies a self-duality condition

G̃ I J K L = G I J K L, (9)

where the dual of the four-form field G is defined as

G̃ I J K L = 1

4!εI J K L P Q R S G P Q R S . (10)

The mass m is determined by the four-form field as m2 = c2

768 G2,
with G2 = G I J K L G I J K L and c is a parameter which is found to be
equal to 2 [20]. Thus the BLG theory is recovered in the limit of
vanishing c.

The action corresponding to the Lagrangian (2) is under the su-
persymmetry transformations [20]
δX I = iθΓ IΨ, (11)

δΨ = γ μΓ I Dμ X Iθ − 1

6
Γ I J K 〈

X I , X J , X K 〉
θ

+ c

8
Γ I J K LΓ M G̃ I J K L X Mθ, (12)

δAμ(φ) = iθγμΓ I 〈Ψ, X I , φ
〉
, (13)

where φ in the transformation of the gauge field represents either
a X I or Ψ and θ denotes the parameter of supersymmetry varia-
tion, satisfying

Γ 9 = Γ 1...8θ = θ,

γ txyθ = θ. (14)

The supersymmetry transformations close on-shell up to transla-
tion and local gauge transformations if the structure constant of
the ternary algebra is the rank-four antisymmetric tensor, that is,

f abcd = εabcd, (15)

so that the gauge group is SO(4). The scalars and the fermion
transform as vectors of the gauge group SO(4). We thus choose,
for example,

X I =

⎛
⎜⎜⎝

X I
1

X I
2

X I
3

X I
4

⎞
⎟⎟⎠ , (16)

for all I . For future convenience we have set the level of the
Chern–Simons action to be unity, and the metric is taken to be
Euclidean,

hab = δab. (17)

The ternary bracket then reads〈
X I , X J , X K 〉 = εabcd X I

a X J
b X K

c τd. (18)

We shall be concerned with the BPS configurations of the theory
with Lagrangian (1). The BPS equation is obtained by setting the
supersymmetry variation of the fermion to zero, that is

δΨ = 0. (19)

Depending on the subgroup of the R-symmetry as well as the
world-volume symmetry to be maintained, the supersymmetry pa-
rameter θ is restricted by means of a projector, Ω . Thus, the BPS
equations are given by[

Dμ X Iγ μΓ I − 1

6
Γ I J K 〈

X I , X J , X K 〉

+ c

8
Γ I J K LΓ M G̃ I J K L X M

]
Ωθ = 0. (20)

Let us note that only the anti-self-dual combination of the four-
form field appears in the last term on the left hand side, linear
in X . The R-symmetry in this formulation is realized explicitly in
terms of the four-form field as

R I
J = θ2Γ

I K LMθ1G̃ K LM J , (21)

where θ1 and θ2 are two parameters of supersymmetry variation.
The conserved charged under the global SO(8) symmetry of the
BLG theory is given by the R-charge, namely

R I J =
∫

d2x

(
X Ia D0 X J

a − X Ja D0 X I
a + i

2
ψaγ 0Γ I J ψa

)
(22)

where R I J is antisymmetric in I and J . We now proceed to study
certain BPS configurations of the theory discussed above.
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Furthermore, the BPS configurations have to satisfy the Gauss
constraint, namely

Fμν
a
b + εμνλε

cda
b X I

c Dλ X I
d = 0, (23)

where F denotes the field strength corresponding to the gauge
field Ã.

3. BPS configuration with SO(1,1) × SO(3) × SO(3) × SO(2)
symmetry

In this section we present a solution to the BPS equations pre-
serving N = (3,3) supersymmetry in the BLG theory without the
mass and the four-form terms, corresponding to the Lagrangian (2).
The world-volume has SO(1,1) symmetry and the R-symmetry is
SO(3) × SO(3) × SO(2). The equations are [22]

Dt X I = 0, Dx X I = 0, (24)

with

J I J
p D y X J + 1

2
J J K

p
〈
X I , X J , XK

〉 = 0,

J I J
p+3 D y X J − 1

2
J J K

p+3

〈
X I , X J , XK

〉 = 0, (25)

where p = 1,2,3, I, J = 1,2, . . . ,8 and the complex structures J
are defined by

1

2
J I J

1 ΓI J = Γ 12 + Γ 34 + Γ 56 + Γ 78,

1

2
J I J

4 ΓI J = Γ 12 + Γ 43 + Γ 56 + Γ 87,

1

2
J I J

2 ΓI J = Γ 14 + Γ 23 + Γ 58 + Γ 67,

1

2
J I J

5 ΓI J = Γ 17 + Γ 28 + Γ 53 + Γ 64,

1

2
J I J

3 ΓI J = Γ 13 + Γ 42 + Γ 57 + Γ 86,

1

2
J I J

6 ΓI J = Γ 18 + Γ 72 + Γ 54 + Γ 36. (26)

Thus from (25) we have six expressions for each D y X I , for I =
1,2, . . . ,8. Comparing the various expressions for the same D y X I

we obtain a set of relations among the ternary brackets, namely,

〈
X2, X5, X6〉 = 0,

〈
X3, X5, X7〉 = 〈

X4, X5, X8〉,〈
X3, X6, X8〉 = −〈

X4, X6, X7〉,〈
X1, X5, X6〉 = 0,

〈
X4, X6, X8〉 = 〈

X3, X6, X7〉,〈
X4, X5, X7〉 = −〈

X3, X5, X8〉,〈
X4, X7, X8〉 = 0,

〈
X2, X6, X7〉 = 〈

X1, X5, X7〉,〈
X2, X5, X8〉 = −〈

X1, X6, X8〉,〈
X3, X7, X8〉 = 0,

〈
X2, X6, X8〉 = 〈

X1, X5, X8〉,〈
X2, X5, X7〉 = −〈

X1, X6, X7〉,〈
X1, X2, X6〉 = 0,

〈
X1, X4, X8〉 = 〈

X1, X3, X7〉,〈
X2, X4, X7〉 = −〈

X2, X3, X8〉,〈
X1, X2, X6〉 = 0,

〈
X2, X4, X8〉 = 〈

X2, X3, X7〉,〈
X1, X4, X7〉 = −〈

X1, X3, X8〉,〈
X3, X4, X8〉 = 0,

〈
X2, X3, X6〉 = 〈

X1, X3, X5〉,〈
X2, X4, X5〉 = −〈

X1, X4, X6〉,
〈
X3, X4, X7〉 = 0,

〈
X2, X4, X6〉 = 〈

X1, X4, X5〉,〈
X2, X3, X5〉 = −〈

X1, X3, X6〉, (27)〈
X2, X3, X4〉 = 〈

X2, X7, X8〉 = 〈
X4, X5, X8〉 + 〈

X4, X6, X7〉,〈
X1, X3, X4〉 = 〈

X1, X7, X8〉 = −〈
X3, X5, X8〉 − 〈

X3, X6, X7〉,〈
X1, X2, X4〉 = 〈

X4, X5, X6〉 = 〈
X1, X6, X8〉 − 〈

X1, X5, X7〉,〈
X1, X2, X3〉 = 〈

X3, X5, X6〉 = 〈
X1, X5, X8〉 + 〈

X1, X6, X7〉,〈
X3, X4, X6〉 = 〈

X6, X7, X8〉 = 〈
X1, X3, X7〉 + 〈

X2, X3, X8〉,〈
X5, X7, X8〉 = 〈

X3, X4, X4〉 = 〈
X1, X3, X8〉 − 〈

X2, X3, X7〉,〈
X1, X2, X8〉 = 〈

X5, X6, X8〉 = −〈
X1, X4, X6〉 − 〈

X1, X3, X5〉,〈
X1, X2, X7〉 = 〈

X5, X6, X7〉 = 〈
X1, X4, X5〉 − 〈

X1, X3, X6〉, (28)

together with a set of Basu–Harvey equations with respect to the
world-volume coordinate y,

D y X1 = 2
〈
X2, X3, X4〉, D y X2 = −2

〈
X1, X3, X4〉,

D y X3 = 2
〈
X1, X2, X4〉, D y X4 = −2

〈
X1, X2, X3〉,

D y X5 = 2
〈
X3, X4, X6〉, D y X6 = −2

〈
X5, X7, X8〉,

D y X7 = 2
〈
X1, X2, X8〉, D y X8 = −2

〈
X1, X2, X7〉. (29)

It will be useful to first write the BPS equations in terms of gauge-
invariant variables [9]. This furnishes a guideline for the choice of
ansätze for the X ’s. Let us introduce the gauge-invariant fields

Y I J =
4∑

a=1

X Ia X J
a , (30)

where indices are raised or lowered with the Euclidean bilinear
(17). The gauge-invariants satisfy

∂μY I J = X Ia Dμ X J
a + X Ja Dμ X I

a (31)

due to the antisymmetry of the gauge field. Using this and (27)
and (28) we obtain from (29) a set of first-order equations for the
gauge-invariants

∂y Y 11 = −4F1234, ∂y Y 15 = −2F4567 − 2F1238,

∂y Y 16 = −2F4568 + 2F1237,

∂y Y 22 = −4F1234, ∂y Y 25 = −2F1345 − 2F2346,

∂y Y 26 = −2F1346 + 2F2345,

∂y Y 33 = −4F1234, ∂y Y 37 = 2F1247 + 2F1238,

∂y Y 38 = 2F4568 − 2F5678,

∂y Y 44 = −4F1234, ∂y Y 47 = 2F1248, ∂y Y 48 = 2F1247,

∂y Y 55 = −4F3456, ∂y Y 66 = −4F3456,

∂y Y 77 = −4F1278, ∂y Y 88 = −4F1278, (32)

and ∂y Y I J = 0 for all other I , J . So far our analysis has been
completely general. Now Let us assume that the constant Y ’s, not
appearing in (32), are zero. Also, from the above set of first-order
equations we note that it is convenient to choose

Xi = f Si, (33)

where i = 1,2,3,4 and Si are the four mutually orthogonal canon-
ical basis vectors of R4. Then from (32) it is apparent that X5 and
X6 are linear combinations of S1 and S2, while X7 and X8 are lin-
ear combinations of S3 and S4. Using the relations (27) and (28)
we can fix the coefficients of these linear combinations and obtain
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Fig. 1. Plot of f (y) for the N = (3,3) configuration.

Xi = f Si, i = 1,2,3,4,

X5 = f S1 cos θ + f S2 sin θ, X6 = − f S1 sin θ + f S2 cos θ,

X7 = f S3 cos θ + f S4 sin θ, X8 = − f S3 sin θ + f S4 cos θ,

(34)

where f and θ are to be determined from the differential equa-
tions.

From the equation for Y 11, say, we obtain an equation for f ,

∂y f = −2 f 3, (35)

which is solved to obtain

f 2 = 1

c + 4y
, (36)

where c = 2 and we have chosen the integration constant to be
vanishing. Now, comparing the expressions for D y X5, D y X1 and
D y X2, upon using (34), we obtain

∂y log cos θ = 0, (37)

implying that θ is a constant. We have thus fixed the solution (34)
completely. A sketch of the function f (y) is shown in Fig. 1. For
this solution all the scalars diverge at a finite distance in the y di-
rection, namely, y = −1/2. Interpretation of this solution in terms
of M2- and M5-branes is not clear.

4. BPS configurations with SO(1,1) × SO(4) × SO(4) symmetry

In this section we study SO(1,1)-invariant N = (4,0) BPS con-
figurations having SO(4) × SO(4) R-symmetry. The BPS equations
are derived for the modified BLG theory by applying the appropri-
ate BPS projection operator on the supersymmetry variation of the
fermion and equating it to zero by (20). The generic form of the
SO(1,1) BPS projector is given in terms of 32 × 32 gamma matri-
ces as

Ω = 1

16

(
1 + α0γ

tx)(1 − α1α2Γ
1278 + α1α3Γ

1368 − α1Γ
2468

− α3Γ
3478 − α2Γ

5678 + α1α2α3Γ
2358 + α2α3Γ

1458)P
(38)

where α0, α1, α2, α3 are sign factors assuming values ±1 and
γ and Γ designates the gamma matrices defined on the world-
volume and transverse to the world-volume, respectively. The chi-
ral projection operator P is defined in terms of Γ 9 = Γ 12···8 as

P = 1

2

(
1 + Γ 9). (39)

Different choices of the sign factors in (38) give the BPS projec-
tion matrix which correspond to breaking R-symmetry in a cer-
tain manner [22–24]. The projector preserving SO(4) × SO(4) R-
symmetry is obtained by summing the four N = 1 projectors (38)
with the choice of α’s as {+,+,+,+}, {+,+,+,−}, {+,+,−,+},
{+,+,−,−} and is given by

Ω = 1

4

(
1 + γ tx)(1 + Γ 5678)(1 + Γ 9). (40)

By Eq. (14) this operator corresponds to the projections

γ txyθ = θ, γ txΓ 1234θ = θ, γ txΓ 5678θ = θ, (41)

the last one being a dependent one. Applying the projection ma-
trix (40) on (20), we obtain the BPS equations. These comprise of
differential equations namely

(Dt − Dx)X I = 0, (42)

for all I = 1,2, . . . ,8 and a set of modified Basu–Harvey equations,

D y Xi − 1

6
ε i jkl〈X j, Xk, Xl〉 − η1 Xi = 0, (43)

D y X p − 1

6
εpqrs〈Xq, Xr, Xs〉 − η2 X p = 0, (44)

where we have split the flavor indices as i, j,k, l = 1,2,3,4 and
p,q, r, s = 5,6,7,8. Dt , Dx and D y designate the covariant deriva-
tives with respect to the world-volume coordinates (6). Coefficients
of the terms linear in X ’s in Eq. (43) are determined in terms of
the four-form field by η1 = 3cG1234 and η2 = 3cG5678 with c = 2,
as discussed above. We assume η1 and η2 to be positive in the
following.

Our objective here is to find a topological solution to the BPS
equations (42), (43) and (23). First let us write down the BPS
equations in terms of the gauge-invariant variables Y as before.
Multiplying both sides of (43) and (44) with an appropriate X and
taking linear combinations, using (31), we obtain equations for the
gauge-invariants

∂y Y ij − 2η1Y ij = −2δi j F1234,

∂y Y rs − 2η2Y rs = −2δrs F5678,

∂y Y ip − 1

3!
(
εi jkl F jklp − εpqrs Fiqrs

) − (η1 + η2)Y ip = 0 (45)

for i, j = 1, . . . ,4 and r, s = 5,6,7,8, where we defined the gauge-
invariant four-form F I J K L = X I

a X J
b X K

c X L
dεabcd .

Further, using (42) in the Gauss constraint (23) we get

Fxy = Fty, (46)

while using (43) and (44) to eliminate the covariant y-derivatives
in (23) we obtain

Ftx = 0. (47)

The modified Basu–Harvey equations have been solved earlier to
obtain a domain wall and a fuzzy funnel solution [3,25]. Let us
point out that the equations for the scalars are the same for half
and quarter BPS configurations with SO(4) × SO(4) R-symmetry.
The gauge fields satisfy different equations in these two cases,
however. For example, while we have Eq. (42) for the quarter-BPS
configuration, the half-BPS configurations satisfy Dt X I = Dx X I = 0
[22]. Hence, it is important to write down the gauge fields ex-
plicitly, even if in a special gauge. In order to obtain explicit ex-
pressions for gauge field configurations we shall choose simplifying
ansätze. The scalar fields Xi , i = 1,2,3,4, are chosen to be mutu-
ally orthogonal SO(4) vectors, as are X p , p = 5,6,7,8. However, if
we choose the basis vectors to be the constant vectors Si as in the
last section, the gauge fields will remain undetermined. Hence for
the present case we choose a different set of mutually orthogonal
basis vectors and express the scalars as
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X1 = f

⎛
⎜⎝

cosΘ

sinΘ

0
0

⎞
⎟⎠ , X2 = κ f

⎛
⎜⎝

− sinΘ

cosΘ

0
0

⎞
⎟⎠ ,

X3 = f

⎛
⎜⎝

0
0

cosΦ

sinΦ

⎞
⎟⎠ , X4 = f

⎛
⎜⎝

0
0

− sin Φ

cosΦ

⎞
⎟⎠ ,

X5 = g

⎛
⎜⎝

cosΘ

sinΘ

0
0

⎞
⎟⎠ , X6 = κ ′g

⎛
⎜⎝

− sin Θ

cosΘ

0
0

⎞
⎟⎠ ,

X7 = g

⎛
⎜⎝

0
0

cosΦ

sinΦ

⎞
⎟⎠ , X8 = g

⎛
⎜⎝

0
0

− sin Φ

cosΦ

⎞
⎟⎠ , (48)

where κ,κ ′ = ±1. We shall find solutions corresponding to both
signs of κ , κ ′ . The gauge-invariant co-ordinates for this choice are
Y ii = f 2, i = 1,2,3,4, Y pp = g2, p = 5,6,7,8. The gauge field is
chosen to be of the form

Ãμ =

⎛
⎜⎜⎝

0 Ãμ
1
2 0 0

− Ãμ
1
2 0 0 0

0 0 0 Ãμ
3
4

0 0 − Ãμ
3
4 0

⎞
⎟⎟⎠ , (49)

in accordance with the above choice for the scalars, hence breaking
the gauge group SO(4) to SO(2) × SO(2). In Eq. (48) the functions
Θ and Φ correspond to the freedom of gauge choice for the resid-
ual SO(2) × SO(2) subgroup. For future convenience we shall leave
these arbitrary. However, the stress-energy tensor does not depend
on them, as we find later.

We shall first obtain restrictions on f , g , Θ , Φ and then de-
termine the components of the gauge field in terms of them. We
restrict ourselves to stationary solutions. Then all the fields are in-
dependent of time. From (45) we obtain equations for f and g ,
namely

∂y f = η1 f − κ f 3, ∂y g = η2 g − κ ′g3. (50)

We now relate the components of the gauge field to f , g , Θ , Φ .
First, using (48) and the equation for X1 from (43) we obtain, for
the first component,
(
∂y f − η1 f + κ f 3) cosΘ − f

(
Ã y

1
2 − ∂yΘ

)
sinΘ = 0, (51)

and similarly for the first component of the equation for X3 from
(43). Comparing with (50) we obtain

Ã y
1
2 = ∂yΘ, Ã y

3
4 = ∂yΦ. (52)

This demonstrates the utility of the gauge-invariant equations and
justifies keeping Θ and Φ arbitrary in (48). Setting the temporal
derivative to zero in (42) we obtain(

Ãt
b
a − Ãx

b
a

)
X I

b = −∂x X I
a. (53)

Putting a = 1,2, resp. b = 2,1 and using Ãμ
a
b = − Ãμ

b
a and Eqs.

(48), we obtain

∂x f = 0, (54)

that is, f is independent of x. Similarly, from (44) and (50) we
obtain ∂x g = 0. In other words, f and g are functions of y only.
This leads to

Ãt
1
2 − Ãx

1
2 = −∂xΘ, Ãt

3 − Ãx
3 = −∂xΦ. (55)
4 4
Thus the gauge fields are determined in terms of Θ and Φ . Using
(52), (42) and (55), the Gauss constraint (23) yields

∂y Ãt
1
2 = 2

(
f (y)2 + g(y)2) Ãt

3
4,

∂y Ãt
3
4 = 2

(
f (y)2 + g(y)2) Ãt

1
2, (56)

while (47) yields

∂x Ãt
1
2 = 0 = ∂x Ãt

3
4, (57)

so that Ãt is a function of y alone. Now, eliminating the combina-
tion f 2 + g2 between the two equations in (56) we obtain

∂y
((

Ãt
1
2

)2 − (
Ãt

3
4

)2) = 0, (58)

leading to the conclusion that the squares of the components of
the gauge field At may differ by a constant only. By linearly com-
bining Eqs. (56) we can cast them as first order differential equa-
tions for the combinations Ãt

1
2 ± Ãt

3
4 as

∂y
(

Ãt
1
2 ± Ãt

3
4

) = ±2
(

f 2 + g2)( Ãt
1
2 ± Ãt

3
4

)
, (59)

which are solved to obtain

Ãt
1
2 = A0e

∫
( f 2+g2)dy + B0e− ∫

( f 2+g2)dy,

Ãt
3
4 = A0e

∫
( f 2+g2)dy − B0e− ∫

( f 2+g2)dy, (60)

where A0 and B0 are constants. This solution satisfies (58). The
solution to (50) is

f (y) = ±
√

η1a√
e−2η1 y + κa2

, g(y) = ±
√

η2a′
√

e−2η2 y + κ ′a′2 , (61)

where a,a′ are constants of integration.
Different configurations ensue from the choices of κ , κ ′ . By al-

lowing the supersymmetry variation of L to vanish [20], the mass
parameter in the scalar term in Lmass gets related to the four-form
field G̃ I J K L as

Γ I J K L G̃ I J K LΓ
MN O P G̃ MN O P = 32m2

c2

(
1 + Γ 12345678), (62)

resulting in m2 = 9c2G2, where G2 = G1234G1234 = G5678G5678. Us-
ing this value of m and the ansatz for the scalars (48), the scalar
potential obtained from the sextic term in LBLG, the scalar term in
Lmass along with Lflux is

V = − 1

12
Tr

〈
X I , X J , X K 〉2 − 1

2
m2δ I J Tr

(
X I X J )

− cG̃ I J K L Tr
(

X I 〈X J , X K , X L 〉)
= −2 f 2( f 2 − η1

)2 − 2g2(g2 − η2
)2

, (63)

with η1, η2 > 0. The classical vacua are therefore,

V I : f (y) = g(y) = 0;
V II: f (y) = ±√

η1, g(y) = ±√
η2,

V III: f (y) = 0, g(y) = ±√
η2,

V IV : f (y) = ±√
η1, g(y) = 0. (64)

The solution (61) with κ = κ ′ = 1 interpolates between the
vacua V I and V II as y varies from −∞ to ∞. Taking into account
that the solution is independent of x, this is therefore a domain
wall solution. By (60), the temporal component of the gauge field
is
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Ãt
1
2 = A0

√(
1 + a2e2η1 y

)(
1 + a′2e2η2 y

)

+ B0√
(1 + a2e2η1 y)(1 + a′2e2η2 y)

,

Ãt
3
4 = A0

√(
1 + a2e2η1 y

)(
1 + a′2e2η2 y

)

− B0√
(1 + a2e2η1 y)(1 + a′2e2η2 y)

. (65)

However, in order to keep Ãt finite in the whole domain of y, we
have to set A0 to zero. Thus, finally, the two components of Ãt are
given by

Ãt
1
2 = − Ãt

3
4 = B0√

(1 + a2e2η1 y)(1 + a′2e2η2 y)
, (66)

where we have taken the difference of their squares to be vanish-
ing. Having thus obtained Ãt , Ãx and Ã y are determined, up to
gauge transformation, by (55) and (52), respectively. The energy–
momentum tensor is obtained by varying the Lagrangian L with
respect to the world-volume metric,

Tμν = 1

2
Dμ X Ia Dν X I

a − 1

4
gμν

(
Dα X Ia Dα X I

a − V
)
, (67)

where the potential V is given by (63). Energy density of the con-
figuration obtained above is given by Ttt . Plugging in the solutions
for the scalars, (61), and the gauge fields, (52), (55) and (66) in the
expression for Ttt , we obtain the energy density to be

Ttt = 2η1e2η1 y
(

1 + 3η2
1(4 − a2e2η1 y − 1)2

(1 + a2e2η1 y)3

)

+ 2η2e2η2 y
(

1 + 3η2
2(4 − a′2e2η2 y − 1)2

(1 + a′2e2η2 y)3

)
. (68)

For κ = κ ′ = −1, the f and g and hence the gauge invariants
Y ii and Y rr diverge at y = − 1

η1
ln a and y = − 1

η2
ln a′ , respectively.

The corresponding solutions for the gauge fields Ãt
1
2 and Ãt

3
4 are

given by

Ãt
1
2 = C0

√(
1 − a2e2η1 y

)(
1 − a′2e2η2 y

)

+ D0√
(1 − a2e2η1 y)(1 − a′2e2η2 y)

,

Ãt
3
4 = C0

√(
1 − a2e2η1 y

)(
1 − a′2e2η2 y

)

− D0√
(1 − a2e2η1 y)(1 − a′2e2η2 y)

, (69)

where C0 and D0 are constants. In accordance with (41) the so-
lution thus describes an M2-brane ending on two M5-branes with
world-volumes spanning directions 1,2,3,4 and 5,6,7,8, respec-
tively and sharing the directions x and t with the M2-brane [26].
Thus we obtained a quarter-BPS configuration of the mass de-
formed BLG theory given by a bound state of M2-M5-M5-branes.

5. BPS configuration with SO(2) × SU(2) × SO(4) symmetry

In this section we consider N = 4 BPS configurations in the
modified BLG theory with world-volume symmetry SO(2). We find
that upon choosing a certain ansatz the equations for the scalars
reduce to the scalar equations of a self-dual U (1)2 Chern–Simons
theory with two complex scalars. Topological configurations in the
latter case have been investigated in earlier [27–29]. However, no
analytic solution to the equations appears to be known. We shall
consider special cases in which we obtain certain solutions.
As before, to write down the SO(2)-invariant BPS equations we
project the supersymmetry variation of the fermion with the SO(2)

invariant BPS projector. In terms of the 32 × 32 gamma matrices
the projector is

Ω = 1

8

(
1 + α1γ

xyΓ 12)(1 + α2γ
xyΓ 12)(1 + α3γ

xyΓ 12)P (70)

where α1, α2 and α3 are sign factors ±1 and P denotes the chiral
projection matrix as before (39). We shall consider the situation in
which the R-symmetry is broken to SU(2) × SO(4). The projector
(70) assumes the form

Ω = 1

4

(
1 + γ xy(Γ 12 + Γ 34) − Γ 1234)P (71)

corresponding to the choice of the α’s as {+,+,+}, {+,+,−}. The
projector corresponds to

γ xyΓ 12θ = γ xyΓ 34θ = θ, (72)

or, equivalently, Γ 1234θ = −θ . For simplicity, we set the four
scalars X5, X6, X7, X8 to zero and write the BPS equations for the
non-zero fields only. This reduction in the flavor degrees of free-
dom breaks the R-symmetry further to SU(2). The BPS equations
in terms of the non-vanishing scalars, X I , I = 1,2,3,4, are

Dx X1 + D y X2 = 0, Dx X2 − D y X1 = 0,

Dx X3 + D y X4 = 0, Dx X4 − D y X3 = 0, (73)

along with

Dt X1 + 〈
X1, X3, X4〉 + η1 X2 = 0,

Dt X2 + 〈
X2, X3, X4〉 − η1 X1 = 0,

Dt X3 + 〈
X3, X1, X2〉 + η1 X4 = 0,

Dt X4 + 〈
X4, X1, X2〉 − η1 X3 = 0. (74)

Using (31) these can be written in terms of the gauge-invariant
variables Y . From (74) we obtain

∂t Y 11 + 2η1Y 12 = 0, ∂t Y 22 − 2η1Y 12 = 0,

∂t Y 33 + 2η1Y 34 = 0, ∂t Y 44 − 2η1Y 34 = 0 (75)

and

∂t Y 12 + η1
(
Y 22 − Y 11) = 0, ∂t Y 13 + η1

(
Y 23 + Y 14) = 0,

∂t Y 14 + η1
(
Y 24 − Y 13) = 0, ∂t Y 23 + η1

(
Y 24 − Y 13) = 0,

∂t Y 24 − η1
(
Y 14 + Y 23) = 0, ∂t Y 34 + η1

(
Y 44 − Y 33) = 0.

(76)

These gauge-invariant equations provide restrictions on the choice
of ansatz for the scalar fields. For stationary configurations the
time derivatives are set to zero and these equations yield rela-
tions between the Y ’s. In particular, they imply that Y 12 = Y 34 = 0,
meaning, X1, X2 are mutually orthogonal, as are X3, X4. They also
require Y 11 = Y 22 and Y 33 = Y 44. An ansatz satisfying these rela-
tions compatible with the remaining SU(2) R-symmetry is

X1 =
⎛
⎜⎝

f1
f2
0
0

⎞
⎟⎠ , X2 =

⎛
⎜⎝

f2
− f1

0
0

⎞
⎟⎠ ,

X3 =
⎛
⎜⎝

0
0
g1

⎞
⎟⎠ , X4 =

⎛
⎜⎝

0
0
g2

⎞
⎟⎠ . (77)
g2 −g1
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For this choice for this ansatz the gauge group breaks down to
U (1)2. We retain the ansatz (49) for the gauge field Ãμ . Let us
introduce complex combinations,

z = x + iy, φ = f1 + i f2, χ = g1 + ig2,

Ãz
a
b = Ãx

a
b − i Ã y

a
b. (78)

We also define Az = Ãz
1
2 and Bz = Ãz

3
4 for the spatial components

of the gauge field and At = Ãt
1
2 and Bt = Ãt

3
4 for the temporal

parts. The gauge-invariant variables are, then

Y 11 = Y 22 = |φ|2, Y 33 = Y 44 = |χ |2,
Y I J = 0 for I �= J . (79)

In terms of these complex quantities the BPS equations (73) are
written as

Dzφ = ∂zφ + i Azφ = 0,

Dzχ = ∂zχ + iBzχ = 0, (80)

which can be solved to express the gauge fields to be expressed as
in terms of the scalars as

Az = i∂z ln φ, Bz = i∂z lnχ. (81)

Similarly, assuming stationarity Eqs. (74) relate the temporal part
of the gauge field to the complex scalars φ and χ , namely,

At = η1 − |χ |2, Bt = η1 − |φ|2. (82)

Using (81) and (82) we can now rewrite the action (2) and the
Gauss constraint (23) in terms of the complex scalars φ and χ .
The Lagrangian reads

L = −2
(|∂zφ|2 − |∂zχ |2 + 2|χ |2(η1 − |φ|2)2

+ 2|φ|2(η1 − |χ |2)2)
, (83)

while the Gauss constraint leads to two differential equations for
the scalars, namely,

∇2 ln |φ|2 − 2|χ |2(|φ|2 − η1
) = 0,

∇2 ln |χ |2 − 2|φ|2(|χ |2 − η1
) = 0, (84)

where ∇2 = ∂z∂z . Defining rescaled fields

φ̃ = φ/
√

η1, χ̃ = χ/
√

η1, (85)

these two equations take the form

∇2 ln |φ̃|2 + λ
(
1 − |φ̃|2)|χ̃ |2 = 0,

∇2 ln |χ̃ |2 + λ
(
1 − |χ̃ |2)|φ̃|2 = 0, (86)

where λ = 2η2
1 . These coupled elliptic partial differential equations

have been studied in the context of U (1)2 self-dual Chern–Simons
theory with two complex scalar fields [27,28]. In particular, exis-
tence of topological vortex solutions, characterized by the bound-
ary conditions

˜|φ| → 1, |χ̃ | → 1,

as |z| → ∞, have been established [27]. For a single vortex at the
origin, the solution is also proved to be unique [28]. However, no
explicit analytic construction of vortex solutions seem to exist in
literature. The conserved R-charges for the SO(2) × SU(2) BPS con-
figuration are given by
R12 =
∫

d2x |φ|2(η1 − |χ |2),
R34 =

∫
d2x |χ |2(η1 − |φ|2), (87)

while the total energy of the configuration is given by

E = 1

4

∫
d2x

(|∂zφ|2 + |∂zχ |2 + 4
(
η1 − |χ |2)2|φ|2

+ 4
(
η1 − |φ|2)2|χ |2). (88)

5.1. A special case

Let us consider the special case of the BLG theory without
the four-form field, corresponding to the Lagrangian LBLG. Putting
η1 = 0 in (84) we obtain the Gauss constraint equations for this
case as

∇2 ln |φ|2 − 2|χ |2|φ|2 = 0,

∇2 ln |χ |2 − 2|φ|2|χ |2 = 0. (89)

Subtracting these we obtain

∇2 ln
|φ|
|χ | = 0. (90)

Adding Eqs. (89), on the other hand, we obtain a Liouville-like
equation for ρ = |φχ |2, namely

∇2 lnρ = 4ρ, (91)

which is solved by

ρ = 1

2

∣∣∣∣ dξ/dz

1 − |ξ(z)|2
∣∣∣∣
2

, (92)

where ξ(z) is an analytic function of z. From (90) and (92) we
conclude that both |φ|2 and |χ |2 are proportional to | dξ/dz

1−|ξ(z)|2 |,
modulo analytic functions. Thus, |φ|2, |χ |2, hence Y II , I = 1,2,3,4,
are singular on the curve ξ(z) = 1. Given a ξ , this corresponds
to two M2-brane spikes extended along 1–2 and 3–4 directions
corresponding to the two U (1) factors of the gauge group on the
original M2-brane of the BLG theory lying on the z-plane [26].

5.2. Numerical solution

While general closed form solutions to (86) are not known, we
can solve the equations numerically. Here we present a numeri-
cal solution for the simplest case of a single vortex. Uniqueness of
the solution for this case has been established earlier [28]. Using
the SO(2) world-volume symmetry of the BPS configuration let us
now write z = reiθ and drop the θ -dependence of all the functions.
Writing |φ|2 = eρ(r) and |χ |2 = eσ(r) Eqs. (86) become

ρ ′′(r) + 1

r
ρ ′(r) + 2eσ (r)(η1 − eρ(r)) = 0,

σ ′′(r) + 1

r
σ ′(r) + 2eρ(r)(η1 − eσ (r)) = 0, (93)

where a prime denotes a derivative with respect to r. To solve
these equations numerically to obtain vortex solutions we have to
impose two boundary conditions on each of ρ and σ . The first
set of asymptotic boundary conditions are chosen as ρ(r) → 0
and σ(r) → 0 as r → ∞. The second set of boundary conditions
arise from the quantization of magnetic fluxes corresponding to
the gauge fields Az and Bz , namely,

∫
dz ∧ dz F zz = 2π N1 and
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Fig. 2. Plot of |φ(r)| and Aθ with η1 = 1.
∫
dz ∧ dz F ′

zz = 2π N2, where N1 and N2 are integers represent-
ing vorticity. In the limit r → ∞ the flux quantization conditions
written in terms of ρ(r) and σ(r) require
∣∣ρ ′(r)

∣∣
r→∞ = N1

r
,

∣∣σ ′(r)
∣∣
r→∞ = N2

r
. (94)

Solutions for ρ and σ can now be obtained numerically. A plot of
|φ|2 and the corresponding gauge field Aθ (in polar coordinates) is
shown in Fig. 2 with unit vorticity for both vortices and η1 = 1.
The plots of |χ | and Br are similar.

6. Summary

To summarize, we have studied BPS configurations of the BLG
theory with and without the mass and four-form deformations. We
considered three cases of interest. In the first case the solution
with world-volume symmetry SO(1,1) preserving N = (3,3) su-
persymmetry in the absence of any deformation has eight scalars
which blow up at a finite value of the world-volume coordinate y.
We then considered a quarter BPS configuration with SO(4)×SO(4)

R-symmetry. In this case there are two types of solutions. One
of them is a pair of domain walls each extending along four
directions in agreement with the R-symmetry. The other solu-
tion features the M2-brane merging into two M5-branes at a fi-
nite distance in y, the latter intersecting along the x direction.
This has been interpreted as a system of intersecting M2-M5-
M5-branes [30]. Finally we considered a configuration with SO(2)

symmetry in the world-volume and SU(2) × SO(4) R-symmetry.
We chose to turn off the four scalar corresponding to the SO(4).
By choosing an appropriate ansatz for the scalars and the gauge
field, the system maps into the self-dual U (1)2 Chern–Simons the-
ory with two complex scalars. Existence of vortex solutions to
these equations has been established earlier. We presented a so-
lution for the special case with no deformation, giving rise to a
Liouville-like equation. We also presented a numerical solution for
the single topological vortex, which is known to be unique. In deal-
ing with the system of BPS equations we found that expressing
them in terms of the gauge-invariant variables introduced earlier
[9] appears to be of immense help in the choice of ansätze for
the solutions in all cases. Other cases in the classification of BPS
configurations of the BLG theory may also be considered in a sim-
ilar fashion. However, the solutions for those are given either by
constant scalars or combinations of domain walls or the singular
solutions of Section 3.
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