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[−1, 1] and the Verblunsky coefficients corresponding to matrix

measures on the unit circle.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In recent years considerable interest hasbeen shown inmomentproblems, orthogonal polynomials,

continued fractions and quadrature formulas corresponding to matrix measures on the real line or on

the unit circle. Early work dates back to [15], while more recent results onmatrix measures on the real

line can be found in the papers of [21,7,8,3] among many others. Additionally, several authors have

discussed matrix measures on the unit circle (see [4,11,17,22,23,27,28,1]).

The purpose of the present paper is to investigate some geometric properties of the moment space

corresponding to matrix measures on the unit circle. In Section 2 we present a characterization of
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the moment space in terms of nonnegative definiteness of block Toeplitz matrices. We also provide a

geometric definitionof canonicalmoments ofmatrixmeasures on theunit circle,whichgeneralizes the

scalar case discussed by [5] in a nontrivial way. In Section 3 an explicit determinantal representation of

orthogonal matrix polynomials with respect to matrix measures on the unit circle is presented, which

generalizes the classical representation in the one-dimensional case (see e.g. [13]). These results are

used to identify the canonicalmoments as Verblunsky coefficients,which appear in the Szegö relations

for the corresponding orthonormal and reversed matrix polynomials (see [4,23] or [2]). In particular

our results provide a geometric definitionofVerblunsky coefficients corresponding tomatrixmeasures

on the unit circle. Roughly speaking, the Verblunsky coefficient of orderm can be characterized as the

distance of the mth trigonometric moment to a center of a matrix disk relative to the diameter of

this disk (see Section 3 for more details). Finally, in Section 4 these results are used to present an

alternative proof of the Geronimus relations for monic orthogonal polynomials, which describe the

relation between the coefficients in the three-term recursive relation of orthogonal polynomials with

respect to a matrix measure on a compact interval and the coefficients in the Szegö recursion of an

associated matrix measure on the unit circle.

2. The moment space of matrix measure on the unit circle

Amatrixmeasureμ on the unit circle is defined as a p × pmatrix of complex valuedBorelmeasures

μ = (μij)i,j=1,...,p on the unit circle ∂D = {z ∈ C| |z| = 1} such that for each Borel set A ⊂ ∂D the

matrixμ(A) is nonnegativedefinite, i.e.μ(A) � 0. Throughout this paperweuse theusual parametriza-

tion z = eiθ , θ ∈ [−π ,π) and thenotationμ(θ) for the sake of simplicity. The kthmoment of amatrix

measure μ on the unit circle is defined by

Γk = Γk(μ) =
∫ π

−π
eikθdμ(θ) = αk + iβk, k ∈ Z, (2.1)

where αk = αk(μ) = ∫ π−π cos (kθ)dμ(θ), βk = βk(μ)
∫ π−π sin (kθ)dμ(θ) (k = 0, 1, . . .) are the

trigonometricmoments and the dependence on the givenmeasureμ is omitted in the notation,when-

ever it is clear from the context. Throughout this paper letm ∈ N0 λ(μ) = (α0,α1,β1, . . . ,αm,βm) ∈
(Cp×p)2m+1 denote the vector of trigonometric moments of order m and define

M2m+1 = {λ(μ)|μ is a matrix measure on ∂D} ⊂ (Cp×p)2m+1 (2.2)

as the (2m + 1)thmoment space ofmatrixmeasures on the unit circle. The setM2m+1 and its interior

Int (M2m+1) can be characterized as follows.

Theorem 2.1. λ = (α0,α1,β1, . . . ,αm,βm) ∈ M2m+1 if and only if

m∑
i=0

m∑
j=0

trace(BiB
∗
j Γi−j) � 0 for all B0, . . . , Bm ∈ Cp×p, (2.3)

where the matrices Γ−m,Γ−m+1, . . . ,Γm are defined in (2.1).

λ = (α0,α1,β1, . . . ,αm,βm) ∈ Int(M2m+1) if and only if there is strict inequality in (2.3) except if

B0 = · · · = Bm = 0.

Proof. We start with a proof of the first part. Assume that λ ∈ M2m+1 and consider matrices B0, . . . ,

Bm ∈ Cp×p. With the notation

B(θ) =
m∑

k=0

Bke
ikθ (θ ∈ [−π ,π)) (2.4)

it follows that the polynomial P(θ) = B(θ)(B(θ))∗ is obviously nonnegative definite, i.e.

P(θ) = B(θ)(B(θ))∗ � 0 for all θ ∈ [−π ,π). (2.5)

A straightforward calculation shows that the polynomial P can be represented as
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P(θ) = D0 +
m∑

k=1

(Dk cos (kθ) + Ek sin (kθ)), (2.6)

where the hermitian p × p matrices D0, . . . , Dm, E1, . . . , Em are defined by D0 = A0, and for k =
1, . . . , m

Dk = Ak + A−k, Ek = i(Ak − A−k)

and

Ak =
m−k∑
l=0

Bk+lB
∗
l and A−k = A∗

k .

Because it is easy to see that the moment space M2m+1 is the convex hull of the set{
(aa∗, cos (θ)aa∗, sin (θ)aa∗, . . . , cos (mθ)aa∗, sin (mθ)aa∗)

∣∣a ∈ Cp, θ ∈ [−π ,π)
}
,

a similar argument as in Corollary 2.2 of [6] now shows that (2.5) and (2.6) imply

0 � trace(D0α0) +
m∑

k=1

(trace(Dkαk) + trace(Ekβk))

= trace

⎛⎝∫ π

−π
d(D0μ(θ)) +

m∑
k=1

(∫ π

−π
cos (kθ)d(Dkμ(θ)) +

∫ π

−π
sin (kθ)d(Ekμ(θ))

)⎞⎠
= trace

⎛⎝∫ π

−π

m∑
k=−m

eikθd(Akμ(θ))

⎞⎠
= trace

⎛⎝∫ π

−π

m∑
k=0

eikθd

⎛⎝m−k∑
l=0

Bk+lB
∗
l μ(θ)

⎞⎠ +
∫ π

−π

m∑
k=1

e−ikθd

⎛⎝m−k∑
l=0

BlB
∗
k+lμ(θ)

⎞⎠⎞⎠
= trace

⎛⎝ m∑
k=0

m∑
l=0

∫ π

−π
ei(k−l)θd(BkB

∗
l μ(θ))

⎞⎠
=

m∑
k=0

m∑
l=0

trace(BkB
∗
l Γk−l),

which proves (2.3). On the other hand assume that the inequality (2.3) is satisfied for all matrices

B0, . . . , Bm ∈ Cp×p and consider a nonnegative definite matrix polynomial

P(θ) = D0 +
m∑

k=1

(Dk cos (kθ) + Ek sin (kθ)) � 0 for all θ ∈ [−π ,π), (2.7)

with hermitian matrices D0, . . . , Dm, E1, . . . , Em ∈ Cp×p. It now follows from [16] that there exists a

matrix polynomial

B(θ) =
m∑

k=0

Bke
ikθ ,

such that P(θ) = B(θ)(B(θ))∗, and the same calculation as in the first part of the proof yields

trace(D0α0) +
m∑

k=1

(trace(Dkαk) + trace(Ekβk)) =
m∑
i=0

m∑
j=0

trace(BiB
∗
j Γi−j) � 0.

By similar arguments as in Lemma 2.3 of [6] it follows that this is sufficient for λ ∈ M2m+1.

Finally, thesecondpartof theTheoremis shownsimilarlyobserving the fact that (α0,α1,β1, . . . ,αm,

βm) ∈ Int (M2m+1) if and only if
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trace(D0α0) +
m∑

k=1

(trace(Dkαk) + trace(Ekβk)) > 0

for any nonnegative definite polynomial P(θ) of the form (2.6)with P(θ) /= 0 for all θ ∈ [−π ,π). This
characterization can be shown by the same arguments as presented in [6]who proved a corresponding

statement for the moment space of matrix measures on the interval [0, 1]. �

Throughout this paper let

Tm = Tm(μ) =
⎛⎜⎜⎝

Γ0 · · · Γm

...
. . .

...
Γ−m · · · Γ0

⎞⎟⎟⎠ ∈ Cp(m+1)×p(m+1) (2.8)

denote the block Toeplitz matrix, where the blocks Γi = Γi(μ) (i = −m, . . . , m) are the moments

of a matrix measure μ on the unit circle defined by (2.1) (note that Tm is hermitian). The following

characterization of themoment spaceM2m+1 by nonnegative definiteness of Toeplitzmatrices is now

easily obtained.

Corollary 2.2. Assume that λ = (α0,α1,β1, . . . ,αm,βm) ∈ (Cp×p)2m+1 and that Tm is defined by (2.8)

with Γk = αk + iβk and Γ−k = αk − iβk. Then

(a) λ ∈ M2m+1 if and only if Tm � 0,

(b) λ ∈ Int(M2m+1) if and only if Tm > 0.

Proof. We only proof part (a); part (b) is shown by similar arguments. First assume that λ ∈ M2m+1,

then we obtain from Theorem 2.1 for all matrices B0, . . . , Bm ∈ Cp×p

m∑
i=0

m∑
j=0

trace(BiB
∗
j Γi−j) � 0.

Consequently, if a0, . . . , am ∈ Cp, a = (aT0 , . . . , a
T
m)T ∈ Cp(m+1) we put Bi = (ai, 0, . . . , 0) ∈ Cp×p

(i = 0, . . . , m) and it follows

a∗Tma = trace(aa∗Tm) =
m∑
i=0

m∑
j=0

trace(aia
∗
j Γi−j) =

m∑
i=0

m∑
j=0

trace(BiB
∗
j Γi−j) � 0,

which shows that the matrix Tm is nonnegative definite. To prove the converse assume that Tm � 0, i.e.

0� a∗Tma =
m∑
i=0

m∑
j=0

trace(aia
∗
j Γi−j) (2.9)

for all a = (aT0 , . . . , a
T
m)T ∈ Cp(m+1). If B0, . . . , Bm ∈ Cp×p, and a

(i)
j denotes the ith column of the

matrix Bj(j = 0, . . . , m, i = 1, . . . , p), then

BjB
∗
k =

p∑
i=1

a
(i)
j

(
a
(i)
k

)∗

and we obtain from (2.9)

m∑
i=0

m∑
j=0

trace(BiB
∗
j Γi−j) =

p∑
k=1

m∑
i=0

m∑
j=0

trace

(
a
(k)
i

(
a
(k)
j

)∗
Γi−j

)
� 0.

By Theorem 2.1 it follows that λ ∈ M2m+1, which completes the proof of the corollary. �
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With the aid of Theorem 2.1 and Corollary 2.2 we are now able to define geometrically canonical

moments formatrixmeasures on theunit circle. It turnsout that these geometrically definedquantities

are exactly the Verblunsky coefficients of matrix measures on the unit circle as introduced by [2] (see

Section 3 where we prove this identity). For this purpose let W denote a p × pmatrix and define

T = T(W) =

⎛⎜⎜⎜⎜⎜⎜⎝
Γ0 Γ1 · · · Γm W

Γ−1 Γ0 · · · Γm−1 Γm

...
...

. . .
...

...
Γ−m Γ−m+1 · · · Γ0 Γ1

W∗ Γ−m · · · Γ−1 Γ0

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Cp(m+2)×p(m+2). (2.10)

Let Γ (m) = (Γ−m,Γ−m+1, . . . ,Γm−1,Γm) ∈ (Cp×p)2m+1 denote a vector of moments of a matrix

measure on the unit circle, that is (α0,α1,β1, . . . ,αm,βm) ∈ M2m+1, where Γk = αk + iβk . Define

PΓ (m) as the set of allmatrixmeasuresμ on the unit circlewithmoments of orderm given byΓ (m), that

is Γj = ∫ π−π eikθdμ(θ)(j = −m, . . . , m). By Corollary 2.2 it follows that thematrixW is the (m + 2)th
moment of amatrix measureμ ∈ PΓ (m) if and only if T(W) � 0.We assumewithout loss of generality

that (α0,α1,β1, . . . ,αm,βm) ∈ Int(M2m+1) which is equivalent to Tm > 0 by Corollary 2.2. From

Theorem 1 in [10] it follows that

T(W) � 0

if and only if there exists a p × pmatrix U with UU∗ � Ip such that thematrixW can be represented as

W = (Γ1 . . . Γm) T−1
m−1 (Γ−m . . . Γ−1)

∗ + L1/2m UR1/2m , (2.11)

where the matrices Lm and Rm are defined by

Lm = Γ0 − (Γ1 . . . Γm) T−1
m−1 (Γ1 . . . Γm)∗ , (2.12)

Rm = Γ0 − (Γ−m . . . Γ−1) T
−1
m−1 (Γ−m . . . Γ−1)

∗ , (2.13)

respectively. Note that the matrices Lm and Rm are Schur complements of the positive definite matrix

Tm and as a consequence are also positive definite (see [14]). This means that the matrix W is the

(m + 2)th moment of the matrix measure μ ∈ PΓ (m) , if and only if it is an element of the “ball”

Km :=
{
W ∈ Cp×p|L−1/2

m (W − Mm)R−1/2
m = U, UU∗ � Ip

}
, (2.14)

where the “center” of the ball is given by the matrix

Mm = (Γ1 . . . Γm) T−1
m−1 (Γ−m . . . Γ−1)

∗ . (2.15)

We are now in a position to define the canonical moments of a matrix measure on the unit circle (or

Verblunsky coefficients as shown in Section 3).

Definition 2.3. Letμ denote amatrixmeasure on the unit circlewithmomentsΓk = αk + iβk(k � 0),
λ2m+1(μ) = (α0,α1,β1, . . . ,αm,βm) ∈ (Cp×p)m+1 (m� 0) and define

N(μ) = min {m ∈ N|λ2m+1(μ) ∈ ∂M2m+1} (2.16)

as theminimum numberm ∈ N such that λ2m+1 is a boundary point of themoment space M2m+1 (if

λ2m+1 ∈ Int(M2m+1) for allm ∈ N we put N(μ) = ∞). For eachm = 0, . . . , N(μ) − 1 the quantity

Am+1 = Am+1(μ) = L−1/2
m (Γm+1 − Mm) R−1/2

m (2.17)

=
[
Γ0 − (Γ1, . . . ,Γm) T−1

m−1 (Γ1, . . . ,Γm)∗
]−1/2

×
(
Γm+1 − (Γ1, . . . ,Γm) T−1

m−1 (Γ−m, . . . ,Γ−1)
∗)
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×
[
Γ0 − (Γ−m, . . . ,Γ−1) T

−1
m−1 (Γ−m, . . . ,Γ−1)

∗]−1/2

is called the (m + 1)th canonical moment of the matrix measure μ.

Definition 2.3 is a generalization of the definition of canonical moments of scalar measures on

the unit circle in [5]. In general the explicit representation of the canonical moments in terms of the

moments Γ0,Γ1, . . . is very difficult. For example if m = 0 we have

A1 = Γ
−1/2
0 Γ1Γ

−1/2
0 (2.18)

and in the casem = 1 we obtain from Definition 2.3

A2 =
(
Γ0 − Γ1Γ

−1
0 Γ−1

)−1/2 (
Γ2 − Γ1Γ

−1
0 Γ1

) (
Γ0 − Γ−1Γ

−1
0 Γ1

)−1/2
(2.19)

In the following section we will demonstrate that the quantities defined by Definition 2.3 are the

well known Verblunsky coefficients, which are usually obtained from the recursive relations of the

orthonormal polynomialswith respect tomatrixmeasures on theunit circle (see for example [4]where

these matrices do not have any special name [23], where they are called reflection coefficients or [2]).

For this purpose we use an explicit determinant representation of the matrix orthogonal polynomials,

which is of interest by itself and given in the following section.

3. Orthogonal matrix polynomials

A p × p matrix polynomial is a p × p matrix with polynomial entries. It is of degree n if all the

polynomial entries are of degree less than or equal to n and is usually written in the form

P(z) =
n∑

i=0

Aiz
i (3.1)

with coefficients Ai ∈ Cp×p and z ∈ C. Recall that for matrix polynomials P and Q the right and left

inner product are defined by

〈P, Q〉R =
∫ π

−π
P(eiθ )∗dμ(θ)Q(eiθ ), (3.2)

〈P, Q〉L =
∫ π

−π
P(eiθ )dμ(θ)Q(eiθ )∗, (3.3)

respectively (see for example [23]). Thematrix polynomials P andQ are called orthogonalwith respect

to the right inner product 〈·, ·〉R if

〈P, Q〉R = 0 (3.4)

and orthogonality with respect to the left inner product 〈·, ·〉L is defined analogously. The matrix

polynomials P0, P1, P2, . . . are called orthonormal with respect to the right inner product if for each

m ∈ N0 Pm is of degreem, Pm and P
m

′ are orthogonal with respect to 〈·, ·〉R whenever m /= m′ and
〈Pm, Pm〉R = Ip, (3.5)

where Ip denotes the p × p identity matrix. Orthonormal polynomials with respect to the left inner

product 〈·, ·〉L are defined analogously. Orthonormal polynomials with respect to the inner products

〈·, ·〉R and 〈·, ·〉L are determined uniquely up to multiplication by unitary matrices. In the following

discussion we will derive an explicit representation of these polynomials in terms of the moments of

matrix measureμ. A representation very similar to the well known determinant representation in the

scalar case (see for example [12]) was given by [18,19] in the matrix case on the real line and on the

circle. Here we develop another explicit representation using determinants.

For this purpose consider a matrix measure μ on the unit circle with moments Γ−m, . . . ,Γm and

recall the definition of the corresponding block Toeplitzmatrix Tm in (2.8).Wedefine form ∈ Nmatrix

polynomials by
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Ψ R
m(z) =

(
TR
ij (z)

)
i,j=1,...,p

, (3.6)

Ψ L
m(z) =

(
TL
ij(z)

)
i,j=1,...,p

, (3.7)

where the elements TR
ij (z) and TL

ij(z) in these matrices are given by the determinants

TR
ij (z) =

∣∣∣∣∣∣∣∣∣∣∣∣

Γ0 Γ1 . . . Γm

Γ−1 Γ0 . . . Γm−1

...
...

...
Γ−m+1 Γ−m+2 . . . Γ1

Γ
ij
−m(z) Γ

ij
−m+1(z) . . . Γ

ij
0 (z)

∣∣∣∣∣∣∣∣∣∣∣∣
; i, j = 1, . . . , p (3.8)

and

TL
ij(z) =

∣∣∣∣∣∣∣∣∣∣∣

Γ̃
ij
0 (z) Γ1 . . . Γm

Γ̃
ij
−1(z) Γ0 . . . Γm−1

...
...

...

Γ̃
ij
−m(z) Γ−m+1 . . . Γ0

∣∣∣∣∣∣∣∣∣∣∣
; i, j = 1, . . . , p, (3.9)

respectively, and the matrices Γ
ij
−m+k (and Γ̃

ij
−m+k) are obtained replacing the jth row (and the ith

column) in thematrixΓ−m+k by eTi z
k (and ejz

m−k). The following result shows that these polynomials

are orthogonal with respect to the given matrix measure μ.

Theorem 3.1. For a given matrix measure μ on the unit circle let Ψ R
m and Ψ L

m(m ∈ N) denote the matrix

polynomials defined by (3.6) and (3.7), respectively, then we have

〈zkIp,Ψ R
m〉R = 0 (k = 0, . . . , m − 1); 〈zmIp,Ψ R

m〉R = |Tm|Ip, (3.10)

〈Ψ L
m, z

kIp〉L = 0 (k = 0, . . . , m − 1); 〈Ψ L
m, z

mIp〉L = |Tm|Ip.

Proof. We will only give a proof for the polynomials Ψ R
m, the remaining part of Theorem 3.1 is shown

similarly. The element BRij in the position (i, j) of the matrix

BR := 〈zkI,Ψ R
m〉R =

∫ π

−π
e−ikθdμ(θ)

(
TR
ij (e

iθ )
)
i,j=1,...,p

(k = 0, . . . , m)

is given by

BRij =
p∑

l=1

∫ π

−π
e−ikθTR

lj (e
iθ )dμil(θ). (3.11)

An expansion of the determinant TR
lj (e

iθ ) with respect to the (mp + j)th row yields

TR
lj (e

iθ ) =
m∑

n=0

(−1)(m+n)p+j+leinθ
∣∣∣T(mp+j),(np+l)

m

∣∣∣ , (3.12)

where the matrix T
(mp+j),(np+l)
m is obtained from Tm by deleting the (mp + j)th row and (np + l)th

column. If γn,ij = ∫ π−π einθdμij denotes the element of the matrix Γn in the position (i, j), where n ∈
{−m, . . . , m}, it follows that

BRij =
m∑

n=0

p∑
l=1

(−1)(m+n)p+j+l
∣∣∣T(mp+j),(np+l)

m

∣∣∣ γn−k,il. (3.13)
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Now it is easy to see that the right hand side of (3.13) is the determinant of the matrix Tm, where the

(mp + j)th row has been replaced by the vector

(γ−k,i1, . . . , γ−k,ip, γ−k+1,i1, . . . , γ−k+1,ip, . . . , γm−1−k,i1, . . . , γm−1−k,ip, γm−k,i1, . . . , γm−k,ip)

Consequently, if k ∈ {0, . . . , m − 1} the (mp + j)th and (kp + i)th row in this matrix coincide and we

have BRij = 0, which proves the first identity in (3.10).

For a proof of the second identity we note that in the case k = m and i /= j the same argument

yields Bij = 0. If k = m and i = j it follows that Bij is exactly the determinant of the matrix Tm, which

completes the proof of the first assertion of Theorem 3.1. �

In the following discussion we derive several consequences of the representations (3.6) and (3.7),

which will be useful to identify the canonical moments as Verblunsky coefficients. In particular we

determine the corresponding leading coefficients and identify the orthonormal polynomials with

respect to the measure μ. For this purpose recall that a matrix polynomial of the form (3.1) is called

monic, if the coefficient of the leading term is the identity matrix, that is An = Ip.

Corollary 3.2. For a given matrix measureμ on the unit circle letΨ R
m andΨ L

m be defined by (3.6) and (3.7)

and consider for m�N(μ) the matrix polynomials

ΦR
m(z) = Ψ R

m(z)|Tm|−1Rm, (3.14)

ΦL
m(z) = |Tm|−1LmΨ L

m(z), (3.15)

where the matrices Rm and Lm are defined by (2.13) and (2.12), respectively. The polynomials ΦR
m (and

ΦL
m) aremonic orthogonal matrix polynomials with respect to the right (and left) inner product 〈·, ·〉R (and

〈·, ·〉L).
Similarly, define for m�N(μ)

φR
m(z) = Ψ R

m(z)|Tm|−1R1/2m , (3.16)

φL
m(z) = |Tm|−1L1/2m Ψ L

m(z), (3.17)

then the matrix polynomial φR
m (and φL

m) are orthonormal polynomials with respect to the right (and left)

inner product 〈·, ·〉R (and 〈·, ·〉L). The leading coefficients of φR
m and φL

m are given by R
−1/2
m and L

−1/2
m ,

respectively.

Proof. In the first part wewill prove that the leading coefficients of the polynomialsΨ R
m(z) andΨ L

m(z)
defined by (3.6) and (3.7) are given by

LRm = |Tm|R−1
m , (3.18)

LLm = |Tm|L−1
m , (3.19)

respectively. With these representations we obtain from Theorem 3.1

〈Ψ R
m,Ψ

R
m〉R = |Tm|(LRm)∗; 〈Ψ L

m,Ψ
L
m〉L = |Tm|(LLm)∗

and the assertion of the corollary follows by a straightforward calculation.

In order to prove (3.18) and (3.19) we restrict ourselves to the first case; the second case is shown

similarly. Observing the definition of the determinants TR
ij (z) in (3.8) we obtain for the entry in the

position (i, j) of the leading coefficient of the matrix polynomial Ψ R
m(z)(

LRm

)
ij

= (−1)2mp+i+j|T(mp+j),(mp+i)
m |,

wherewehaveusedanexpansionof thedeterminantwith respect to the (mp + j)th rowand thematrix

T
(mp+j),(mp+i)
m is obtained from Tm by deleting the (mp + j)th row and (mp + i)th column. This means
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that (LRm)ij is the entry in the position (mp + i, mp + j) of the adjoint of the matrix Tm(i, j = 1, . . . , p),

and consequently LRm/|Tm| is the p × p block in the position (m + 1, m + 1) of the matrix T−1
m , which

is given by(
Γ0 − (Γ−m . . . Γ−1)T

−1
m−1(Γ−m . . . Γ−1)

∗)−1 = R−1
m

(see e.g. [14]). This proves the assertion (3.18) and completes the proof of the corollary. �

Weare now in a position to identify the canonicalmoments introduced inDefinition 2.3 as Verblun-

sky coefficients which are defined as coefficients in the Szegö relation of the matrix orthonormal

polynomials φL
n and φR

n . For this purpose we introduce for a given matrix polynomial Pn of degree n

the corresponding reversed polynomial

P̃n(z) = znPn

(
1

z̄

)∗
,

where z̄ denotes the complex conjugation of z ∈ C. Obviously we have for any p × pmatrix A

ÃPn(z) = P̃n(z)A
∗.

In the followingdiscussion letκR
m = R

−1/2
m andκL

m = L
−1/2
m (m = 1, . . . , N(μ) − 1)denote the leading

coefficients of the orthonormal matrix polynomials φR
m and φL

m with respect to the right and left inner

product induced by the matrix measure μ and define the matrices

ρR
m =

(
κR
m+1

)−1
κR
m and ρL

m = κL
m

(
κL
m+1

)−1
(m = 1, . . . , N(μ) − 1). (3.20)

Then it follows from [2] that there exist p × pmatrices Hm such that the orthonormal matrix polyno-

mial with respect to the measure μ on the unit circle satisfy the Szegö recursions

zφL
m(z) − ρL

mφL
m+1(z) = Hm+1φ̃

R
m(z), (3.21)

zφR
m(z) − φR

m+1(z)ρ
R
m = φ̃L

m(z)Hm+1. (3.22)

The matrices Hm are uniquely determined and called Verblunsky or reflection coefficients, because

they were introduced for the scalar case in two seminal papers by [25,26]. The final result of this

section shows that the Verblunsky coefficients coincide with the canonical moments introduced in

Definition 2.3.

Theorem 3.3. Let μ denote a matrix measure on the unit circle and assume that 0�m < N(μ). If Am+1

is the (m + 1)th canonical moment of μ defined in Definition 2.3 and Hm+1 is the (m + 1)th Verblunsky

coefficient defined by the Szegö recursions (3.21) and (3.22), then

Am+1 = Hm+1. (3.23)

Proof. Integrating the recursion (3.22) we obtain

〈Ip, zφR
m − φR

m+1ρ
R
m〉R = 〈Ip, φ̃L

mHm+1〉R
and

〈Ip, zΨ R
m〉R|Tm|−1R1/2m = 〈Ip, Ψ̃ L

m〉R|Tm|−1L1/2m Hm+1,

where we have used the orthogonality of the matrix polynomials Ψ R
m+1 stated in Theorem 3.1 and the

representations of the orthonormal polynomials φR
m and φL

m in Corollary 3.2. Observing Theorem 3.1

and the identity

〈Ip, Ψ̃ L
m〉R =

∫ π

−π
dμ(θ)eimθ

(
Ψ L

m(eiθ )
)∗ = 〈zmIp,Ψ L

m〉L = |Tm|Ip (3.24)
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yields

Hm+1 = L−1/2
m 〈Ip, Ψ̃ L

m〉−1
R 〈Ip, zΨ R

m〉RR1/2m (3.25)

= L−1/2
m |Tm|−1〈Ip, zΨ R

m〉RR1/2m .

The matrix polynomial Ψ R
m has the representation

Ψ R
m(z) = LRmz

m +
m−1∑
k=0

KR
k z

k,

whereKR
0 , . . . , K

R
m−1 denote p × pmatrices and the leading coefficient LRm is given by (3.18). Integrating

with respect to dμ(θ) gives

〈Ip, zΨ R
m〉R =

〈
Ip, z

m+1 +
m−1∑
k=0

KR
k

(
LRm

)−1
zk+1

〉
R

|Tm|R−1
m

and it follows from (3.25) that

Hm+1 = L−1/2
m 〈Ip, zm+1 +

m−1∑
k=0

KR
k

(
LRm

)−1
zk+1〉RR−1/2

m . (3.26)

Observing the definition of the canonical moments in (2.17) and the definition of the center (2.15) the

assertion of the Theorem follows if the identity〈
Ip, z

m+1 +
m−1∑
k=0

KR
k

(
LRm

)−1
zk+1

〉
R

= Γm+1 − (Γ1 . . . Γm) T−1
m−1 (Γ−m . . . Γ−1)

∗ . (3.27)

can be established. For this purposewe determine thematrices KR
k (k = 0, . . . , m − 1) explicitly using

the representation of the orthogonal matrix polynomials Ψ R
m in (3.6). From this definition it follows

that the element in the position (i, j) of the matrix KR
k is obtained by deleting the (mp + j)th row and

the (kp + i)th column in the determinant TR
ij (z) defined by (3.8), that is(

KR
k

)
ij

= (−1)(m+k)p+i+j|T(mp+j),(kp+i)
m |.

Here again T
(mp+j),(kp+i)
m denotes thematrix obtained Tm bydeleting the (mp + j)th rowand (kp + i)th

column, which coincides with the entry in the position (kp + i, mp + j) of the adjoint of the matrix

Tm. Consequently, it follows that(
KR
k

)
ij

= |Tm|(T−1
m )kp+i,mp+j

and the “vector”

1

|Tm|

⎛⎜⎜⎝
KR
0
...

KR
m−1

⎞⎟⎟⎠ ∈ (Cp×p)m

coincides with the right upper block of size mp × p of the matrix T−1
m . By a standard result in linear

algebra this block is given by

−T
−1
m−1(Γ−m . . . Γ−1)

∗R−1
m ,

which yields
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〈
Ip,

m−1∑
k=0

KR
k z

k+1

〉
R

=
m−1∑
k=0

Γk+1K
R
k

= (Γ1 . . . Γm)
(
(KR

0 )∗ . . . (KR
m−1)

∗)∗

= −|Tm|(Γ1 . . . Γm)T−1
m−1(Γ−m . . . Γ−1)

∗R−1
m .

Combining this result with the identity (LRm)−1 = Rm|Tm|−1 finally gives (3.27), which completes the

proof Theorem 3.3. �

4. Geronimus relations for monic polynomials

In this sectionwepresent a newproof of theGeronimus relations,whichprovide a representation of

the canonical moments (or Verblunsky coefficients) of a symmetric matrix measure on the unit circle

in terms of the coefficients in the recurrence relations of a sequence of orthogonal polynomials with

respect to an associatedmatrixmeasure on the interval [−1, 1]. There exists several alternative proofs
of these relations in the literature (see [27,2]), but the one presented here explicitly uses the theory

of canonical moments of matrix measures as introduced in [6]. As a by-product we derive several

interesting properties of the Verblunsky coefficients.

Tobeprecise letμC denote a symmetric (with respect to thepoint 0)matrixmeasureon theunit disk

(i.e. μC is invariant with respect to the transformation θ 	→ −θ ). We associate to μC a corresponding

matrix measure, say μI , on the interval [−1, 1], which is defined by the property∫ 1

−1
f (x)dμI(x) =

∫ π

−π
f (cos (θ))dμC(θ) (4.1)

for all integrable functions f defined on the interval [−1, 1]. Note that the relation Sz : dμC 	→ dμI is

called Szegömapping in the literature, where thematrix measureμI is usually defined on the interval

[−2, 2]. We will work with the interval [−1, 1] in this section, because this interval is also used in the

classical papers of [24] and [12] and in the monograph on canonical moments by [5].

Note that the inverse of the Szegö mapping (4.1) is characterized by the property∫ π

−π
g(θ)dμC(θ) =

∫ 1

−1
g(arccos (x))dμI(x), (4.2)

where g denotes any integrable function on ∂D with g(θ) = g(−θ) for all θ ∈ [−π ,π). For a proof

of the Geronimus relations we need several preparations. Our first result shows that the canonical

moments (or Verblunsky coefficients) of a symmetric matrix measure on the unit circle are hermitian

matrices. The resultwas also proved by [2].We provide here an alternative proof, because several steps

in the proof are used later.

Lemma 4.1. For any symmetricmatrixmeasureμC on the unit circle the corresponding canonicalmoments

Am are hermitian.

Proof. By the symmetry of thematrixmeasureμC wehaveΓk = ∫ π−π eikθdμC(θ) = ∫ π−π e−ikθdμC(θ)

= Γ−k which yields Γk = ∫ π−π cos (kθ)dμC(θ). Consequently, the block Toeplitz matrix associated

with μC is given by

Tm =
⎛⎜⎜⎝

Γ0 . . . Γm

...
. . .

...
Γm . . . Γ0

⎞⎟⎟⎠ . (4.3)

We denote by [A](k,l) the p × p block in the position (k, l) of the mp × mp− block matrix A. We will

show at the end of this proof that
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[
T

−1
m−1

]
(k,l)

=
[
T

−1
m−1

]
(m+1−k,m+1−l)

. (4.4)

From this identity and the property Γk = Γ ∗
k we obtain

(Γ1, . . . ,Γm)T−1
m−1(Γm, . . . ,Γ1)

∗ =
m∑

k,l=1

Γk

[
T

−1
m−1

]
(k,l)

Γm+1−l

=
m∑

k,l=1

Γm−k+1

[
T

−1
m−1

]
(m−k+1,m−l+1)

Γl

=
m∑

k,l=1

Γm−k+1

[
T

−1
m−1

]
(k,l)

Γl

= (Γm, . . . ,Γ1)T
−1
m−1(Γ1, . . . ,Γm)∗,

and by similar arguments

(Γ1, . . . ,Γm) T−1
m−1 (Γ1, . . . ,Γm)∗ = (Γm, . . . ,Γ1) T

−1
m−1 (Γm, . . . ,Γ1)

∗ . (4.5)

Observing the definition of the canonical moments Am+1 it now follows that

A∗
m+1 =

[
Γ0 − (Γm, . . . ,Γ1) T

−1
m−1 (Γm, . . . ,Γ1)

∗]−1/2

×
(
Γm+1 − (Γ1, . . . ,Γm) T−1

m−1 (Γm, . . . ,Γ1)
∗)∗

×
[
Γ0 − (Γ1, . . . ,Γm) T−1

m−1 (Γ1, . . . ,Γm)∗
]−1/2 = Am+1,

which proves the remaining assertion of Lemma 4.1.

Proof of the identity (4.4). The elements in the position (i, j) of the matrix [T−1
m−1](k,l) and

[T−1
m−1](m+1−k,m+1−l) are given by

|Tm−1|−1(−1)(l+k)p+i+j
∣∣∣T((l−1)p+j),((k−1)p+i)

m−1

∣∣∣
and

|Tm−1|−1(−1)(2m−l−k)p+i+j
∣∣∣T((m−l)p+j),((m−k)p+i)

m−1

∣∣∣ ,
respectively,where T

((m−l)p+j),((m−k)p+i)
m−1 denotes thematrix obtained from Tm−1 by deleting the (m −

l)p + j row and (m − k)p + i column (note that both expressions have the same sign). In the following

discussion we denote by A(·),(i) and A(j),(·) the matrix obtained from A by deleting the ith column or

the jth row, respectively. Then interchanging first columns and then rows yields∣∣∣T((l−1)p+j),((k−1)p+i)
m−1

∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Γ0 . . . Γk−2 Γ
(·),(i)
k−1 Γk . . . Γm−1

...
...

...
...

...

Γl−2 . . . Γ|l−k| Γ
(·),(i)
|l−k−1| Γ|l−k−2| . . . Γm−l+1

Γ
(j),(·)
l−1 . . . Γ

(j),(·)
|l−k+1| Γ

(j),(i)
|l−k| Γ

(j),(·)
|l−k−1| . . . Γ

(j),(·)
m−l

Γl . . . Γ|l−k+2| Γ
(·),(i)
|l−k+1| Γ|l−k| . . . Γm−l−1

...
...

...
...

...

Γm−1 . . . Γm−k+1 Γ
(·),(i)
m−k Γm−k−1 . . . Γ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Γm−1 . . . Γk Γ
(·),(i)
k−1 Γk−2 . . . Γ0

...
...

...
...

...

Γm−l+1 . . . Γ|l−k−2| Γ
(·),(i)
|l−k−1| Γ|l−k| . . . Γl−2

Γ
(j),(·)
m−l . . . Γ

(j),(·)
|l−k−1| Γ

(j),(i)
|l−k| Γ

(j),(·)
|l−k+1| . . . Γ

(j),(·)
l−1

Γm−l−1 . . . Γ|l−k| Γ
(·),(i)
|l−k+1| Γ|l−k+2| . . . Γl

...
...

...
...

...

Γ0 . . . Γm−k−1 Γ
(·),(i)
m−k Γm−k+1 . . . Γm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Γ0 . . . Γm−k−1 Γ
(·),(i)
m−k Γm−k+1 . . . Γm−1

...
...

...
...

...

Γm−l−1 . . . Γ|l−k| Γ
(·),(i)
|l−k+1| Γ|l−k+2| . . . Γl

Γ
(j),(·)
m−l . . . Γ

(j),(·)
|l−k−1| Γ

(j),(i)
|l−k| Γ

(j),(·)
|l−k+1| . . . Γ

(j),(·)
l−1

Γm−l+1 . . . Γ|l−k−2| Γ
(·),(i)
|l−k−1| Γ|l−k| . . . Γl−2

...
...

...
...

...

Γm−1 . . . Γk Γ
(·),(i)
k−1 Γk−2 . . . Γ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣T((m−l)p+j),((m−k)p+i)
m−1

∣∣∣
for someγ ∈ N, because the number of changed columns coincideswith the number of changed rows.

This implies (4.4) and completes the proof of Lemma 4.1. �

For the next step we need to define canonical moments of matrix measures on the interval [−1, 1].
Because the main arguments here are very similar to the proceeding in [6], who considered matrix

measures on the interval [0, 1], we only state the main differences without proofs. To be precise,

define for amatrixmeasureμI on the interval [−1, 1] themoments Sk = Sk(μI) = ∫ 1−1 x
kdμI(x)(k =

0, 1, . . .) and a vector cn(μI) = (S0(μI), . . . , Sn(μI)) ∈ (Cp×p)n+1. We consider the moment space

M(I)
n+1 = {cn(μI)|μI is a matrix measure on [−1, 1]} ⊂ (Cp×p)n+1 (4.6)

corresponding to the first nmoments ofmatrixmeasures on the interval [−1, 1]. For amatrixmeasure

μI on the interval [−1, 1] we define the block Hankel matrices Hj and Hj

H2m =
⎛⎜⎜⎝
S0 . . . Sm
...

. . .
...

Sm . . . S2m

⎞⎟⎟⎠ ,

H2m =
⎛⎜⎜⎝

S0 − S2 . . . Sm−1 − Sm+1

...
. . .

...
Sm−1 − Sm+1 . . . S2m−2 − S2m

⎞⎟⎟⎠ ,

H2m+1 =
⎛⎜⎜⎝

S0 + S1 . . . Sm + Sm+1

...
. . .

...
Sm + Sm+1 . . . S2m + S2m+1

⎞⎟⎟⎠ ,

H2m+1 =
⎛⎜⎜⎝

S0 − S1 . . . Sm − Sm+1

...
. . .

...
Sm − Sm+1 . . . S2m − S2m+1

⎞⎟⎟⎠ .
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We introduce the notation

h2m = (Sm, . . . , S2m−1)
T , h̄2m = (Sm−1 − Sm+1, . . . , S2m−3 − S2m−1)

T ,

h2m+1 = (Sm + Sm+1, . . . , S2m−1 + S2m)T , h̄2m+1 = (Sm − Sm+1, . . . , S2m−1 − S2m)T

and define S
+
1 = S0, S

+
2 = S0,

S
+
2m = S2m−2 − h̄T2mH

−1
2m−2h̄2m (m� 2), (4.7)

S
+
2m+1 = S2m − h̄T2m+1H

−1
2m−1h̄2m+1 (m� 1)

and S
−
1 = −S0,

S
−
2m = hT2mH

−1
2m−2h2m (m� 1), (4.8)

S
−
2m+1 = hT2m+1H

−1
2m−1h2m+1 − S2m (m� 1).

Note that the quantities S+
n and S−

n are determined by S0, . . . , Sn−1. It can be shown by the same argu-

mentas in [6] that for (S0, . . . , Sn−1) ∈ Int(Mn)andanymatrixmeasureμI on the interval [−1, 1]with

moments satisfying Sj(μI) = Sj (j = 0, . . . , n − 1), the moment of order n Sn(μI) = ∫ 1−1 x
ndμI(x)

satisfies

S−
n � Sn(μI) � S+

n , (4.9)

With these preparations we can define the canonical moments of a matrix measure on the interval

[−1, 1] with moments S0, . . . , Sn−1.

Definition 4.2. Let μI denote a matrix measure on the interval [−1, 1] with moments Sk = Sk(μI) =∫ 1−1 x
kdμI(x) (k = 0, 1, . . .) and define

N(μI) = min
{
k ∈ N|(S0, . . . , Sk) ∈ ∂M(I)

k+1

}
. (4.10)

For anyn = 0, . . . , N(μI) − 1 the (hermitian) canonicalmomentsof thematrixmeasureμI aredefined

by

Un+1 =
(
S
+
n+1 − S

−
n+1

)−1/2 (
Sn+1 − S

−
n+1

) (
S
+
n+1 − S

−
n+1

)−1/2
, (4.11)

where the quantities S
+
n+1 and S

−
n+1 are given by (4.7) and (4.8), respectively.

Note that [6] use a non-hermitian definition of canonical moments of matrix measures on the

interval [0, 1], that is
Un+1 =

(
S
+
n+1 − S

−
n+1

)−1 (
Sn+1 − S

−
n+1

)
. (4.12)

This non-hermitian definition turns out to be more useful when working with monic orthogonal

polynomials but in the present context the hermitian version has advantages.We are now in a position

to prove the main result of this section, which relates the canonical moments of a symmetric matrix

measure on the unit circle and the canonicalmoments of the associatedmatrixmeasure on the interval

[−1, 1] by the Szegö mapping. For this purpose recall the definition of the matrix ball Km in (2.14) and

the definition for thematrices Lm, Rm andMm (2.12), (2.13) and (2.15), respectively. If the givenmeasure

μC on the unit circle is symmetric, then it follows from (4.5)

Lm = Rm. (4.13)

The following result is the main step for the proof of the Geronimus relations.

Theorem 4.3. Let μC denote a symmetric matrix measure on the unit circle and denote by μI = Sz(μC)
the associated matrix measure on the interval [−1, 1] defined by the Szegö mapping (4.1). The canonical

moments An and Un of the matrix measures μC and μI satisfy
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An = 2Un − Ip; n = 1, . . . , N(μC).

Similarly, the nonsymmetric canonical moments Un defined in (4.12) satisfy

2Un − Ip = An; n = 1, . . . , N(μC), (4.14)

where the quantities An are given by

An = L
−1/2
n−1 AnL

1/2
n−1. (4.15)

Proof. We only prove the first part of the Theorem. The second part is shown by similar arguments.

Assume thatm < N(μC) and let Γ0,Γ1, . . . , denotemoments of thematrix measure on the unit circle

μC . For j = 0, 1, . . . we define Tj(x) = cos(j arccos x) as the jth (scalar) Chebychev polynomial of the

first kind, then it follows from (4.2) and from [20] that

Γj =
∫ π

−π
cos (jθ)dμC(θ) =

∫ 1

−1
Tj(x)dμI(x)

=
�j/2�∑
k=0

(−1)k
j(j − k − 1)!
k!(j − 2k)! 2j−2k−1Sj−2k, (4.16)

where Sl = ∫ 1−1 x
ldμI(x) (l = 0, 1, . . .) denote the moments of the associated matrix measure μI =

Sz(μC) on the interval. Recall the definition of S
+
m+1 and S

−
m+1 in (4.7) and (4.8), then there existmatrix

measures μ+
I and μ−

I on the interval [−1, 1] such that Sj = Sj(μ
±
I )(j = 0, . . . , m) and

S
+
m+1 =

∫ 1

−1
xm+1dμ+

I (x) and S
−
m+1 =

∫ 1

−1
xm+1dμ−

I (x).

We define

Γ
+
m+1 = 2mS

+
m+1 +

�(m+1)/2�∑
k=1

(−1)k
(m + 1)(m − k)!
k!(m − 2k + 1)! 2

m−2kSm+1−2k, (4.17)

Γ
−
m+1 = 2mS

−
m+1 +

�(m+1)/2�∑
k=1

(−1)k
(m + 1)(m − k)!
k!(m − 2k + 1)! 2

m−2kSm+1−2k. (4.18)

With the inverse Szegö mapping we obtain the symmetric measures μ+
C = (Sz)−1(μ+

I ) and μ−
C =

(Sz)−1(μ−
I )on theunit circle and the representation (4.16) yields that themeasuresμ−

C andμ+
C satisfy∫ π

−π
cos ((m + 1)θ)dμ+

C (θ) = Γ
+
m+1 and

∫ π

−π
cos ((m + 1)θ)dμ−

C (θ) = Γ
−
m+1.

Consequently, recalling the definition of the set Km in (2.14) we have Γ
+
m+1,Γ

−
m+1 ∈ Km and from the

extremal property of themoments S
+
m+1 and S

−
m+1 weobtain thatΓ

+
m+1,Γ

−
m+1 ∈ ∂Km. By thedefinition

of the setKm in (2.14) it therefore follows that the canonicalmomentsA
+
m+1 andA

−
m+1 corresponding to

matrixmeasuresμ+
C andμ−

C , respectively, are unitary.Moreover, Lemma4.1, implies that thematrices

A
+
m+1 and A

−
m+1 are hermitian, which yields(

A
+
m+1

)2 = Ip and
(
A
−
m+1

)2 = Ip.

Consequently all eigenvalues of the matrices A
+
m+1 and A

−
m+1 are given by −1 and 1.

We now define the matrices

Γ̃
+
m+1 = Mm + Lm and Γ̃

−
m+1 = Mm − Lm, (4.19)

which are obviously elements of the set Km because by (4.13) we have Lm = Rm. Consequently, there

exist matrix measures μ̃+
C and μ̃−

C such that Γj(μ̃
±
C ) = Γj(j = 0, . . . , m) and
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Γm+1(μ̃
+
C ) = Γ̃

+
m+1,

Γm+1(μ̃
−
C ) = Γ̃

−
m+1.

Without loss of generality we assume that μ̃+
C and μ̃−

C are symmetric with respect to the point 0

[otherwise use 1
2
(μ̃+

C (θ) + μ̃+
C (−θ))] and we define μ̃+

I = Sz(μ̃+
C ) and μ̃−

I = Sz(μ̃−
C ) as the asso-

ciated measures on the interval [−1, 1] with (m + 1)th moments S̃
+
m+1 and S̃

−
m+1, respectively. These

matrices satisfy the identities

Γ̃
+
m+1 = 2mS̃

+
m+1 +

�(m+1)/2�∑
k=1

(−1)k
(m + 1)(m − k)!
k!(m − 2k + 1)! 2

m−2kSm+1−2k,

Γ̃
−
m+1 = 2mS̃

−
m+1 +

�(m+1)/2�∑
k=1

(−1)k
(m + 1)(m − k)!
k!(m − 2k + 1)! 2

m−2kSm+1−2k.

From the inequalities (4.9) it follows that S
+
m+1 � S̃

+
m+1 and S̃

−
m+1 � S

−
m+1 (note that S̃

+
m+1 and S̃

−
m+1 are

moments of a matrix measure on the interval [−1, 1] with moments S0, . . . , Sm). On the other hand

we have

2m
(̃
S
+
m+1 − S

+
m+1

)
= Γ̃

+
m+1 − Γ

+
m+1

= Mm + Lm − (Mm + L1/2m A
+
m+1L

1/2
m )

= L1/2m

(
Ip − A

+
m+1

)
L1/2m

� 0,

because the eigenvalues of the matrix Ip − Am+1 are given by 0 and 2. So we obtain

S̃
+
m+1 = S

+
m+1,

while a similar argument shows

S̃
−
m+1 = S

−
m+1.

Consequently, it follows that

A
+
m+1 = Ip; A

−
m+1 = −Ip ;

Γ̃
+
m+1 = Γ

+
m+1; Γ̃

−
m+1 = Γ

−
m+1

and we obtain from the definitions of Γ̃
+
m+1, Γ̃

−
m+1 in (4.19)

Mm = 1

2
(Γ +

m+1 + Γ
−
m+1), Lm = 1

2
(Γ +

m+1 − Γ
−
m+1).

The definition of the (m + 1)th canonical moment Am+1 of thematrix measureμ and (4.17) and (4.18)

now imply

Am+1 = L−1/2
m (Γm+1 − Mm)L−1/2

m

=
(
1

2

(
Γ

+
m+1 − Γ

−
m+1

))−1/2 (
Γm+1 − 1

2

(
Γ

+
m+1 + Γ

−
m+1

)) (
1

2

(
Γ

+
m+1 − Γ

−
m+1

))−1/2

=
(
S
+
m+1 − S

−
m+1

)−1/2 (
2Sm+1 − (S+

m+1 + S
−
m+1)

) (
S
+
m+1 − S

−
m+1

)−1/2

= 2
(
S
+
m+1 − S

−
m+1

)−1/2 (
Sm+1 − S

−
m+1

) (
S
+
m+1 − S

−
m+1

)−1/2 − Ip

= 2Um+1 − Ip,
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where the last equality is a consequence of the definition of canonical moments of matrix measures

on the interval [−1, 1]. This proves the assertion of the theorem. �

Our final result gives the Geronimus relations for monic orthogonal matrix polynomials, which

generalize the results obtained by [12,9] for the scalar case. To be precise note that Corollary 3.2

together with (4.13) yield for the monic orthogonal polynomials ΦR
m and ΦL

m defined in (3.14) and

(3.15), respectively

ρL
mφL

m+1 = L−1/2
m ΦL

m+1, φR
m+1ρ

R
m = ΦR

m+1L
−1/2
m

φ̃R
m = L−1/2

m Φ̃R
m, φ̃L

m = Φ̃L
mL

−1/2
m .

Using these equations we obtain from (3.21) and (3.22) the Szegö recursion for the monic orthogonal

matrix polynomials with respect to a matrix measure on the unit circle, that is

zΦL
m(z) − ΦL

m+1(z) = A
∗
m+1Φ̃

R
m(z),

zΦR
m(z) − ΦR

m+1(z) = Φ̃R
m(z)Am+1.

Consequently, the matrices Am+1 defined by (4.15) are the Verblunsky coefficients corresponding to

the monic orthogonal polynomials and we obtain the following result.

Theorem 4.4. Let μC denote a symmetric matrix measure on the unit circle and denote by μI = Sz(μC)
the associated matrix measure on the interval [−1, 1] defined by the Szegö mapping (4.1). If P0, P1, . . .
are the monic polynomials orthogonal with respect to the matrix measure μI satisfying the three term

recurrence recursion

(1 + t)Pm+1(t) = Pm+2(t) + Pm+1(t)Cm+1 + Pm(t)Bm, (4.20)

(P0(t) = Ip, P−1(t) = 0p), then the matrices Bm and Cm+1 satisfy

Bm = 1

4
(Ip − A2m)(Ip − A

2

2m+1)(Ip + A2m+2),

Cm+1 = 1

2
(Ip − A2m+1)(Ip + A2m+2) + 1

2
(Ip − A2m+2)(Ip + A2m+3),

where the quantities An are defined in (4.15).

Proof. It follows analogously to [6] that the matrices Bm and Cm+1 are given by

Bm = (S2m − S
−
2m)−1(S2m+2 − S

−
2m+2),

Cm+1 = (S2m+2 − S
−
2m+2)

−1(S2m+3 − S
−
2m+3) + (S2m+1 − S

−
2m+1)

−1(S2m+2 − S
−
2m+2)

and that the non-hermitian canonical moments defined by (4.12) satisfy

2Vn−1Un = (Sn−1 − S
−
n−1)

−1(Sn − S−
n ),

whenever n�N(μI), where Vn = Ip − Un. Consequently, the assertion follows by a direct application

of the second part of Theorem 4.3. �
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