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1. Introduction

Inrecent years considerable interest has been shown in moment problems, orthogonal polynomials,

continued fractions and quadrature formulas corresponding to matrix measures on the real line or on
the unit circle. Early work dates back to [15], while more recent results on matrix measures on the real
line can be found in the papers of [21,7,8,3] among many others. Additionally, several authors have
discussed matrix measures on the unit circle (see [4,11,17,22,23,27,28,1]).

The purpose of the present paper is to investigate some geometric properties of the moment space
corresponding to matrix measures on the unit circle. In Section 2 we present a characterization of
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the moment space in terms of nonnegative definiteness of block Toeplitz matrices. We also provide a
geometric definition of canonical moments of matrix measures on the unit circle, which generalizes the
scalar case discussed by [5] in a nontrivial way. In Section 3 an explicit determinantal representation of
orthogonal matrix polynomials with respect to matrix measures on the unit circle is presented, which
generalizes the classical representation in the one-dimensional case (see e.g. [13]). These results are
used to identify the canonical moments as Verblunsky coefficients, which appear in the Szeg6 relations
for the corresponding orthonormal and reversed matrix polynomials (see [4,23] or [2]). In particular
our results provide a geometric definition of Verblunsky coefficients corresponding to matrix measures
on the unit circle. Roughly speaking, the Verblunsky coefficient of order m can be characterized as the
distance of the mth trigonometric moment to a center of a matrix disk relative to the diameter of
this disk (see Section 3 for more details). Finally, in Section 4 these results are used to present an
alternative proof of the Geronimus relations for monic orthogonal polynomials, which describe the
relation between the coefficients in the three-term recursive relation of orthogonal polynomials with
respect to a matrix measure on a compact interval and the coefficients in the Szeg6 recursion of an
associated matrix measure on the unit circle.

2. The moment space of matrix measure on the unit circle

A matrix measure p on the unit circle is defined asap x p matrix of complex valued Borel measures
= (ij)ij=1,...p on the unit circle 9D = {z € C| |z| = 1} such that for each Borel set A C 0D the
matrix w (A) is nonnegative definite, i.e. i (A) > 0. Throughout this paper we use the usual parametriza-
tionz =€, 0 [—, ) and the notation 1 (0) for the sake of simplicity. The kth moment of a matrix
measure (. on the unit circle is defined by

s .
I = M) = / 4u©0) = ay + i, keZ 21)
—IT

where o = () = [T, cos (kO)du(®), Bk = Br(w) /7, sin (kO)du(®) (k=0,1,...) are the
trigonometric moments and the dependence on the given measure  is omitted in the notation, when-
ever it is clear from the context. Throughout this paperletm € Ng A(u) = (xo, @1, B1, .. ., Om, Bm) €
(CP*P)2m+1 denote the vector of trigonometric moments of order m and define

Moms1 = {A(u)| is a matrix measure on D} C (CP*P)2m+1 (2.2)

as the (2m + 1)th moment space of matrix measures on the unit circle. The set My;;,+1 and its interior
Int (M2m41) can be characterized as follows.

Theorem 2.1. A = (xg, @1, B1, - - -, &m, Bm) € Mam41 if and only if

m m
YD trace(BB{I;_j)>0 forallBy,..., By € CPP, (2.3)
i=0j=0

where the matrices I'_p, I'_m+1, - . ., I'm are defined in (2.1).

A= (o, a1, B1, - - -, 0, Bm) € Int(Mamy1) if and only if there is strict inequality in (2.3) except if
BO:...:BmIO_

Proof. We start with a proof of the first part. Assume that A € Myp4+1 and consider matrices By, . . .,
B, € CP*P, With the notation

m
B©O) = > Bke™ (6 € [~m, 7)) (2.4)
k=0
it follows that the polynomial P(6) = B(6)(B(6))* is obviously nonnegative definite, i.e.
P(#) = B(O)(B(H))* >0 foralld € [—m, ). (2.5)

A straightforward calculation shows that the polynomial P can be represented as
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m
P(0) = Do + Y _ (D cos (k&) + Ei sin (k6)), (2.6)
k=1
where the hermitian p x p matrices Dy, ...,Dp, E1,...,Ey are defined by Dy = Ag, and for k =
1,...,m

Dy =Ax+A_k, Ep=i(Ax —A_y)

and
m—k
A=Y BB and A_; = A}
=0

Because it is easy to see that the moment space My, is the convex hull of the set
{(ad™, cos (9)aa*, sin (§)aa™, . .., cos (mh)aa*, sin (mP)aa*) |a € CP, 6 € [—m, 7)},

a similar argument as in Corollary 2.2 of [6] now shows that (2.5) and (2.6) imply

m
0 < trace(Doap) + Z(trace(Dkak) + trace(ExBr))
k=1

k=1

= trace / d(Dou(0)) + Z (f cos (k6)d (D (0)) + f sin (k@)d(Eku(G))))

= trace / i eiked(Ale(G)))

T

m—k m m—k
= trace / Z e*fd (Z Bit1Bf ,u(@)) / Z e kg (Z B[B;‘:_H/,L(Q)))
T k=1 1=0

T k=0

= trace Z 2/ el D94 (B, B M(Q)))
—01=0
=2

which proves (2.3). On the other hand assume that the inequality (2.3) is satisfied for all matrices

race(BkB;k 1-)(—1)'

ng

By, ..., B, € CP*P and consider a nonnegative definite matrix polynomial
m
P(0) = Dg + Z(Dk cos (kO) + Ei sin (k6)) >0 forall® € [—m, ), (2.7)
k=1
with hermitian matrices Dy, ..., Dm, E1, . . ., En € CP*P_ It now follows from [16] that there exists a

matrix polynomial

m
B(e) — Z Bkelkg,

k=0

such that P(6) = B(6)(B(9))*, and the same calculation as in the first part of the proof yields

m m m
trace(Doag) + Z(trace(Dkak) + trace(ExBr)) = Z Z trace(B,-B;‘F,-_j) >0.
k=1 i=0,j=0

By similar arguments as in Lemma 2.3 of [6] it follows that this is sufficient for A € Myp1.
Finally, the second part of the Theorem is shown similarly observing the fact that (g, a1, B1, . . ., &m,
Bm) € Int (Mzm+1) if and only if
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m
trace(Doog) + Z (trace(Dyory) + trace(ExfBr)) > 0
k=1
for any nonnegative definite polynomial P(6) of the form (2.6) with P(8) # Oforall@ € [—m, 7). This
characterization can be shown by the same arguments as presented in [6] who proved a corresponding
statement for the moment space of matrix measures on the interval [0, 1]. [

Throughout this paper let

Iy ceo Ty
Tm = Tm(p) = . .. - | e gpm+Dxpim+1) (2.8)

Im - I
denote the block Toeplitz matrix, where the blocks I7 = Ii(u) (i = —m, ..., m) are the moments

of a matrix measure p on the unit circle defined by (2.1) (note that Ty, is hermitian). The following
characterization of the moment space Mj;;+1 by nonnegative definiteness of Toeplitz matrices is now
easily obtained.

Corollary 2.2. Assume that > = (cg, o1, B1, - - ., &m, Bm) € (CP*P)2™+1 and that Ty, is defined by (2.8)
with I, = oy + 1By and I'_y = a — ifx. Then

(a) A € Mo ifand only if T, >0,
(b) A € Int(Mam+1) ifand only if Ty, > 0.

Proof. We only proof part (a); part (b) is shown by similar arguments. First assume that > € Map41,

then we obtain from Theorem 2.1 for all matrices By, . . ., By € CP*P

m m

YD trace(BiB I;—j) > 0.

i=0j=0
Consequently, if ag,...,an € CP, a= (), ...,a )" € CP™D we put B; = (q;,0,...,0) € CP*P
(i=0,...,m) and it follows

m m m m
a*Tna = trace(aa*Ty) = Z Z trace(a;a; Ii—j) = Z Z trace(B;B; I;j) >0,
i=0j=0 i=0j=0

which shows that the matrix T;, is nonnegative definite. To prove the converse assume that T, > 0, i.e.

m m

0<a* Tpa = Z Z trace(a;a; Ii—j) (2.9)
i=0j=0

for all a = (af,...,al)" € CPU"™ D If By, ..., By € CP*P, and af) denotes the ith column of the

matrix Bj(j =0,...,mi=1,...,p), then

oo
BBy =Y a (o))’
i=1

and we obtain from (2.9)

m m p m m *
DD trace(BB{Iij) =) ) ) trace (ai(k) (a](’O) pi_j) >0.

i=0j=0 k=1i=0j=0

By Theorem 2.1 it follows that A € My, which completes the proof of the corollary. I
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With the aid of Theorem 2.1 and Corollary 2.2 we are now able to define geometrically canonical
moments for matrix measures on the unit circle. It turns out that these geometrically defined quantities
are exactly the Verblunsky coefficients of matrix measures on the unit circle as introduced by [2] (see
Section 3 where we prove this identity). For this purpose let W denote a p X p matrix and define

Io I o Tp W
I Io oo Iper I
T=TW)=| : : . : | e cpim+2)xpim+2) (2.10)
I''m Tmy - Do I
W I, - Iy T
Let '™ = (I'_p, T—mtt, - - -, Tne1, Tim) € (CP*P)2™+1 denote a vector of moments of a matrix
measure on the unit circle, that is («g, @1, 81, - - -, @m, Bm) € Mom+1, Where Iy = oy + ifk. Define

Prm as the set of all matrix measures  on the unit circle with moments of order m given by I” (m) that
is I} = ™ e*du()( = —m, ..., m).By Corollary 2.2 it follows that the matrix W is the (m + 2)th
moment of a matrix measure it € P if and only if T(W) > 0. We assume without loss of generality
that («g, a1, B1, - - -, &m, Bm) € Int(Mam41) which is equivalent to T,;; > 0 by Corollary 2.2. From
Theorem 1 in [10] it follows that

T(W)>=0
if and only if there exists a p x p matrix U with UU* <[, such that the matrix W can be represented as
W=(y...n) Tty (T ... 1) + LY2URI/?, (211)
where the matrices L;; and Ry, are defined by
Ln=To—(I...Tw) Tty (... T)*, (212)
Rn=To— (Im... )Tt (T ... T, (2.13)

respectively. Note that the matrices L;;; and Ry, are Schur complements of the positive definite matrix
T» and as a consequence are also positive definite (see [14]). This means that the matrix W is the
(m + 2)th moment of the matrix measure ;& € P, if and only if it is an element of the “ball”

K = {w e CPPILV2(W — MR, V2 = U, uU* <1,,}, (2.14)
where the “center” of the ball is given by the matrix
My = (.. L) Tyl (P ... 1) (2.15)

We are now in a position to define the canonical moments of a matrix measure on the unit circle (or
Verblunsky coefficients as shown in Section 3).

Definition 2.3. Let i denote a matrix measure on the unit circle with moments I, = o + 8, (k > 0),
)LZerl (M’) = (aov o1, :Blv <o Om, ,Bm) € (CPXP)ITH—] (m > O) and deﬁne

N(u) = min{m € N|Azn4+1(1) € IMamy1} (2.16)
as the minimum number m € N such that Ayp,1 is a boundary point of the moment space Mapm41 (if
Aom+1 € Int(Mam41) forallm € N we put N(u) = oo).Foreachm =0, ..., N(u) — 1 the quantity

Amt1 = Amg1(0) = L2 (g1 — M) R,? (217)

_ —-1/2
- [ro — (M. D) Tty (I .,rm)*}

x (rm+1 — (I T T (M, - r_1)*)
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_ —1/2
[T = (M T Ty (o )]

is called the (m + 1)th canonical moment of the matrix measure (.

Definition 2.3 is a generalization of the definition of canonical moments of scalar measures on
the unit circle in [5]. In general the explicit representation of the canonical moments in terms of the

moments I, 17, . . . is very difficult. For example if m = 0 we have
Av=1yPnry (2.18)
and in the case m = 1 we obtain from Definition 2.3
B —1/2 _ _ —1/2
Ay = (ro — NIy 1111) (FZ — T 11*1) (1}, — 1T 11*1) (219)

In the following section we will demonstrate that the quantities defined by Definition 2.3 are the
well known Verblunsky coefficients, which are usually obtained from the recursive relations of the
orthonormal polynomials with respect to matrix measures on the unit circle (see for example [4] where
these matrices do not have any special name [23], where they are called reflection coefficients or [2]).
For this purpose we use an explicit determinant representation of the matrix orthogonal polynomials,
which is of interest by itself and given in the following section.

3. Orthogonal matrix polynomials

A p x p matrix polynomial is a p X p matrix with polynomial entries. It is of degree n if all the
polynomial entries are of degree less than or equal to n and is usually written in the form

Pz) =Y AZ (3.1)
i=0

with coefficients A; € CP*P and z € C. Recall that for matrix polynomials P and Q the right and left
inner product are defined by

(P Q= [ ZP(eie)*d/L(G)Q(eig). (32)
(P,Q)L = /_ 7; P(e”)du(9)Q(e?)*, (3.3)

respectively (see for example [23]). The matrix polynomials P and Q are called orthogonal with respect
to the right inner product (-, -)g if

(P.Q)rg =0 (3.4)

and orthogonality with respect to the left inner product (-, -); is defined analogously. The matrix
polynomials Py, Py, P, . . . are called orthonormal with respect to the right inner product if for each
m € Np Pp, is of degree m, P, and P, are orthogonal with respect to (-, -)g whenever m # m’ and

(Pm, Pm)r = Ip, (3.5)

where I, denotes the p x p identity matrix. Orthonormal polynomials with respect to the left inner
product (-, -); are defined analogously. Orthonormal polynomials with respect to the inner products
(-, -)g and (-, -); are determined uniquely up to multiplication by unitary matrices. In the following
discussion we will derive an explicit representation of these polynomials in terms of the moments of
matrix measure . A representation very similar to the well known determinant representation in the
scalar case (see for example [12]) was given by [18,19] in the matrix case on the real line and on the
circle. Here we develop another explicit representation using determinants.

For this purpose consider a matrix measure y on the unit circle with moments I, ..., I, and
recall the definition of the corresponding block Toeplitz matrix Ty, in (2.8). We define form € N matrix
polynomials by
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Rey_ (TR
i@ = (@), _, . (36)
Loy (L
U@ = (@), _, . (37)
where the elements Tg (z) and Té (z) in these matrices are given by the determinants
Iy I . I'm
F—l FO .. Fm_]
Ti@) =| : ol ii=1...p (3.8)
I I'_mt2 e I
', rl.,@ .. Ije
and
I} () I ee.  TInm
FE](Z) Iy Im—1
Té(z) = ) } o dij=1....p (3.9)
fgm(l) I' 'y ... Ip

respectively, and the matrices I"ijm 4 (and T“Em 1) are obtained replacing the jth row (and the ith

column) in the matrix I, by eiTzk (and ejzm”‘). The following result shows that these polynomials
are orthogonal with respect to the given matrix measure /.

Theorem 3.1. For a given matrix measure w on the unit circle let WX and W (m € N) denote the matrix
polynomials defined by (3.6) and (3.7), respectively, then we have

@, eRr=0k=0...,m—1); (", ¥Rk = |Tull, (3.10)
WLy =0k=0,...,m—1); (WL ") = |Tull,.

Proof. We will only give a proof for the polynomials lll,ﬁ, the remaining part of Theorem 3.1 is shown
similarly. The element Bs» in the position (i, j) of the matrix

R._ kR _ [T —ike R0 _
BR = (z I,wm)R_ﬁne au(®) (T8E™),_, | k=0....m
is given by
p T . .
B =) f i HCOUMO) (311)
I=1""

An expansion of the determinant Tg(ei") with respect to the (mp + j)th row yields

m
TIIJ_?(eI(?) — Z (_1)(m+n)p+1+lem9 Tlglmp+1),(np+l) , (3.12)
n=0

where the matrix T,‘,,m" ij)’(”p *D is obtained from Tin by deleting the (mp + j)th row and (np + [)th
column. If ynj5 = /7 e'"eduij denotes the element of the matrix I, in the position (i, j), where n €
{—m, ..., m}, it follows that

m p . o
B = Y Y (= 1)mEIPHH g (b (313)
n=0 [=1
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Now it is easy to see that the right hand side of (3.13) is the determinant of the matrix T;;,, where the
(mp + j)th row has been replaced by the vector

(V—kils -+ o V=kips VmkF-1,i1s - - » Y—kFLips + + +» Ym—1—kils - - -+ Ym—1—kip» Ym—kils - - -» Ym—k,ip)
Consequently, if k € {0, ..., m — 1} the (mp + j)th and (kp + i)th row in this matrix coincide and we
have Bf} = 0, which proves the first identity in (3.10).

For a proof of the second identity we note that in the case k = m and i # j the same argument
yields Bj = 0.If k = m and i = j it follows that Bj; is exactly the determinant of the matrix Tp,, which
completes the proof of the first assertion of Theorem 3.1. [

In the following discussion we derive several consequences of the representations (3.6) and (3.7),
which will be useful to identify the canonical moments as Verblunsky coefficients. In particular we
determine the corresponding leading coefficients and identify the orthonormal polynomials with
respect to the measure . For this purpose recall that a matrix polynomial of the form (3.1) is called
monic, if the coefficient of the leading term is the identity matrix, that is A, = I,,.

Corollary 3.2. For a given matrix measure (. on the unit circle let 'Iln’i and lI/nL., be defined by (3.6) and (3.7)
and consider for m < N(u) the matrix polynomials

R (2) = WX @) Tl 'R, (3.14)
@L(2) = [Tl 'L ¥l (2), (3.15)

where the matrices Ry, and Ly, are defined by (2.13) and (2.12), respectively. The polynomials <D,’fl (and
<D,Ln) are monic orthogonal matrix polynomials with respect to the right (and left) inner product (-, -)g (and
().

Similarly, define for m < N(u)

R @) = vk (@) 7RV, (3.16)
PL(2) = 1Tl 'L} 2 0L (2), (3.17)

then the matrix polynomial ¢§1 (and ‘15:&1) are orthonormal polynomials with respect to the right (and left)

inner product (-, -)g (and (-, -);). The leading coefficients of qbf% and ¢>,Ln are given by R;l/z and Ln_11/2,

respectively.

Proof. In the first part we will prove that the leading coefficients of the polynomials lI/n’f (z) and ll/nﬁ (2)
defined by (3.6) and (3.7) are given by

R = |TnlR, ", (3.18)
Lt = |TnlL,", (3.19)

respectively. With these representations we obtain from Theorem 3.1
(W YR = [Tl )5 (W W)t = [Tl (L)

and the assertion of the corollary follows by a straightforward calculation.
In order to prove (3.18) and (3.19) we restrict ourselves to the first case; the second case is shown
similarly. Observing the definition of the determinants Tif (z) in (3.8) we obtain for the entry in the

position (i, j) of the leading coefficient of the matrix polynomial !I/n’s (2)

(Lﬁ )U = (—1)2mPHH | T M) (mp+D) |
wherg we haye used an expansion of the determinant with respect to the (mp + j)th row and the matrix
T,Slmpﬂ)'(mpﬂ) is obtained from Ty, by deleting the (mp + j)th row and (mp + i)th column. This means
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that (L§1)ij is the entry in the position (mp + i, mp + j) of the adjoint of the matrix T, (i,j = 1,...,p),
and consequently L§1/|Tm| is the p x p block in the position (m + 1, m 4 1) of the matrix T,;], which
is given by
-1 * -1 1
(Fo (T To)T (M. . Ty) ) =R

(see e.g. [14]). This proves the assertion (3.18) and completes the proof of the corollary. [

We are now in a position to identify the canonical moments introduced in Definition 2.3 as Verblun-
sky coefficients which are defined as coefficients in the Szegd relation of the matrix orthonormal
polynomials ¢,L, and d),’f. For this purpose we introduce for a given matrix polynomial P, of degree n
the corresponding reversed polynomial

~ 1\*
Py(2) =2"P, (:) ,
z
where zZ denotes the complex conjugation of z € C. Obviously we have for any p x p matrix A
AP, (z) = Py(2)A*.
In the following discussion let KTI; = R,;]/z and K,I,;l = L,;l/z (m=1,...,N(u) — 1) denote the leading

coefficients of the orthonormal matrix polynomials d),’f1 and ¢,Ln with respect to the right and left inner
product induced by the matrix measure © and define the matrices

-1 -1
,051 = (K1§1+1) K,'; and pﬁl = Kﬁq (K#_H) (m=1,...,N(un) —1). (3.20)

Then it follows from [2] that there exist p x p matrices Hy, such that the orthonormal matrix polyno-
mial with respect to the measure w on the unit circle satisfy the Szeg6 recursions

261,(2) — b1 (@) = Hny1dh ), (321)
21,(2) = Bpy11 (@) oy = b (D Hinr (3.22)
The matrices Hy, are uniquely determined and called Verblunsky or reflection coefficients, because
they were introduced for the scalar case in two seminal papers by [25,26]. The final result of this

section shows that the Verblunsky coefficients coincide with the canonical moments introduced in
Definition 2.3.

Theorem 3.3. Let 4 denote a matrix measure on the unit circle and assume that 0 <m < N(w). If Am+1
is the (m + 1)th canonical moment of u defined in Definition 2.3 and Hp,41 is the (m + 1)th Verblunsky
coefficient defined by the Szego recursions (3.21) and (3.22), then

Am+1 = Hm+1. (3.23)

Proof. Integrating the recursion (3.22) we obtain

(Ip, g8 — @R L1 PR )R = (U, PEHmt1)R
and
(Ip, 290V R Tl T'RY? = (I, ORI Tl T LY 2 Hin,

m

where we have used the orthogonality of the matrix polynomials lI/n’S 1 Stated in Theorem 3.1 and the

representations of the orthonormal polynomials d),’; and ¢,ﬁ1 in Corollary 3.2. Observing Theorem 3.1
and the identity

{Ip, Wiy )p = f ;duw)ef’"‘) (ZEE™))" = @l Wh)L = Tl (3.24)
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yields

Hms1 = L V2 (1, By o1 (1, 20 R)RRY/? (3.25)
= L, V2T 7 (1, 20 R )RR/,

The matrix polynomial lll,ﬁ has the representation
m—1
WRz) = 1R2" + Y kFZ,
k=0

whereKZ, . . ., K,’;_1 denote p x p matrices and the leading coefficient L§1 is given by (3.18). Integrating
with respect to du(0) gives

m—1

-1

(Ip, 29 g = <1p,z'"+1 + > kE (Lﬁ) z"+1> TR
k=0 R

and it follows from (3.25) that

m—1
_ -1 B
Hipr =Ly 2005, 2™+ 3 KE (L) 2Ry, 2. (3.26)
k=0

Observing the definition of the canonical moments in (2.17) and the definition of the center (2.15) the
assertion of the Theorem follows if the identity

m—1
-1
<1,,,z’"+l + > Kf (Lﬁ) z"+1> =Tpyp1— (N T To (T ... Top)™ (3.27)
k=0 R
can be established. For this purpose we determine the matrices K,’f (k=0,...,m— 1)explicitly using

the representation of the orthogonal matrix polynomials lI/n’E in (3.6). From this definition it follows
that the element in the position (i, j) of the matrix K,f is obtained by deleting the (mp + j)th row and
the (kp + i)th column in the determinant Tif (z) defined by (3.8), that is

(Kllj)ij = (=1)mHhpti+i |T1§1mp+j),(kp+i)|.

Here again T,Slmp HDkPH) Genotes the matrix obtained T by deleting the (mp + j)throw and (kp + i)th

column, which coincides with the entry in the position (kp + i, mp + j) of the adjoint of the matrix
Trn. Consequently, it follows that

(KE), = 1Tl (T i impe
and the “vector”
K&

R € (CP*pym
|Tin | R
Km—1

coincides with the right upper block of size mp X p of the matrix T,; 1. By a standard result in linear
algebra this block is given by

—1 —
—T (Mo ... T-1)*R;,,

which yields
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m—1 m—1
<1p, 3 1<,‘§z’<+1> =Y Tep1Kg
k=0 R k=0

= (I ... Tw) (KB ... (K,'f,_l)*)*
= —|Tu|(Fy ... )Ty (T« . T—1)*R

Combining this result with the identity (Lﬁ)_] = Ry|T,n| ™! finally gives (3.27), which completes the
proof Theorem 3.3. [

4. Geronimus relations for monic polynomials

In this section we present a new proof of the Geronimus relations, which provide a representation of
the canonical moments (or Verblunsky coefficients) of a symmetric matrix measure on the unit circle
in terms of the coefficients in the recurrence relations of a sequence of orthogonal polynomials with
respect to an associated matrix measure on the interval [—1, 1]. There exists several alternative proofs
of these relations in the literature (see [27,2]), but the one presented here explicitly uses the theory
of canonical moments of matrix measures as introduced in [6]. As a by-product we derive several
interesting properties of the Verblunsky coefficients.

Tobe precise let (¢ denote a symmetric (with respect to the point 0) matrix measure on the unit disk
(i.e. ic is invariant with respect to the transformation 6 +— —6). We associate to (¢ a corresponding
matrix measure, say (1, on the interval [—1, 1], which is defined by the property

1 T
ﬁ S0 = ﬁ  F(cos (0))dpc(©) (41)

for all integrable functions f defined on the interval [—1, 1]. Note that the relation Sz : duc +— du; is
called Szegd mapping in the literature, where the matrix measure i is usually defined on the interval
[—2, 2]. We will work with the interval [—1, 1] in this section, because this interval is also used in the
classical papers of [24] and [12] and in the monograph on canonical moments by [5].

Note that the inverse of the Szegé mapping (4.1) is characterized by the property

g 1
/_ 8(0)duc(®) = /_ _g(arccos (x))dui(x), (42)

where g denotes any integrable function on d[D with g(0) = g(—6) for all & € [—m, 7). For a proof
of the Geronimus relations we need several preparations. Our first result shows that the canonical
moments (or Verblunsky coefficients) of a symmetric matrix measure on the unit circle are hermitian
matrices. The result was also proved by [2]. We provide here an alternative proof, because several steps
in the proof are used later.

Lemma 4.1. For any symmetric matrix measure j1c on the unit circle the corresponding canonical moments
An are hermitian.

Proof. By the symmetry of the matrix measure pc we have I, = ffn etk? duc®) = 2, e~iko duc(9)
= I'_y which yields I'x = f”_ cos (kf)duc(0). Consequently, the block Toeplitz matrix associated
with pc is given by
Ion ... Iy
Tm=]": - (4.3)
Im ... Iy

We denote by [A]) the p x p block in the position (k, I) of the mp x mp— block matrix A. We will
show at the end of this proof that
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-1 -1

[Tm71:|(k,l) = [Tm*1](m+1—k,m+1—1)' (44)
From this identity and the property I = I};" we obtain
(T oo T Tl (T T = Z Tic[Tt] ) T
klml
k’X:] Im—k+1 [Tmll}(m e 1+1)Fl
= Z Iin—k+1 [ m— 1}(,{,)1“1
kl=1
=T, ..., DT (., )™,
and by similar arguments
(M. )T (T T) = (T oo T Ty (T T (4.5)

Observing the definition of the canonical moments Ap,4+1 it now follows that

_ -1/2
Tty (B, )]

)Tty (T Fl)*)*
~1/2

Ay =[To— (I,
X<Fm+1—(r1.-~~v

< [Fo— (M, T Ty (D, T)] = Ama,

which proves the remaining assertion of Lemma 4.1.
Proof of the identity (4.4). The elements in the position (i,j) of the matrix [T,gll](k,,) and
[T 1 l(m+-1—kmt1—1) are given by

_ i+ | ((I=1)p+i),((k—=1)p+i
T 1(_.1)(l+l<)p+1+] ‘Tl’(n(—l p+i). ((k )p+z)‘

and
_ e . Dpi) (0P
T 1( ])(2m I=k)p+i+j )T,;(T1 )p+i),((m <)p+1)‘y

respectively, where T,(H(Tf DP+D-(m=kP+) Ganotes the matrix obtained from Tm—1 by deleting the (m —
Dp + jrowand (m — k)p + i column (note that both expressions have the same sign). In the following
discussion we denote by A® and AD-0) the matrix obtained from A by deleting the ith column or
the jth row, respectively. Then interchanging first columns and then rows yields

(= Dp+).((k=1)p+i)

n ... L, 2P i ... Tma
N Ni—x| |§')'(l) 1 Tli—k—2 J
_ | ~0.0 @.¢) @, @.¢) ((AQ!
= |2 Dt Fu K N2y Il
I j—k+2) |1_k+1| I— -1
In—q Fm—k+l an) [(:) Tn—k—1 Iy
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S T S | S £
Fon—p1 o Di—k—2 1"”(_),{(2” -k R )
— (—1\ @.¢) @.¢) (). () @.¢) @.¢)
=ED0 R Dby Dy Dickwy -+ 0O
a1 ... Ty 1"”(_),{(2” Li—k42)  --- I
Iy s Im—k—1 an'lg) Im—k+1 cee I'm—1
Iy coo g F,,Sll(:) Dnckr1 oo T
e T ﬂfﬂ’,fﬂz” Li—k42) - I
_ 2 (.() ().() (). (.() (.()
= (-7 a2 s F|1—1<—1| Fl—lgl F|l—k+1| R st
Im—+1 oo Ti—k—2 1““;)’,9” Ii—k P
Twy ... I RO o AP

— |p{m=Dp+)).((m—k)p+i)
— |["m—1

forsome y € N, because the number of changed columns coincides with the number of changed rows.
This implies (4.4) and completes the proof of Lemma 4.1. [

For the next step we need to define canonical moments of matrix measures on the interval [—1, 1].
Because the main arguments here are very similar to the proceeding in [6], who considered matrix
measures on the interval [0, 1], we only state the main differences without proofs. To be precise,

define for a matrix measure (; on the interval [—1, 1] the moments S, = S () = fl1 Xkdle(X)(k =
0,1,...)and avector c;(1;) = (So(i1), - . ., Sa(ttp)) € (CP*P)"*+1. We consider the moment space

M,(.,IJ)H = {cn(1)| 41 is a matrix measure on [—1, 1]} C (CP*P)"+! (4.6)

corresponding to the first n moments of matrix measures on the interval [—1, 1]. For a matrix measure
4 on the interval [—1, 1] we define the block Hankel matrices H; and H;

So ... Sm
Hym=| : S
Sm ... Som
So— 52 coo Sm—1 — Sm+1
Hom = : . : '
Sm—1—Sm+1 .. Som—2 — Som
So + 51 Sm + Sm+1
Hypp1 = : : ,
SmtSmi1 oo Sum+ Somed
So—Si ... Sw—Smi
Hymi1 = : :
Sm — Smi1 .- Som — Somin
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We introduce the notation
hom = Smy -+, Soam=1)", ham = (Sm—1 — Smt1, - - -, Soam—3 — Som—1)",
homa1 = Sm + Smtts - - -2 Soam—1 + S2m)’, homi1 = Sm — Smt1, - -, Sam—1 — Sam)"
and define S{" = Sp, Sj = Sp,
St = Symo — kL Hy' >
2m — 22m—2 2mom—21"2m (m/z)v (4'7)
_ 1 -
S;_m+1 = Som — h£m+lH2m—lh2m+1 (m=>1)
and S| = —So,
Som = hgmHam_ohym (M>1), (48)
— T -1
Som+1 = Mo p1Hom—1homer — Sam (m21).

Note that the quantities S,}L and S, are determined by So, . . ., Sp—1. It can be shown by the same argu-
mentasin|[6]thatfor (Sy,...,S,—1) € Int(M,;) and any matrix measure ;; on the interval [—1, 1] with

moments satisfying Sj(u;) = S; (j =0,...,n — 1), the moment of order n S,(1;) = fll x"duy(x)
satisfies
Sy <Su(u) <SF, (4.9)

With these preparations we can define the canonical moments of a matrix measure on the interval
[—1, 1] with moments S, . . ., Sp—_1.

Definition 4.2. Let 1; denote a matrix measure on the interval [—1, 1] with moments Sy, = Si(u;) =
fll xKdu;(x) (k = 0,1,...)and define

. I
N(u;) = min {k e N[(So,...,Sk) € aM,ﬁll} . (4.10)
Foranyn = 0,...,N(u;) — 1the(hermitian)canonical moments of the matrix measure u; are defined
by
+ _ —1/2 _ + _ —1/2
Unt1 = (Sii1 = Sap1)  (Sntr = Sapt) (St = Sa) (411)

where the quantities Sn+ +1and S, are given by (4.7) and (4.8), respectively.

Note that [6] use a non-hermitian definition of canonical moments of matrix measures on the
interval [0, 1], that is

_ -1

Unt1 = (St1 = Sie1)  (Sov1 = Sua) - (412)
This non-hermitian definition turns out to be more useful when working with monic orthogonal
polynomials but in the present context the hermitian version has advantages. We are now in a position
to prove the main result of this section, which relates the canonical moments of a symmetric matrix
measure on the unit circle and the canonical moments of the associated matrix measure on the interval
[—1, 1] by the Szegd mapping. For this purpose recall the definition of the matrix ball K, in (2.14) and
the definition for the matrices Ly, R, and My, (2.12),(2.13) and (2.15), respectively. If the given measure
Jic on the unit circle is symmetric, then it follows from (4.5)

Lm = Rp. (4.13)
The following result is the main step for the proof of the Geronimus relations.

Theorem 4.3. Let (¢ denote a symmetric matrix measure on the unit circle and denote by ju; = Sz(ji¢)
the associated matrix measure on the interval [—1, 1] defined by the Szegé mapping (4.1). The canonical
moments A, and U, of the matrix measures ¢ and (u; satisfy
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Ap=2Un—I; n=1,...,N(uc).
Similarly, the nonsymmetric canonical moments Uy, defined in (4.12) satisfy

2Up — I, =An; n=1,...,N(uco), (4.14)
where the quantities Ay, are given by

An =L AL (4.15)
Proof. We only prove the first part of the Theorem. The second part is shown by similar arguments.
Assume that m < N(uc) and let I, I, . . ., denote moments of the matrix measure on the unit circle

pc.Forj=0,1,... we define Tj(x) = cos(j arccos x) as the jth (scalar) Chebychev polynomial of the
first kind, then it follows from (4.2) and from [20] that

x 1
I= fﬁn cos (j0)duc(®) = /71 Ti(x)d i (x)

/2 1
_ Z(_])k](’ ! o —2k— 151 - (4.16)
P KIG — 2k)!

where S; = fl1 xld,u,(x) (I=0,1,...) denote the moments of the associated matrix measure yu; =
Sz(uc) on the interval. Recall the definition ofS,JgJrl and S, ;in(4.7)and (4.8), then there exist matrix
measures u,"’ and p; on the interval [—1, 1] such that §; = §; (;L,i)(j =0,...,m)and

1 1
Shr = [t and S = [ X G0,

We define
R m e D(m = !
= 2mst —1 k— m—2kg , 417
m+1 m+1 + kX; ( ) k!(m “ok+ 1)' m+1-—2k ( )
L(m+1)/2] (m+ 1)(m — k)!
T =2"Sp + Y. (=DF 2m 2k 1ok (4.18)

=1 k!(m — 2k + 1)!

With the inverse Szegd mapping we obtain the symmetric measures ué“ = (S2)~ 1(u, ) and He =
(S2)~! (u; ) onthe unitcircle and the representation (4.16) yields that the measures @~ and ,uc satisfy

/j cos ((m + 1)0)dug (0) = If,, and /j cos ((m + 1)8)dpug (0) = Iy

Consequently, recalling the definition of the set Ky, in (2.14) we have r m+1 Dnt1 € Kip and from the
extremal property of the moments Sm+1 andS,, , ; we obtain that I +1, Iy q € 0K By the definition
of the set K, in (2.14) it therefore follows that the canonical moments Am+1 and A, ; corresponding to
matrix measures ;sz and u ., respectively, are unitary. Moreover, Lemma 4.1, implies that the matrices
A$—H and A, ; are hermitian, which yields

L2 N2
(A1) =1 and (Apy)" =1
Consequently all eigenvalues of the matrices A; 1 and A, are given by —1 and 1.
We now define the matrices
Fnj—q—l =Mn +Ln and Fm+1 = Mm — Ln, (4.19)

which are obviously elements of the set K;;; because by (4.13) we have L;; = R;;. Consequently, there
exist matrix measures [Lé‘ and ji- such that 1'}-(,&?) =Tj(j=0,...,m)and
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i1 () = m—H'

Doy (fig) = Iy

Without loss of generality we assume that llc and /IC_ are symmetric with respect to the point 0
[otherwise use 5 (Mc )+ /Lé_( 6))] and we define 1 ,u, = Sz(uc ) and ,u, = Sz(fic ) as the asso-

ciated measures on the interval [—1, 1] with (m + 1)th moments SmJrl and Sm+]' respectively. These
matrices satisfy the identities

B [(m+1)/2] (m+1)(m — k)!
Fia=2"St .+ Y (- )"— M2 S 12k,
k=1 ( — 2k + 1)'
L(m+1)/2]

(-1 )k (m+ 1)(m — k)! om—2k

Ki(m — 2k +1)! m4-1—2k-

T =2"Sp+ D
k=1

From the inequalities (4.9) it follows that 5m+1 > Serl and Sm+1 2 Sip41 (note that Sm+1 and Sm+] are
moments of a matrix measure on the interval [—1, 1] with moments Sy, .. ., S;;). On the other hand
we have

+
2" <5m+1 5m+1) Fm+1 Fm+l
= Mn + L — (M + Ly *Ac 1 L)
1/2 + 1/2
=Ly / ( _Am-i-])[‘m/
=0,
because the eigenvalues of the matrix I, — A1 are given by 0 and 2. So we obtain

sm—i—] - Sm—i-]'
while a similar argument shows

Smt1 = Sm1-
Consequently, it follows that
Apir=1lpi Anpi =~
+ . F=
Fm+1 =Ly Dt = Dy

and we obtain from the definitions of I, M1 Fm+1 in (4.19)

( mat1 + Do), L= (m+1 Lot

The deﬁmtlon of the (m + 1)th canonical moment Ap, 11 of the matrix measure 1 and (4.17) and (4.18)
now imply

Ami1 = L (D1 — ML, /2

1 -1/2 1 1 —1/2
(2 (Fn—:_-i-] Fm_+1)) (Fm+1 5 ( m1 T m+l)> (2 (FJ+1 Fm_-i-]))
= (5;7+1 - 5:;+1>_1/2 <25m+1 ~ (Spg1 + 5;+1)) (Snt—i-l - Sn:+1>_l/2

=2 <Sm+1 B S';“)il/z (Sm+1 - S;+l) (S;ﬂ - Sn_1+1)71/2 —1Ip
=2Un+1 — Ip,
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where the last equality is a consequence of the definition of canonical moments of matrix measures
on the interval [—1, 1]. This proves the assertion of the theorem. [

Our final result gives the Geronimus relations for monic orthogonal matrix polynomials, which
generalize the results obtained by [12,9] for the scalar case. To be precise note that Corollary 3.2
together with (4.13) yield for the monic orthogonal polynomials @,’; and <I>,Lﬂ defined in (3.14) and
(3.15), respectively

LyL —1/2 4L R R R ;-1/2
PmPmi1 = Ly / Pri1r Pmi1Pm = Prmpilnm /
7R —12%R 7L FLy—1/2
¢m=Lm / ¢m' ¢m=¢ml‘m / N
Using these equations we obtain from (3.21) and (3.22) the Szegd recursion for the monic orthogonal
matrix polynomials with respect to a matrix measure on the unit circle, that is

205,@) = Ppyr (@) = A1 P (@),
208 (2) — ®F 1(2) = O (D)Am1.

Consequently, the matrices A4 defined by (4.15) are the Verblunsky coefficients corresponding to
the monic orthogonal polynomials and we obtain the following result.

Theorem 4.4. Let (1 denote a symmetric matrix measure on the unit circle and denote by u; = Sz(i¢)
the associated matrix measure on the interval [—1, 1] defined by the Szegd mapping (4.1). If Py, Py, . . .
are the monic polynomials orthogonal with respect to the matrix measure ; satisfying the three term
recurrence recursion

(14 OPmt1(8) = Pmy2(t) + Pmt1(6)Cnt1 + P () B, (4.20)
(Po(t) = Ip, P_1(t) = Op), then the matrices By, and C41 satisfy

1 _ 5 _
Bn = Z(lp - AZm)(Ip - A2m+1)(1p +A2m+2)v
1 _ _ 1 _ _
Cny1 = Q(Ip — Apmy1)Up + Agmi2) + E(Ip — Apmi2)(Up + Aoy 3),
where the quantities A, are defined in (4.15).

Proof. It follows analogously to [6] that the matrices B, and Cp,41 are given by

By = (Som — Som) ™' (S2m+2 — Samya):

Cnt1 = (Samt2 — Somya) ™ Somt3 — Somas) + Soms1 — Somy1) ™' Samt2 — Somya)
and that the non-hermitian canonical moments defined by (4.12) satisfy

2Vi—1Un = (Sp—1 = Sp_) ™' (Sn = S

whenever n < N(u;), where V, = I, — Uy. Consequently, the assertion follows by a direct application
of the second part of Theorem 4.3. [
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