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thways hold the keys to unlocking the promise of adult tissue regeneration, and
to inhibiting carcinogenesis. Patients with mutations in the Adenomatous Polyposis Coli (APC) gene are at
increased risk of developing hepatoblastoma, an embryonal form of liver cancer, suggesting that Wnt affects
hepatic progenitor cells. To elucidate the role of APC loss and enhanced Wnt activity in liver development, we
examined APC mutant and wnt inducible transgenic zebrafish. APC+/− embryos developed enlarged livers
through biased induction of hepatic gene programs and increased proliferation. Conversely, APC−/− embryos
formed no livers. Blastula transplantations determined that the effects of APC loss were cell autonomous.
Induction of wnt modulators confirmed biphasic consequences of wnt activation: endodermal pattern
formation and gene expression required suppression of wnt signaling in early somitogenesis; later, increased
wnt activity altered endodermal fate by enhancing liver growth at the expense of pancreas formation; these
effects persisted into the larval stage. In adult APC+/− zebrafish, increased wnt activity significantly
accelerated liver regeneration after partial hepatectomy. Similarly, liver regeneration was significantly
enhanced in APCMin/+ mice, indicating the conserved effect of Wnt pathway activation in liver regeneration
across vertebrate species. These studies reveal an important and time-dependent role for wnt signaling
during liver development and regeneration.
Introduction
Patients with APC mutations develop multiple colonic polyps and
eventually coloncancer (Kinzleret al.,1991). Approximately 1%of people
who carry an APC mutation develop an embryonal form of liver cancer,
hepatoblastoma (Hirschman et al., 2005), which is thought to originate
from hepatic progenitor cells; there is a 1000-fold greater risk in these
patients than the general population to develop this type of liver cancer.
This suggests that increased β-catenin activity caused by APC loss
influences the earliest steps of hepatic development and that its
dysregulation leads to neoplasia. Furthermore, alterations in the Wnt
signaling pathway have been found in a significant fraction of cases of
hepatocellular carcinoma (β-catenin 20%, Axin 10%) and cholangiocarci-
gy/Oncology, HHMI, Children’s
ircle, Boston, MA 02115, USA.

).
nomas (β-catenin 8%, APC 12%, Axin 42%) (Taniguchi et al., 2002;
Tokumoto et al., 2005), indicating that Wnt acts on several cell types in
the liver to induce carcinogenesis. As these data suggest that manipula-
tion of Wnt activity may be therapeutically beneficial to patients with
liver disease, we sought to characterize the effects of APC loss and
increased wnt activity during liver development and regeneration.

Wnt signaling and its main transcriptional mediator, β-catenin,
play important roles in controlling tissue patterning, cell fate
decisions, and proliferation in many embryonic contexts, including
organ development and differentiation (Clevers, 2006). In the absence
ofWnt signaling, β-catenin is phosphorylated through the destruction
complex consisting of APC, Axin, and Glycogen Synthase Kinase (GSK)
3β, and targeted for degradation. Binding of Wnt ligand to cell surface
receptors allows β-catenin to accumulate in the cytoplasm and
translocate to the nucleus, where it modulates target gene expression.

The role of wnt signaling in endodermal development was initially
described in Caenorhabditis elegans (Lin et al., 1995), and is highly
evolutionarily conserved (Heasman et al., 2000). Early embryonic
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lethality of mice with homozygous deletion of β-catenin initially
precluded an analysis of the role of Wnt/β-catenin signaling in
vertebrate endodermal development (Haegel et al., 1995). Inducible
inactivation of β-catenin subsequently revealed a requirement of wnt/
β-catenin signaling for intestinal development (Ireland et al., 2004).
APCMin homozygous mutant mice, with dysregulated β-catenin
activity, fail to form distal visceral endoderm and are embryonic
lethal (Chazaud and Rossant, 2006; Moser et al., 1995). Heterozygote
mice are viable and develop intestinal neoplasia as adults (Su et al.,
1992). The effects of heterozygous APC loss on wnt/β-catenin activity
and liver development have not been studied in detail.

The liver develops from anterior endodermal progenitor cells. In
the zebrafish, endodermal progenitors fated to become liver are
identifiable between the 18 somite stage (16 h post fertilization (hpf))
and 24 hpf as a thickening in the anterior endoderm and a restriction
of previously pan-endodermal gene expression (Field et al., 2003). As
the endoderm develops further, the liver primordium appears as a
prominent bud extending to the left from the midline over the yolk
sac. At 48 hpf the liver expresses mature markers such as liver fatty
acid binding protein (lfabp) (Her et al., 2003). Hepatic growth continues
through the embryonic and larval stages as the zebrafish liver further
differentiates (Wallace and Pack, 2003). The morphogenesis of the
endoderm is organized differently in other vertebrate species, such as
Xenopus andmice (Zorn andWells, 2007). Themolecular mechanisms,
identified to date, that initiate and control liver development,
however, appear to be well conserved across vertebrate species
(Stainier, 2002).

Biochemical analysis of embryonic murine livers and knockdown
studies in liver cultures suggested a role for β-catenin in hepatocyte
proliferation (Micsenyi et al., 2004; Monga et al., 2003). More recently,
the zebrafish wnt2bb mutant prometheus (prt) demonstrated that
mesodermally derived wnt signaling plays a critical role in regulating
liver growth during embryogenesis (Ober et al., 2006). Homozygous
prt mutants showed decreased expression of early liver genes hhex
and prox1 at 24 hpf, and have delayed liver formation. In contrast,
McLin et al. demonstrated the need for wnt repression in the anterior
endoderm for proper liver development in Xenopus (McLin et al.,
2007). It remains to be determined whether these findings are
mutually exclusive, suggesting species-specific variations in signaling
requirements, or whether they reflect changing temporal require-
ments during liver development. Supporting this paradigm, previous
studies have revealed alterations in β-catenin levels between pre- and
postnatal liver development (Apte et al., 2007; Micsenyi et al., 2004).

During liver regeneration, Wnt signaling is activated shortly after
liver resection (Monga et al., 2001). Furthermore, both morpholino
knockdown and conditional ablation of β-catenin in mice results in
decreased regeneration following partial hepatectomy (Sekine et al.,
2007; Sodhi et al., 2005; Tan et al., 2006). To date, however, it has not
been shown whether enhanced activation of wnt signaling confers a
growth advantage that would accelerate liver regeneration.

To characterize the role of progressive APC loss and increased
levels of wnt/β-catenin signaling during liver development and
generation, we utilized APC mutant zebrafish (Hurlstone et al.,
2003). The heterozygous mutants are at increased risk of developing
intestinal, pancreas and liver tumors in adulthood (Haramis et al.,
2006). The liver tumor histology resembles that of hepatoblastomas,
suggesting an effect of wnt activation on hepatic progenitor cells. We
found that there is a cell autonomous differential response to wnt
activation: APC+/− mutants exhibited increased embryonic liver size,
while APC−/− status led to an absent liver and embryonic death.
Furthermore, we demonstrated biphasic effects of wnt activation
during hepatogenesis; early wnt induction led to diminished
endoderm formation and failure to specify liver, while wnt activation
in mid-somitogenesis influenced endodermal progenitor fate deci-
sions, resulting in increased liver size and decreased pancreas
formation. These data suggest that β-catenin signaling affects both
endodermal and hepatic progenitor cells. We also demonstrated that
enhancedwnt/β-catenin activation accelerates liver regeneration, and
that this response is conserved throughout vertebrate species. Our
study reveals the WNT signaling pathway as an attractive pharmaco-
logical target to manipulate hepatic progenitor cells and to accelerate
liver regeneration in humans.

Materials and methods

Zebrafish husbandry

Zebrafish were maintained according to IACUC protocols. The lfabp:GFP, gut:GFP,
ptf1α:GFP, hs:wnt8-GFP, hs:dnTCF-GFP, and hs:dkk-GFP transgenic lines were
described previously (Dorsky et al., 2002; Her et al., 2003; Lewis et al., 2004;
Ober et al., 2003; Pisharath et al., 2007; Stoick-Cooper et al., 2007; Weidinger et al.,
2005). Genotyping for APC mutants was performed as described; the wild-type and
mutant bands can be distinguished in a single reaction for each sample (Hurlstone
et al., 2003).

Heat-shock modulation of wnt signaling

Embryonic heat-shock experiments were conducted at 38 °C for a duration of
20min. Genotypewas determined by the presence of GFP fluorescence at 3 h post heat-
induction; sorted non-fluorescent (wild-type) siblings were used as controls.

Morpholino knockdown

Morpholinos (GeneTools) directed against zebrafish β-catenin (Lyman Gingerich et
al., 2005) or mismatched controls were injected into zebrafish embryos at the one-cell
stage at a concentration of 40 μM; injection experiments were replicated ≥3 times.

Blastula transplantation

Embryos were harvested, pronased, and manually dechorionated. 50–100
blastomeres were removed from a donor embryo at the 1000-cell stage and injected
at the blastodermmargin of a recipient. Matched donors and recipients were arrayed in
multi-well plates until further analysis and genotyped as described for APC.

In situ hybridization

Paraformaldehyde-fixed embryos were processed for in situ hybridization using
standard zebrafish protocols (http://zfin.org/ZFIN/Methods/ThisseProtocol.html). The
following RNA probes were used to detect alterations in endodermal development: GFP,
lfabp, sterol carrier protein, transferrin, foxa3, sox17, hhex, prox1, pdx1, insulin, trypsin,
and ifabp. Changes in expression compared to wild-type controls are reported as the #
altered/# scored per genotype; a minimum of 3 independent experiments of n≥25
embryos were conducted per analysis.

Immunohistochemistry

Zebrafish embryos, adults and en-bloc abdominal sections as well as resected
murine livers were fixed with paraformaldehyde, paraffin embedded and cut in 10 μm
serial step-sections for histological analysis. Hematoxylin/eosin staining was performed
on alternate sections using standard techniques. Antibodies to β-catenin (1:100, BD
61054), TUNEL (Chemicon International), BrdU (1:2000, Sigma BU-33), and PCNA (1:80,
Calbiochem PC10) were visualized by DAB and counterstained with hematoxylin or
methylene green. Cell counts were quantified in 5 corresponding sections/genotype for
each stain.

Caspase assay

Single embryos (n=5 per genotype, two independent experiments) were manually
dissociated in lysis buffer and centrifuged. Supernatant (100 μl) was used for the
Caspase-Glo 3/7 assay according to manufacturer’s protocol (Promega). DNA isolated
from the cell pellet was used to confirm APC genotype.

Confocal microscopy

GFP transgenic zebrafish embryos were embedded in 1% lowmelting point agarose
containing 0.04 mg/ml Tricaine-S in glass-bottom culture dishes. Microscopy was
performed using a Zeiss LSMMeta confocal microscope. A minimum of 10 embryos per
genotype were imaged over 3 independent experiments.

Flow cytometry analysis

Whole individual fluorescent embryos were manually dissociated in 0.9% PBS and
analyzed for % GFP or dsRed positive fluorescence by flow cytometry; 20,000 cells were
analyzed per sample (n=10–20/genotype). Genotyping for APC was performed by PCR
on excess cells following analysis.

http://zfin.org/ZFIN/Methods/ThisseProtocol.html
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qPCR

qPCR was performed using primer sets for cyclind1, cmyc, foxa3, sox17, hhex, prox1,
pdx1, and lfabp (Supplementary Table 1). Embryos were treated as described, and RNA
was extracted from pooled cohorts (n=50) of whole embryos. qPCR (60 °C annealing
temperature) was performed using SYBR Green Supermix on the iQ5 Multicolor RTPCR
Detection System (BioRad) and relative expression levels were determined. At least 3
independent experiments with 3–5 samples were performed for each gene.

Liver resection

Following administration of tricaine anesthetic (0.04 mg/ml), 1/3 partial hepatect-
omy of the adult zebrafish liver was performed under brightfield imaging on a
dissection microscope. The incision was made using microdissection scissors posterior
to the heart on the left lateral portion of the abdomen. Forceps were utilized to resect
the entire length of the inferior liver lobe. Ultrasound analysis was performed using a
Vevo770 high-frequency ultrasound machine (Visualsonics, Toronto) as described
(Goessling et al., 2007). Murine liver resections were performed as described (Greene
and Puder, 2003).

Results

APC loss and β-catenin levels affect liver development

To determine the effects of β-catenin dysregulation on liver
organogenesis, we utilized zebrafish that carry a mutation in the APC
gene, an essential component of the β-catenin destruction complex.
APC+/− zebrafish were crossed into a lfabp:GFP reporter line, and liver
size was assessed by fluorescence microscopy. At 72 hpf, APC+/−;
lfabp:GFP embryos showed a dramatic increase in liver size (265
altered/297 scored), compared to wild-type siblings (Figs. 1A, B, D).
Flow cytometric analysis of GFP+ cells in APC+/−; lfabp:GFP mutants
revealed a three-fold increase in hepatocytes per embryo, as
compared to wild-type controls (Figs. 1E, F, H; APC+/+ 1.00±0.37%;
APC+/− 2.65±0.62%; APC−/−- 0.20±0.10%; ANOVA, n=10, pb0.00001);
genotyping of GFP+ cells demonstrated the presence of both the
wild-type and mutant APC allele in the livers of APC+/− embryos
confirming this phenotype was specific to the heterozygous APC
state and not due to somatic loss of heterozygosity (LOH) at the APC
allele. In contrast, no GFP expression could be detected in homo-
zygous APC−/− mutant embryos (134/134) at any stage of develop-
ment (Figs. 1C and G); APC−/− embryos exhibit a myriad of
developmental defects as reported previously, however, they are
viable to 120 hpf+, significantly past the initiation of lfabp:GFP
expression in the maturing liver (Hurlstone et al., 2003; Nadauld et
al., 2006). To ensure that the observed phenotypic changes in liver
development were not due to a variation in the expression of lfabp,
we performed in situ hybridization for other liver-specific transcripts,
sterol carrier protein and transferrin (data not shown), and obtained
similar results. Hepatocyte nuclei counts in corresponding histological
sections of 72 hpf embryos corroborated the differential effects of APC
loss on liver development (Figs. 1I–L). The hepatocyte numbers
consistently showed significant three-fold increases in the APC+/−

embryos (93.3±20.4 vs. 39.7±3.1; t-test, n=5, p=0.004). Overall hepa-
tocyte morphology, however, showed no differences between wild-
type and APC+/− samples, indicating that cell number alone was re-
sponsible for the increased liver size. In serial sections through APC−/−

mutants, no hepatocytes could be detected. These data demonstrate
that progressive loss of APC does not have linear effects on liver
development.

β-catenin levels mediate the liver phenotypes in APC mutants

As APC regulates the availability of β-catenin in the nucleus, we
next used immunohistochemistry to examine the cellular content and
localization of β-catenin within hepatocytes in incrosses of APC+/−

mutants at 72 hpf (Figs. 2A–D). In wild-type embryos hepatocytes
exhibited primarily membrane-bound β-catenin (Fig. 2A). The livers
of APC+/− heterozygous mutants, however, demonstrated a 4-fold and
5-fold increase in cytoplasmic and nuclear β-catenin, respectively
(Figs. 2B and D; cytoplasmic: APC+/−, 39.4±13.4% vs. wt, 9.8±3.8%;
n=5, p=0.0006; nuclear: APC+/−, 20.8±8.2% vs. wt, 4.3±1.8%; n=5,
p=0.0012). The absence of liver formation precluded an assessment of
β-catenin distribution in hepatocytes of APC−/− embryos; the endo-
dermal tissue, however, exhibited intense β-catenin staining (Fig. 2C),
consistent with complete impairment of APC-mediated destruction.

To determine whether increased β-catenin causes both the
enlarged liver in APC+/− embryos and the failure of liver development
in APC−/− mutants, we reduced β-catenin levels through a morpholino
antisense oligonucleotide (MO) strategy (Supplementary Figs. 1A–C).
We injected β-catenin (Lyman Gingerich et al., 2005) or mismatched
control MOs into progeny of an APC+/− incross, performed in situ
hybridization for lfabp, scored the liver phenotypes, and then
genotyped each embryo (Figs. 2E–I). Injection of the control MO did
not alter the enlarged liver of APC+/− heterozygotes or the absence of
liver in APC−/− homozygotes (Fig. 2E left panel). Injection of a low dose
of β-catenin MO did not change the gross morphology of any of the
progeny of the APC+/− incross. However, 75% (94/126) of APC+/−

heterozygotes injected with β-catenin MO now displayed a normal,
not enlarged, liver phenotype (Figs. 2E right panel, F and G). In
addition, 43% (10/23) of APC−/− homozygotes injected with β-catenin
MO now showed lfabp expression (Figs. 2E right panel, H and I).
Although expression of lfabp was rescued, these APC−/− embryos still
exhibited other severe developmental defects and were not viable
beyond 120 hpf. These data suggest that enhanced wnt activity
resulting from loss of APC acts through β-catenin to cause both the
enlarged liver phenotype of APC+/− heterozygotes and the loss of liver
in APC−/− homozygotes.

APC loss leads to altered endodermal proliferation and apoptosis

Wnt/β-catenin signaling is known to mediate effects on cellular
proliferation and apoptosis in a variety of tissues (Alonso and Fuchs,
2003; Pinto et al., 2003; Reya et al., 2003). To determine whether the
increase in total hepatocyte numbers in the APC+/− embryos was due
to increased proliferative activity, we examined BrdU incorporation at
72 hpf (Figs. 3A–D). APC+/− embryos had a significant increase of BrdU-
positive cells per liver compared to wild-type (Figs. 3A, B, D; APC+/−

33.8±12.6% vs. wt 11.3±7.4%; n=5, p=0.016). BrdU incorporation in
APC−/− embryos was high in the endodermal region, but the lack of
liver tissue precluded further analysis in hepatocytes (Fig. 3C).
Aberrant wnt signaling due to APC loss in the intestine and developing
brain leads first to a block in differentiation and later to apoptosis
(Chenn and Walsh, 2002; Sansom et al., 2004). To assess whether the
failure of APC−/− embryos to develop hepatocytes resulted in apoptotic
cell death, we evaluated TUNEL staining at 24 and 72 hpf. At 24 hpf, no
significant cell death was seen in the endoderm of APC−/− mutants
(Supplementary Figs. 2A–C). By 72 hpf, numerous TUNEL+ cells were
found along the entire length of the endoderm in APC−/− mutants (Fig.
3G), including the area where liver development failed to occur. Wild-
type and APC+/− mutants continued to show minimal apoptotic
activity (Figs. 3E and F). Similarly, caspase activity, a marker of
apoptosis, was markedly elevated in APC−/− embryos compared to
wild-types at 72 hpf (Fig. 3H; ANOVA, n=10/genotype, pb0.00001).
Together, these data demonstrate that apoptosis is likely the
consequence of improper specification or differentiation of endoder-
mal progenitor cells.

APC loss results in altered endodermal progenitor development

The previous results in the APC mutants suggested that wnt
signaling may affect endodermal and hepatic progenitor cells. To
determine the effects of progressive APC loss on these cells, foxa3
expression was examined at 24 and 48 hpf. Compared to wild-type
siblings (Figs. 4A and D), APC+/− embryos exhibited enlarged liver buds



Fig. 1. APC loss has differential effects on liver development. Zebrafish embryos were analyzed at 72 hpf. (A–C) Fluorescence microscopy of progeny of an APC+/−; lfabp:GFP incross
revealed differences in liver size. (D) Graphic representation of the liver phenotypes (5 independent clutches; n=584) shows a Mendelian distribution. (E–G) Total hepatocytes per
embryo were quantified by flow cytometry for GFP in each APC genotype (green gate) and confirmed the differential effects of APC loss on liver cell number (APC+/+ 1.00±0.37%
(% GFP+ hepatocytes of 20,000 total embryo cells counted±SD); APC+/− 2.65±0.62%; APC−/− 0.20±0.10%; ANOVA, n=10, pb0.00001); (H) APC+/− embryos have significantly more
hepatocytes than wild-type controls, while APC−/− embryos have no GFP+ hepatocytes. (I–K) H+E liver sections (10 μm) from wild-type, APC+/−, and APC−/− embryos (40×)
corroborated the effects of APC mutations; (L) APC+/− embryos had increased hepatocytes per section compared to controls (93.3±20.4 vs. 39.7±3.1; t-test, n=5, p=0.004).
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and diminished pancreatic buds (Figs. 4B and E; 35/49). APC−/− embryos
failed to pattern endoderm, including the liver bud, appropriately
(Figs. 4C and F; 23/25). Similar results were found using the hepatic
progenitor marker hhex (Supplementary Figs. 3A–C) and by in vivo
fluorescence analysis of APC+/−; gut:GFP incross progeny at 48 hpf
(Figs. 4G–I). Quantitation of endodermal progenitors by FACS analysis of
APC+/−; gut:GFP embryos demonstrated increased GFP+ cells compared
to wild-type siblings, and decreased numbers in APC−/−; gut:GFP siblings
(Fig. 4J; wt 1.56±0.063%; APC+/− 0.99±0.099%; APC−/− 0.19±0.089%;
ANOVA, n=10/genotype, pb0.00001). These findings were confirmed
by qPCR at 48 hpf for foxa3, hhex and lfabp (Fig. 4K). These data imply
that both endodermal patterning and cellular proliferation are regulated
by APC loss and that wnt/β-catenin signaling influences both endoder-
mal and hepatic development.

wnt signaling has biphasic effects on endodermal and liver development

To determine how wnt activity exerts opposing effects on
endodermal differentiation and liver growth during development,
we used inducible transgenic zebrafish expressing wnt8. wnt activa-
tion at the 1 somite (10 hpf) stage caused significant cardiac edema,
reduced body length, and absence of liver formation, reminiscent of
APC−/− mutants (Figs. 5A and B; 49/52). In contrast, induction of wnt8
at 10 somites (14 hpf) resulted in markedly enlarged livers compared



Fig. 2. β-catenin levels mediate differential liver phenotypes in APC mutant zebrafish. (A–D) IHC for β-catenin at 72 hpf (40×, close-up as inset) revealed an increase in both
cytoplasmic (APC+/−: 39.4±13.4% (% of hepatocytes with cytoplasmic β-catenin±SD) vs. 9.8±3.8%; n=5, p=0.0006) and nuclear staining (20.8±8.2% vs. 4.3±1.8%; n=5, p=0.0012) in
the hepatocytes of APC+/− embryos compared towild-type. While liver-specific IHC could not be performed in the APC−/−embryos, β-catenin staining was widely positive in the region
of the endoderm. (E–I) MO (40 μM) injected in the progeny of an APC+/− incross at the one-cell stage revealed a shift in liver phenotype distribution. (E) A graphical depiction of the
shift in distribution of liver phenotypes with correlated genotypes in β-catenin MO injected embryos compared to controls. Distribution of control MO phenotypes (genotype): 59/
234 normal (92% APC+/+, 8% APC+/−), 114/234 big (APC+/−), 61/234 absent (APC−/−); β-catenin MO phenotypes: 156/211 normal (40% APC+/+, 60% APC+/−), 32/211 big (APC+/−), 13/211
absent and 10/211 rescue (APC−/−). (F–I) Representative lfabp in situ hybridization phenotypes observed in β-catenin MO injected embryos at 72 hpf.
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to heat-shocked wild-type controls (Fig. 5C; 141/173). Transient wnt
activation at time points from 24 to 48 hpf produced a moderate
increase in liver size at 72 hpf (Supplementary Figs. 4A–D). Global
inhibition of wnt signaling by induction of dnTCF (Supplementary Figs.
4E–J) or dkk (data not shown) severely diminished liver size compared
to controls.

The expression of hepatocyte-specific genes such as lfabp begins at
~44 hpf. Liver specification, however, occurs between 18 somites
(16 hpf) and 24 hpf. The results obtained in the heat-shock embryos
suggest that the wnt-mediated effects on liver development origi-
nated prior to the formation of the mature organ at, or slightly before,
the stage at which the fate of endodermal progenitors is determined.
To investigate the effects of wnt induction on the endodermal
progenitor cell population, expression of the pan-endodermal marker
foxa3 was analyzed at 24 and 48 hpf. Induction of wnt8 at 1 somite
(10 hpf) resulted in a failure of foxa3 positive cells to extend along the
anterior–posterior axis at 24 hpf (Figs. 5D and E; 36/45) and in a lack of
liver and pancreatic bud formation at 48 hpf (Figs. 5G and H; 45/61). In



Fig. 3. Endodermal proliferation and cell death are dependent on β-catenin levels. (A–D)
BrdU incorporation in liver sections corresponding to Figs. 1I, J was significantly
upregulated in APC+/− embryos (33.8±12.6% vs.11.3 ± 7.4%; n=5, p=0.016, 40 x), and also
in the endodermal region of APC−/− embryos. (E–H) TUNEL staining demonstrated no
apoptosis in wild-type and APC+/− embryos, while a high number of TUNEL+ cells were
found in the endoderm of APC−/− embryos. (L) Caspase-3 and 7 activity was significantly
increased in APC−/−mutants compared towild-type and APC+/− (ANOVA, n=10/genotype,
pb0.00001). Significant differences are indicated with an asterisk (⁎).

166 W. Goessling et al. / Developmental Biology 320 (2008) 161–174
contrast, a significant increase in the number of foxa3 positive cells
was observed at 24 hpf following heat-shock activation at 10 somites
(14 hpf; Fig. 5F; 52/67), leading to a markedly enlarged liver bud and a
diminished pancreatic anlage at 48 hpf (Fig. 5I; 52/78).

To analyze the molecular mechanisms by which wnt activation
regulates endoderm development, qPCR was performed at 24 hpf
following wnt8 induction at 1 or 10 somites (Fig. 5J). The well-known
wnt target genes cyclind1 and cmyc were induced following wnt8
activation at both 1 and 10 somites (10 and 14 hpf), confirming
upregulation of wnt activity. Expression of the pan-endodermal genes
foxa3 and sox17 was severely diminished after wnt8 induction at 1
somite (10 hpf), and increased after heat-shock at 10 somites (14 hpf);
the hepatic progenitor markers hhex and prox1were similarly affected.
Pdx1 expression, as a marker of pancreatic progenitors, was
diminished in response to wnt8 induction at both 1 and 10 somites
(10 and 14 hpf). These results were confirmed by in situ hybridization
for hhex and pdx1 (Supplementary Figs. 4K–P). Taken together, these
results demonstrate that early wnt induction inhibits the proliferation
and organization of endodermal progenitors, while later induction of
wnt promotes the specification and growth of hepatic progenitors.

APC loss affects liver formation in a cell autonomous manner

To determine whether the effects of APC loss on liver formation
were cell autonomous, we conducted blastula transplant experiments.
First, progeny of an incross of APC+/−; lfabp:GFP fish were used as
donors for blastula transplants into wild-type recipients, and the
presence of GFP+ hepatocytes was assessed at 72 hpf (Fig. 6A). Both
wild-type and APC+/−derived donor blastomeres contributed to liver
formation (Figs. 6B and C; wt 4 GFP+/28 examined; APC+/− 12/38),
whereas APC−/−derived donor blastomeres did not (0/15, Fisher’s exact
test, p=0.025). Using a reciprocal transplantation strategy (Fig. 6D),
we found that wild-type donor blastomeres contributed to liver
formation in wild-type and APC+/− hosts at 72 hpf (Figs. 6E and F).
Wild-type blastomeres injected into APC−/− mutants also gave rise to
lfabp-expressing hepatocytes, which were unable to recapitulate the
formation of an entire liver, but aligned into cord-like structures (Fig.
6G). Together, these data indicate that APC has a cell autonomous role
in modulating wnt activity during liver formation.

β-catenin activation in APC mutants results in altered endodermal fate

As all populations of endodermal progenitors appeared to be
affected by APC loss or wnt activation, mature endodermal organs
were examined for consequences of this early alteration in develop-
ment. Insulin and trypsin expression, indicative of endocrine and
exocrine pancreas differentiation, respectively, were decreased in
APC+/− embryos at 72 hpf (Supplementary Figs. 5A, B, D, E). In APC−/−

mutants, insulin expression was reduced, but still detectable, while
trypsin expression was virtually absent (Supplementary Figs. 5C and
F). The effect of APC loss on differentiated intestine as marked by
expression of intestinal fatty acid binding protein (ifabp) was similar to
the liver: APC+/− embryos had increased ifabp staining compared to
wild-type, while APC−/− embryos failed to express ifabp (Supplemen-
tary Fig. 5G–I). Induction of wnt8 at 10 somites (14 hpf) had similar
effects on each endodermal organ but resulted in more disorganized
patterning, especially of the pancreas (data not shown). These data
demonstrate that nascent wnt/β-catenin signaling regulates endo-
dermal development prior to organ specification, and that this effect
mediates a shift in the differentiation of endodermal progenitors
towards liver at the expense of pancreatic tissue. In addition, early
excess wnt/β-catenin activation leads to a failure of endodermal
specification and proliferation that results in elevated endodermal
cell death and the inability to develop mature endodermal organs.

wnt/β-catenin signaling enhances hepatocyte growth

In order to determine if elevated wnt activity continued to
influence not only the specification and proliferation of endodermal
progenitors, but had persistent effects on the growth of mature cell
populations in the larval stage, we assessed liver size by in vivo
confocal microscopy in lfabp:GFP larvae at 144 hpf. Additionally, we
quantified the differences in total cell number betweenwild-type and
APC+/− fish by FACS. Here, we determined that differences in liver size
persist between wild-type and APC+/− larvae (Supplementary Figs. 6A
and B), however, the change in hepatocyte number (Supplementary
Fig. 6C; 1.5-fold) is smaller than seen at 72 hpf (3-fold). In addition,
using ifabp:dsRed and ptf1α:GFP fish, we found that total cell number
in both the intestine and pancreas also remained altered in larval
stages (Supplementary Figs. 6D–I). These effects on cell number may
simply persist from the earlier influence of wnt activity on
endodermal progenitor proliferation or could reflect a role of wnt in
regulating the growth of mature endodermal populations.



Fig. 4. APC loss affects endodermal and hepatic progenitor cells. (A–C) In situ hybridization for foxa3 revealed changes in endodermal progenitor organization in APCmutant embryos
as early as 24 hpf. (D–F) By 48 hpf, this led to a progressive increase in hepatic and corresponding decrease in pancreatic buds in the APC+/− embryos (35 altered/49 scored), while the
APC−/− embryos failed to develop an organized endodermal pattern (23/25). (G–I) In vivo confocal fluorescence imaging of gut:GFP transgenic embryos at 48 hpf revealed similar
effects on endodermal patterning. (J) FACS analysis demonstrated a doubling in the number of gut:GFP+ (green gate) endodermal progenitor cells in APC+/− embryos compared to
wild-type controls; GFP+ cells were severely diminished in APC−/− embryos (APC+/+ 1.56±0.063%; APC+/− 0.99±0.099%; APC−/− 0.19±0.089% of 20,000 cells analyzed; ANOVA, n=10/
genotype, pb0.00001). (K) qPCR analysis confirmed the increased expression levels of foxa3, hhex and lfabp in APC+/− (blue) embryos and the depressed/absent expression in APC−/−

(green) embryos at 48 hpf (ANOVA, n=10/category, pb0.05).
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To confirm that wnt/β-catenin signaling could also mediate an
effect on the growth of differentiated hepatocytes, wnt8 expression
was induced at 48 hpf. This resulted in a 2-fold increase in liver size
both by confocal microscopy of lfabp:GFP fish (data not shown) and in
GFP+ cells by FACS at 72 hpf (Supplementary Fig. 6J). wnt8-induced
embryos still possessed increased numbers of GFP+ hepatocytes at



Fig. 5.wnt signaling regulates endoderm development prior to liver specification. Heat-shock inducible wnt8-GFP or control embryos were incubated for 20 mins at 38 °C at various
time points between 50% epiboly and 48 hpf, and were analyzed for alterations in liver size at 72 hpf by in situ hybridization for lfabp. (A, B) Induction ofwnt8 at 1 somite (10 hpf) led
to grossly abnormal embryos, with cardiac edema and absent livers (49 altered/ −52 scored). (C) Induction of wnt8 at 10 somites (14 hpf) resulted in a markedly enlarged livers
compared to controls (141/173). (D–F) foxa3 expression at 24 hpf following heat-shock at 1 somite (10 hpf) revealed a failure of cells to converge at the midline and expand in the a–p
direction (36/45); heat-shock at 10 somites (14 hpf) led to enhanced foxa3 expression (52/67). (G–I) Expression of foxa3 at 48 hpf revealed a failure to form organized liver and
pancreatic buds after wnt8 induction at 1 somite (10 hpf) (45/61); wnt8 induction at 10 somites (14 hpf) led to an increased liver and decreased pancreatic anlage (52/78). (J) qPCR
analysis of the expression levels of wnt target (cyclind1, cmyc), endodermal (foxa3, sox17), hepatic (hhex, prox1) and pancreatic (pdx1) progenitor genes at 48 hpf in controls (red) and
following wnt8 induction at either 1 somite (10 hpf; green) or 10 somites (14 hpf; blue). All changes were statistically significant compared to controls (ANOVA, n=10, pb0.05).
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120 hpf by FACS analysis, although this difference was no longer
readily apparent by gross examination of lfabp expression. Heat-shock
induced inhibition of wnt signaling at 48 hpf demonstrated that wnt
was required for optimal liver growth; both dkk (data not shown) and
dnTCF embryos had reduced liver size compared to controls by in situ
hybridization at 72 hpf (Supplementary Fig. 4J). These data demon-
strate that wnt signaling continues to be important in the proliferation
of differentiated hepatocytes.
Activated wnt signaling enhances liver regeneration

In order to evaluate the continued role of wnt activity in regulating
hepatocyte growth, we performed liver resections in adult zebrafish.
Zebrafish have a trilobar liver; after 1/3 partial hepatectomy by
removal of the inferior lobe, N95% of wild-type zebrafish recover, and
their livers regenerate entirely within 7 days. To determine whether
excess wnt activation provides a regenerative advantage, we resected



Fig. 6. APC has cell autonomous effects on endoderm development. Blastula transplant experiments; embryos were analyzed at 72 hpf. (A) Schematic depiction of blastula transplant
experiments with each APC genotype as donor. (B) Graphic summary of the number of recipient embryos that received each donor genotype; the fraction of embryos that showed
donor contribution to the liver is highlighted in light green. No APC−/− donor cells contributed to liver formation (Fisher's exact, p=0.025). (C) Mosaic livers showed green hepatocytes
interspersed with unlabeled cells. (D) Schematic depiction of blastula transplant experiments with different APC genotypes as recipients. (E, F) lfabp:GFP donor cells transplanted into
both wild-type or APC+/− hosts gave rise to mosaic livers. (G) In an APC−/− host, lfabp:GFP hepatocytes developed, but could not rescue liver development. The inset shows formation of
chains of hepatocytes near the heart and around the yolk sac. Significant differences are indicated with an asterisk (⁎).
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livers in APC+/− mutant and heat-shocked wnt8 transgenic fish and
measured hepatic regeneration by analysis of en-bloc resected livers
and histology. In each, we observed accelerated liver growth
compared to wild-type controls during the early stages of liver
regeneration (Figs. 7A–C; Supplementary Figs. 7A–I). However, by
7 days, the liver in wild-type, APC+/− mutant, and wnt8 transgenic fish
had each fully regenerated to baseline organ size. Inhibition of β-
catenin signaling in dnTCF transgenics severely impaired liver
regeneration, confirming the requirement of wnt/β-catenin signaling
in this process (Fig. 7D; Supplementary Figs. 7J–L). We quantified
these observations using the liver lobe:remnant length ratios of the
regenerating inferior lobe at 1, 3, 5 and 7 days post resection (dpr) (Fig.



Fig. 7. Liver regeneration following partial hepatectomy in adult zebrafish is enhanced by wnt activation. (A–D) En-bloc dissection of APC+/− and hs:wnt8 (induced from 6 to 18 hpr)
fish at 3 dpr revealed enhanced regeneration, while inhibition of signaling by dnTCF (induced from 6 to 18 hpr) resulted in severely impaired regenerative capacity. (E) Quantitative
analysis of the liver lobe:remnant ratios in zebrafish at days 1, 3, 5 and 7 post resection reveals enhanced regenerative kinetics caused by wnt/β-catenin activation in APC+/− (blue
triangle) and wnt8 (light blue diamond) fish, while dnTCF (green circle) inhibits liver regeneration. (F) In vivo volume measurements of the inferior liver lobe by high-frequency
ultrasound at 3 dpr confirmed the regenerative advantage in APC+/− (blue) and wnt8 (light blue) fish and the decreased regenerative capacity in dnTCF fish (green) (ANOVA, n=3/
genotype, pb0.05). (G–J) IHC in these fish at 3 dpr revealed increased cytoplasmic and nuclear β-catenin staining in APC+/− and hs:wnt8 fish. (K–N) Hepatocyte proliferationmeasured
by PCNA staining was increased in APC+/− and wnt8 fish, but absent in dnTCF fish. Significant differences are indicated with an asterisk (⁎). (O) Enhanced liver regeneration caused by
activation of wnt/β-catenin signaling. APCMin/+ status mediates a growth advantage duringmurine liver regeneration compared towild-type controls. Liverweight:bodyweight ratios
measured at postoperative days 1, 3 and 5 revealed a significant increase at postoperative day 3 (32.1±2.32×10−3 vs. 29.6±1.51×10−3, n=10–14/time point/genotype, p=0.003) in
APCMin/+ mice. (P–S) IHC of wild-type murine livers demonstrated primarily pericentral β-catenin activity at baseline, and the subsequent upregulation, nuclear localization, and
periportal concentration of β-catenin following 2/3 partial hepatectomy (left insets: 40× magnified view of periportal area). (T–W) In the livers of APCMin/+ mice, there was moderate
β-catenin staining in both pericentral and periportal areas in sham-operated controls (T). Marked enhancement of β-catenin activity occurred following resection (U–W). BrdU
incorporation (right insets) increased in wild-type mice following liver resection, peaking at 3 dpr. This activity was enhanced and accelerated in APCMin/+ mice.
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Fig. 7 (continued).
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7E), and in vivo by high-frequency ultrasound (Goessling et al., 2007)
measurements of the inferior liver lobe volume (Fig. 7F). Additionally,
nuclear and cytosolic β-catenin levels (Figs. 7G–J) as well as PCNA
staining (Figs. 7K–N) were increased in zebrafish with elevated wnt
signaling and enhanced regeneration, and absent in dnTCF fish. These
experiments highlight the persistent importance of wnt/β-catenin
signaling in liver homeostasis and growth throughout the lifetime of
the zebrafish.

To determine if the effect of wnt activation on liver regeneration is
conserved across vertebrate species, we performed 2/3 partial
hepatectomies in APCMin/+ mice. Assessment of liver:body weight
ratios revealed a significantly increased regenerative capacity in the
APCMin/+ mice compared to wild-type controls at 3 dpr (Fig. 7O; n=10–
14/time point/genotype, p=0.003). In wild-type unresected livers,
baseline β-catenin activity was mainly found in the pericentral region
(Fig. 7P). Following resection, β-catenin localization progressively
shifted to the periportal area from 1 to 3 dpr (Figs. 7Q and R), and then
returned to the pericentral region by 5 dpr (Fig. 7S). In APCMin/+ mice,
β-catenin levels were increased at baseline, in both the pericentral
and periportal regions (Fig. 7T). β-catenin was dramatically upregu-
lated around the periportal areas from 1 to 3 dpr (Figs. 7U and V) and
diminished by 5 dpr (Fig. 7W). We observed the highest proliferative



172 W. Goessling et al. / Developmental Biology 320 (2008) 161–174
activity by BrdU incorporation (Figs. 7P–W, bottom right inset) and
nuclear β-catenin staining (bottom left inset) in the periportal regions
in both wild-type and APCMin/+ mice at 1 to 3 dpr. These data
demonstrate that wnt activation also enhances the kinetics of
mammalian liver regeneration.

Discussion

Identification of the molecular mechanisms controlling liver
development will assist in our understanding of the biological basis
of hepatic tumor formation and will provide targets for therapeutic
manipulation. Because defects in the Wnt pathway are prevalent in
both primitive (Hirschman et al., 2005) and differentiated (Taniguchi
et al., 2002; Tokumoto et al., 2005) hepatic neoplasms, we sought to
uncover the role of wnt signaling in regulating both liver specification
and growth. Through analysis of APC mutant zebrafish with
dysregulated β-catenin levels, we demonstrated that wnt activity
needs to be precisely regulated for proper liver development and
maintenance of tissue homeostasis. Furthermore, we reconciled
conflicting data on the role of wnt in liver development through
analysis of inducible wnt8 transgenic zebrafish, revealing a biphasic
regulation of β-catenin during endoderm development. Additionally,
we demonstrated that activated wnt/β-catenin signaling in APC+/−

zebrafish and APCMin/+ mice led to enhanced regenerative capacity
after partial hepatectomy, indicating that the role of wnt signaling to
enhance organ regeneration is evolutionarily conserved. Our findings
may help to identify new therapies in the treatment of liver cancer and
liver failure.

Regulation of wnt signaling is important during endoderm development

Progressive loss of functional APC did not have a linear effect on
liver development during embryogenesis. We demonstrate for the
first time that not only complete absence of functional APC, but also
heterozygous APC loss led to enhanced β-catenin signaling in vivo,
as indicated by increased cytoplasmic and nuclear β-catenin
accumulation. In the APC+/− embryos, this resulted in higher
hepatocyte numbers and increased organ size; there was no
evidence for loss of the wild-type APC allele. This developmental
advantage is evident shortly after the specification of hepatic
progenitors and appears to be due to enhanced cyclin D1-mediated
cellular proliferation. Conversely, the complete absence of β-catenin
regulation and degradation in the APC−/− mutants caused the
primitive endoderm to fail to organize and properly differentiate
into the various endodermal lineages; this is consistent with the
original description of the homozygous mutant that formation of
endodermal primordia was initiated but severely impaired (Hurl-
stone et al., 2003). The homozygous APC−/− phenotype was evident as
early as 24 hpf by in situ hybridization for foxA3 and was
dramatically illustrated by the complete lack of all mature
endodermal lineages by 72 hpf. We speculate that the significant
apoptosis observed by 72 hpf is a secondary effect of the failure of
the endoderm to organize and specify organs. In support of this
conclusion, whole mount TUNEL staining demonstrated very little
programmed cell death in the endoderm at 24 hpf. Our findings are
consistent with recent work on the differential effects of various
clinically relevant APC mutations on mouse embryonic stem cell
differentiation (Kielman et al., 2002); here, complete absence of β-
catenin regulation resulted in a severe differentiation blockade and
further pointed to levels of nuclear β-catenin as the central mediator
of the observed phenotypes. Our findings are further supported by
recent observations in homozygous APCMin/Min mouse embryos
which fail to induce expression of Hex and lack distal visceral
endoderm (Chazaud and Rossant, 2006). Divergent dose-dependent
effects of Wnt/β-catenin signaling have been described in several
organ systems. For example, β-catenin signaling is known to induce
proliferation of hematopoietic stem cells, and to enhance the success
of hematopoietic stem cell transplants (Trowbridge et al., 2006). It is
also required for the differentiation and growth of lymphoid cell
types. Excessive levels of Wnt signaling, however, inhibit hemato-
poietic stem cell function and the ability to differentiate (Kirstetter et
al., 2006; Reya et al., 2003).

Both wnt repression and activation are required during different phases
of liver development

Using heat-shock inducible transgenic fish, we demonstrated
the importance of temporal regulation of wnt activity in endo-
dermal progenitors during embryonic development. These data
revealed a critical period during early endoderm development (1
somite, 10 hpf) when excess wnt activity led to a failure to expand
and organize endodermal progenitors (foxa3, sox17). This caused de-
creased numbers of hepatic (hhex) and pancreatic (pdx1) progenitors,
a failure to develop differentiated hepatocytes and, finally, apoptosis.
In contrast, wnt8 activation at 10 somites (14 hpf) led to enhanced
expression of foxa3, sox17, hhex, and prox1 at 24 hpf, and to a sig-
nificant increase in liver size by 72 hpf. Recent work has highlighted
the importance of wnt signaling in liver development (Apte et al.,
2007; McLin et al., 2007; Monga et al., 2003; Ober et al., 2006;
Suksaweang et al., 2004). McLin et al. demonstrated that wnt
repression in the anterior endoderm during early somitogenesis is
required for liver development (McLin et al., 2007). Using Xenopus
embryo studies, they showed that experimental repression of wnt
activity in the posterior endoderm led to ectopic liver formation, and
that β-catenin activity repressed hhex. In contrast, Ober et al.
reported a zebrafish mutant, prt, with a mutation in wnt2bb that
shows the requirement of wnt activity in liver formation (Ober et
al., 2006). In these mutants, a subset of hepatic progenitors could
still be specified, as demonstrated by hhex and prox1 staining. Due
to the lack of mesodermally derived wnt2bb, however, these
hepatoblasts did not proliferate, causing the reduced liver pheno-
type at 52 hpf. Our data help to integrate these seemingly
contradictory findings by illustrating the biphasic role of wnt
signaling in establishing the liver progenitor pool, and by identify-
ing genes affected by wnt activity in liver formation. This biphasic
requirement of wnt signaling during liver development is consistent
with other studies showing tight temporal regulation of wnt
activity during the course of cell-type-specific differentiation
(Christian and Moon, 1993; Dequeant et al., 2006; Manisastry et
al., 2006).

APC loss has a cell autonomous effect on hepatogenesis

As previously demonstrated, wnt2bb is mesodermally derived
and required for liver development in a non-cell autonomous
fashion (Ober et al., 2006). Our blastula transplant experiments
revealed that the effects of APC loss are cell autonomous. This
indicates that, although the wnt signals are mesodermally derived,
the effect of wnt activity on liver development is mediated within
the hepatic progenitor cells. We found that wild-type cells can form
hepatocytes in a cell autonomous manner in an APC−/− environment,
even when elevated β-catenin levels in the surrounding embryo
may prevent the formation of an organ matrix. These results further
expand our understanding of the effects of wnt signaling on hepatic
progenitors.

wnt signaling affects endodermal progenitor fate

Wnt signaling can alter the developmental fate of unspecified
endodermal progenitors, and, when activated, shifts the distribution
to liver-specific cell fates. Most notably, excess wnt signaling at 10
somites (14 hpf) inhibited the development of both the endocrine
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and exocrine pancreas. Our studies establish wnt/β-catenin signal-
ing as an important negative regulator of early pancreas formation.
Decreased expression levels of pdx1 at 24 hpf revealed effects of
wnt activation on pancreatic progenitor cells, resulting in decreased
organ size at 72 hpf that persists into the larval stage. One
explanation for our findings is that wnt8 induction at 1 somite
(10 hpf) disrupts the expansion and organization of the primitive
endoderm (as marked by foxa3 and sox17), resulting in decreased
hhex and pdx1+ progenitors. wnt8 induction at 10 somites
(14 hpf), meanwhile, targets the specification and proliferation of
hepatic and pancreatic progenitor cells. Hepatic progenitor growth
may be promoted by wnt activation, while pancreatic progenitor
growth is inhibited. Alternately, if bipotential hepato-pancreatic
progenitors exist, biased pressure to differentiate into liver cell fates
may effectively diminish the number of progenitors available to
produce the pancreas. The existence of such bipotential cells has
been suggested through embryo explant analysis (Deutsch et al.,
2001). Endodermal lineage tracing analysis in zebrafish embryos,
however, does not provide a clear answer; while the majority of
blastomeres injected with a vital dye develop into populations of
either liver or pancreatic progenitors, up to 20% can give rise to both
lineages (Warga and Nusslein-Volhard, 1999). A reciprocal response
between liver and pancreatic development was also described in
response to sonic hedgehog (shh) signaling (Wallace and Pack,
2003): mutant zebrafish with disruption in the shh pathway (syu)
developed an enlarged liver and a severe reduction in pancreas;
together with our data this argues favorably that a population of
bipotent cells likely exists and plays a significant role in the
developmental regulation of organ size. Recent data demonstrate
that pancreatic progenitor cell numbers determine mature organ
size, while liver size is independent of the number of hepatic
progenitor cells during development (Stanger et al., 2007). It will be
important to determine whether mature liver and pancreas
maintain a population of these multipotent progenitors that could
be manipulated therapeutically.

Activated wnt/β-catenin signaling enhances liver regeneration

The adult liver can fully regenerate after substantial injury. The
zebrafish is a well-established model for investigating regenerative
processes (Akimenko et al., 1995; Stoick-Cooper et al., 2007). Recently,
Sadler et al. introduced partial hepatectomy in zebrafish as a method
for studying the effects of cell cycle mutations on liver regeneration
(Sadler et al., 2007). Here, we present a similar approach, resulting in
1/3 partial hepatectomy through removal of the inferior liver lobe.
Wnt signaling was activated after resection, and inhibition of wnt/β-
catenin signaling severely altered liver regrowth. This is consistent
with previously published studies in murine systems (Monga et al.,
2001; Sekine et al., 2007; Sodhi et al., 2005; Tan et al., 2006). More
significantly, we demonstrated that β-catenin activation in vivo
enhances the rate of liver regeneration. However, we consistently
observed that wnt activation did not cause unlimited regeneration or
overgrowth of the liver in our assay, as both wild-type and wnt-
activated zebrafish (APC+/−, hs:wnt8) regenerated their livers back to
baseline within 7 days. This implies that while wnt activity is required
for optimal organ regeneration (Sekine et al., 2007; Sodhi et al., 2005;
Tan et al., 2006) and further can accelerate the regenerative process by
enhancing hepatocyte proliferation, other factors that remain to be
defined must have a role in regulating terminal organ size in the
regenerative setting. Our study suggests that transient manipulation
of the wnt pathway may be an attractive way to enhance liver
regeneration in patients after liver resection or during recovery from
acute liver failure induced by toxins such as acetaminophen.
Following severe injury, increased wnt/β-catenin signaling may
enhance hepatic stem cell proliferation and increase the potential of
the liver to regenerate.
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