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Let X = GM be a finite group factorisation. It is shown that the quantum
double D(H) of the associated bicrossproduct Hopf algebra H = kM >< k(G) is
itself a bicrossproduct kX >« k(Y) associated to a group YX, where Y = G X M°P.
This provides a class of bicrossproduct Hopf algebras which are quasitriangular.
We also construct a subgroup Y?X 9 associated to every order-reversing automor-
phism 6 of X. The corresponding Hopf algebra kX >« k(Y?) has the same
coalgebra as H. Using related results, we classify the first order bicovariant
differential calculi on H in terms of orbits in a certain quotient space of X.
© 1999 Academic Press

1. INTRODUCTION

The quantum double [1] of the bicrossproduct Hopf algebra H =
kM >« k(G) associated to a finite group factorisation X = GM has been
studied recently in [2]. Here we continue this study with further results on

*Royal Society University Research Fellow and Fellow of Pembroke College, Cambridge.
"During 1995 and 1996.

682

0021-8693 /99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82101952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BICROSSPRODUCT HOPF ALGEBRAS 683

the same topic, including a concrete application to the classification of the
bicovariant differential calculi on a bicrossproduct.

The bicrossproduct Hopf algebras were introduced in [3, 4] and have
been extensively studied since then. Factorisations of groups abound in
mathematics, so these Hopf algebras, which are non-commutative and
non-cocommutative, are quite common. In the context of [4] they are
viewed as systems which combine quantum mechanical ideas with geome-
try in a unified way. To develop this idea, a natural step is to compute and
study the algebra of differential forms (the so-called differential calculus)
over them, which we do here. Another open problem is the close connec-
tion which one may expect between these Hopf algebras and the method
of inverse scattering in soliton theory. We make a connection of this type
also in this paper. Our results, however, will be in an algebraic setting with
finite groups and finite-dimensional Hopf algebras.

We recall two principal results from [2]. One is that D(H) is isomorphic
to a twist (i.e., up to a categorical equivalence of representations) of the
much simpler double D(X) of the group algebra kX. We provide in
Section 2 a variant of this, namely that D(H) is also isomorphic to a
bicrossproduct kX >4 k(Y) where Y is the “dressing group” G X M°°
(the terminology comes from soliton theory [5]). The bicrossproduct is
associated to a certain double cross product group Y X X which factorises
into X,Y. Our new result answers affirmatively the question: Can a
bicrossproduct Hopf algebra be quasitriangular? Among non-commutative
and non-cocommutative Hopf algebras, the quasitriangular [1] ones have a
special place with remarkable properties.

The second principal result in [2] is that associated to every order-revers-
ing isomorphism 6 of X is a Hopf algebra isomorphism ® of the quantum
double. In Section 3 we provide more results about ®. We then construct
two new groups Y?, X forming a subgroup Y’ X X of Y X X. We study
the associated Hopf algebra kX >« k(Y"?). It has an isomorphic coalgebra
to that of our original bicrossproduct H associated to the factorisation
GM. However, we give a finite group example where these are not
isomorphic as algebras.

In Section 4 we study a certain Hilbert space representation of H and
find that our various constructions over C respect the =-structures. This is
also one of the motivations behind the main isomorphism in Section 2.

In Section 5 we turn to a specific application of the quantum double,
namely to the construction of first order bicovariant differential calculi. By
definition a first order differential calculus over an algebra A4 means an
A-bimodule Q! over 4 and a map d: A — Q! obeying the Leibniz rule
(which makes sense using the bimodule structure). When A is a Hopf
algebra the calculus is said to be bicovariant when d intertwines the left
and right regular coactions of 4 with a bicomodule structure on Q. It is
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known that first order bicovariant calculi are related to the representation
theory of the quantum double [6], allowing us to apply our previous results
[2] when A = k(M)><kG. We find that the irreducible bicovariant calculi
correspond to the choice of an orbit in a certain quotient space of the
group X along with an irreducible subrepresentation of the isotropy
subgroup associated to the orbit. We actually classify the bicovariant
guantum tangent spaces using the techniques developed in [7] and obtain
the corresponding 1-forms later by dualisation. The result is a constructive
method which provides the entire moduli space of bicovariant calculi on a
bicrossproduct, as we demonstrate on some nontrivial examples. On the
other hand, armed with a choice of such differential calculus, one may
proceed to non-commutative geometry such as gauge theory (i.e., bundles
and connections) [9] on bicrossproduct Hopf algebras, to be considered
elsewhere.

Preliminaries. \We use the notation and conventions of [2], which are
also the notation and conventions in the text [8]. Briefly, let X = GM be a
group which factorises into two subgroups. Then each group acts on the
other through left and right actions > , < defined by su = (s > u)(s < u)
for all s € M and u € G. Conversely, given two actions (>, <1) obeying
certain matching conditions

s<de=s,(s<u) dv=s<(u);
e<u=ce, (st) <u=(s<(t>u))(t<u);

e>u=u,s>(t>u)=(st)>u,; @
s>e=e, s> (u) = (s> u)((s<u)>v),
we can build a double cross product group on G X M with
(u,s)(v,t) = (u(s>v),(s <v)t), e= (e e), @

(u,8) " =(stout s tau?).

The associated bicrossproduct Hopf algebra H = kM >4 k(G) has the

smash product algebra structure by the induced action of M and the

smash coproduct coalgebra structure by the induced coaction of G. Explic-
itly,

(s®5,)(1®9,) = 814,II>U(St ®9,),
A(s®5,)= ) s®5®s<x® 9,
xy=u
1=YYe®$,, €(s®38,)=29,.,

u

(3)

S(s®8,) =(s<u) " ® 8,p,t-
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We work over a general ground field k. There is also a natural =-algebra
structure (s ® §,)* =s~' ® §,., when the ground field has an involu-
tion. This happens over C, but can also be supposed for any field with
A = Aforall A €k. The dual H* has a similar structure k(M)»< kG on

the dual basis,

S

(8s ®u)(81®v) = 8~<1u,z(65 ®I"U)'
A(,@u)= ), 8,®b>u®s, ®u,

ab=s

4
1=)8§®e  €(8®u)=35,, )
N

S(8,®u) = 8,4, ® (s>u) ',
and (5, ® u)* = §,,, ® u~ ' when the ground field has an involution. The
quantum double [1] is a general construction D(H) = H*° X H built on
H* ® H with a double cross product algebra structure and tensor product
coalgebra structure. In our case the cross relations between H, H*°" are

[2]
(1®t®6,)(6,®u®1L) =801

(Ut <Quu ) >udt ® §p -ty (5)

where ¢/ = ¢ < (s > u)~ %

2. MORE ABOUT D(H)

Here we extend results about the quantum double associated to a
bicrossproduct in [2]. For our first observation, it is known that to every
factorisation X = GM there is a “double factorisation” YX where Y is
also G X M as a set and the action of X is the adjoint action viewed as an
action on Y [8]. Here we give a similar but different double factorisation
more suitable for our needs.

ProPoSITION 2.1. Let Y =G X M° with group law (us).(vt) = uvts.
Then there is a double cross product group Y X X (factorising into Y, X)
defined by the actions

us vt = ((s Qo)s~ > u’l)fl(s av),
us > vt = us(vt)(us) "

=u(s>o)((s<o)ys tou ) ((s<o)s Tt <ut).
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The second line is the adjoint action on X which we view as an action on the
set'Y.

Proof. We show that these actions are matched in the required sense
(see [8]). Thus

us > ((vt).(wr)) = (us > vt).((us Qot) > wr)

holds as follows. We have us > vr = u(s > v)yp where y==0<v)s™ >

utand p= (s <v)ts™! <u"l Meanwhile, from us < vt =y (s <v)

we calculate
(us < vt) > wr
=y H(s<v) > w)((s Qow)r(s < 11)7l Dy)
X((s <ow)r(s < 0)71 <1y),
and on applying the rules for multiplication in Y we find
(us > Ut).((us Jot) > Wr)
=u(s>v)((s<v) > w)((s Qow)r(s <o)t >y)

X((s <ow)r(s < U)71 <1y)p

=u(s>ow)((s Qow)rts™ > ut)((s <ow)rts™t <ut)
=us > ((vt).(wr)),
as required. On the other side, we show that
((wr).(us)) ot = (wr J(us > Ut)).(us Jot),
where
wr 4 (us & vt) = wr 2 (u(s > v)yp)
=((r<u(s>o)y)prt> w_l)il(r Qu(s>v)y),
and the definition of multiplication in X gives
(wr Q (us > vt)).(us < vt)

=((r<u(s>v)y)pr e w‘l)_l(r Qu(s>v)y)y s <o)
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= ((r<u(s>o)y)prtow?)”
X((r<u(s>o)y) >y ) (r<u(s>v))(s <o)

= ((r<u(s>v)y)prteow )
X((r <u(s > ) >y) ((r<u)s 4v)

= [((r<u(s > 0)) B y)((r qu(s > o)y)priew )]
X((r<u)s <v)

= [(r<u(s > 0)) B y(priew )] ((rau)s <o)

= [(rau(s>v))(s<qo)ys > ut(riow ]
X((r<u)s <v)

= [((rauwys <av)ys o u (e w ] T ((r<au)s <o),

where the last two equalities come from
y(prrtowt)

=((s<ao)ys 't u ) ((s<o)s™t Qu ) > (rriewt))

=(s<o)stout(rtowt.
Meanwhile,
((wr).(us)) ot = (w(r>u)(r<u)s) Qo

- [((r Qu)s Qo) Hr<u) > (r> u)_lw’lr1

X((r<tu)s <v),
as required on using the identity
(r<u) "> (r>u) wl

= ((r < u)71 > (r> u)fl)(((r < u)71 < (r> u)fl) > w’l)

=u'(rtowl).
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THEOREM 2.2. D(H) = kX >4 k(Y) as Hopf algebras, by

y:D(H) - kX ><4k(Y),

Y(8, @ut®8,) = (s>u) 18 8 qu 1y

Over a field with involution, the map preserves the star operation.

Proof. The structure of D(H) in the basis used is in [2]. We check that
the linear map ¢ is an algebra isomorphism to the smash product induced
by > .Startwitha =86, ®g®t® 5, and B=6®u®re® §, in D(H),
and multiply them together to get

aB: s'<u', x 1 rl>w(8 ®uq®tr®8)

where

f=t<Q(s>u)t, U=(s>u)oul

s =ts(t<ou ), W =(t<wu ) >u.

Now we can calculate

(,[1(013) = 63’<1u’,x6v’,r>w((s/ > u/Q)ilt’r ® 8w(tr<1w) 1y~ 1yp )

= 8y audrou[((8 9U) B @) (s D)
Xt'r ® 8w(r<1w)’1(t’<1(rl> w))*ls”lt’r)

= 8t(s<1u)(t<U)’l,xé(sbu)uu’l,rbw((x > Q)_l(tls > ”)_1
Xt'r ® 8w(r<1w)*1(z/<1u/)*ls”lt’r)

= 6t(s<1u)(t<1U)’l,x8(51>u)Uu’l,rbw((x > Q)il(t, < (S > u))
X(s>u) 're Buir awy 1371,)

= 5:(s<1u)(t<1u)*l,x8(s|>u)z:u*1,r>w((x > Q)ilt(s > u)71

Xr® 8 1—1)

w(r<dw) s
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Here we have used
Sau=(t<a(seu) Ds(eaou ) A ((t <o) b ou)

= ((t Q (s> u)_l)s < u)((t Qo) ta ((t<out) > u))

(t<(sp w) ' (s> w))(s Qu)(r <out < u)

t(s <u)(r<v)
Conversely, we can calculate the product in kX >« k(Y) as

Y(a)y(B)

= ((x > q)_lt ® 61}(t<11!)’1x’1t)((s > u)_lr ® 8w(r<1w)’1s’1r)

= 81)(t<1U)_lx_lt,(sbu)_lr;w(r<1w)_ls_1r(x > Q)il
X (s> u) 1 ® 8,0 au ity
= 81)(t<1U)_lx_lt,(sbu)_l(rbw)u(s<lu)_1(x > Q)il
XU(sDu) 1 ® 8,0 autsty
= 81;,(s>u)‘1(r>w)u 8(t<1L>)_1x_1t,(s<1u)_1(x > Q)il
XU(SDU) 7 ® 8y auytytrs
which is as required. That ¢ preserves the unit is more immediate.

To compare the coproducts, we use the coproduct of D(H ), which is the
tensor product

AD(H)( 6& Puoet® 6[!)

= Y (5,8b>u®r®5)®(5,0u®r<dx®35).
ab=s,xy=0v

Applying ¢ ® ¢ to this, we find the following expression for (¢ ®
WAL (8, ®u®t®§):

Z ((S > u)_lt ® 6x(t<x)*1a*11)

ab=s, xw=v

-1
®((b > ”) (t <]x) ® 6w(z<1u)’1b’1(t<1x))'



690 BEGGS AND MAJID

Alternatively, we can calculate

Arx oy (8, ®u®1®3§)

-1
= AkX|>< k(Y)((s > u) r® 6u(t<w)*1s*1t)

> (spu)ytes @ (s>u) 'tdy®s,

yz=v(t<av) s~

where y, z € Y, which is the smash coproduct for the coaction induced by
the back-reaction <. We begin with the calculation

(x(t <1x)_1a*1t).(w(t <) ThY(t <qx)) =xw(t < v) b e,

which shows that if we replace y by x(t <x) 'a™'t and z by w(t <
)"~ (t < x), then the conditions of the summations are the same. It
now remains to calculate

(s> u)flt Ay = (s> u)flt z]x(t <ax) tat=(a s> u)fl(t <x)
= (b>u) '(t<x),

as required.
Next we consider the counit,

~1
Ex i) (W (6, ®u®t®F))) = EkXMk(Y)((S >u) t® ‘Su(mu)-ls-lt)
=90

v(t<v) s e

The last &-function splits into 8, , 8 4 ,y-15-1, ., Which is equal to §, ,

v,eYs, er

which is in turn equal to €, (5, ® u ® t ® §,). Finally, we consider the
antipode

Sixvarory(P(8,@u®t®s,))
= Six ve k(Y)((s > ”)711‘ ® 6U(l<ll))_ls_lt)
= ((s>u) 1ot <) I TH) T ® Sen iy U s an -ty
= (i (t<av)) @ Ots e w2 s 05~ s wy
= (190) U ® 8o iy iin s aw b

-1
= (t < U) ue® 5Lfl(tl>U)’l(sl>u)(s<1u)’
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where we remember in the last line to take the inverse for the Y group
operation, and compare this with

USpy(6, ®u®t®3))
= p((1®S(t®3,))(SH(s ®u)®1))
_ 4,((1 ® (1<90) " ® 80,1 )(8paun ® (sPu) ' ® 1))
= (85 armn1 ® (F<TAY) DA B ® 85 gy,

where i =G <o), 0=0G(p0v)Y, 5=G<w™, a=>Gr>uw? and
t'=1< (5> u)"t Applying the definition of , and using the fact that
s>u=u"? wefind

WSpn (8, ®u®r®3,) = (151

® 8(§> w)ou (¢ Qs> moa- DY i<aoa 5T T
— (U ) N ® 8, g
= (< ”_l)u ® Oy-15(sm uys < u)
= (t<0) U ® 8yt 1)ty

again as required. This concludes the proof of the Hopf algebra isomor-
phism. Now we show that the star operation is preserved:

Yr(6,®u®t®3,)
=y((I®t ' ®8,,)(8.,0u'al))
= 11’(51'(3«“)(:*14(»u)u)*l ® (1t (t>v)u)>ut
®1' ® Sy quyo u-tyes o)’
here ¢ =t~ <1 (s > u). Applying the definition of ¢, we get
(8, 9u®t®$,)
= (f(s<u)>ut) 7

® 6(s|> W e vy s vy et s vu)s<u) T

_ _1y—1
= ((t 1S < Lt) >u 1) r'® 6(sl>u)’1(ll>1))u(s<1u)’1

_ 4+—1
=1 (S > u) ® S(SDM)’l(tD(;)u(s<u)7l’
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*Y(6, ®u®t® 35,
= *((s >u) 't ® 6L,(Nb.)71flt)
= t_l(s >u) ® O(s b uytro(e < )15~ et~ Xs b u)
= [_1(5 >u) ® O(s b uy-1(t > vyu(s auy-ts

again as required. |

This means that kX ><k(Y) inherits many of the nice properties of
D(H). In particular, it has a quasitriangular structure % and associated
elements Q =%, % (the “quantum inverse Killing form”) and u =
Y(§#@) %D (the element which implements the square of the antipode)
in Drinfeld’s general theory of quasitriangular Hopf algebras [1].

COROLLARY 2.3. The bicrossproduct kX >4 k(Y) is quasitriangular, with

-1 -1
A= ) v'I®8,05® 8,

u,s,v,t

The *‘quantum inverse Killing form” is

— -1,,-1 -1 -1
‘%21‘% - Z s u ® 6u(x>n)(p<lu)bf1 ®v p ® 8puvp 1
u,veG,s,peM

and is nondegenerate as a bilinear functional on k(X)»< kY. The element u
is the canonical element U = ¥, _ yx ® 8, in kX >4 k(Y), and is central.

Proof. The computation is straightforward. Thus

(PR Y)NR) =Y (8, 0u®e®s,)®Y(5,®e®s®§,)
=Y (5P u) " ® 81 ®5 ® Syt

_ -1 _
=Y (s'>puv) ®5,05'®5,,

which yields the formula shown on a change of variables v to s > v. We
then compute %, % using the product in kX >« k(Y):

-1 -1
‘%21 ( Z s (sbz:)l ®v ® 8us)

u,s,v,t

><( Y o vtes,, 05 e S(S,M,),,)

u, s\ vt

= Z (Si1 ® 6(s>v)l)(vl71 ® 8u’s’)

u,s, v, t,u', s vt

®(U_1 ® 6us)(s/_l ® 5(s’>11’)t’)
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_ - - -1.,-1
- Z L 6(5 > o), 0 S s 8us, §TIE (s> 1;’)t’s v
u,s,v,t,u’,s, vt
-10-1
® 6u’s’ Qv s ® 5(s’> ot
— -1 -1
- Z 6(s > ), U’flu’(s’ >o')(s' < U’)Bus, v'(s' < U’)’lt’s’s v

u,s,v,t,u', s’ v, t

v71 -1
® 8y ® VTS T ® Oy -

From the §-functions here we can read off s> v =o' /(s > v'), t =
S <v,u=v,and s = (s <0')"s. If we rewrite these as v' = u, s’ =
t<du W =uls>o)t>ut) and ¢ =ts(t <u"')"1, then, on substi-

tuting p =t <ut,

Ry B = Y sTtutt e §
u,veG,s,peM

aeviptes

pus;f1 :

u(s> v)(p <u)u

Nondegeneracy of %,, % as a linear map D(H)* — D(H) is the so-called
factorisability property holding for any quantum double [8]. Hence it
carries over in our case to a linear isomorphism k(X)»<kY —
kX >4 k(Y) or, equivalently, to a nondegenerate bilinear functional on
k(X)»< kY. Also,

-1
p(u) = Lo(s,0ue (s<au) ' @5,
-1 -1
= Z(S > Lt) (S < I/t) ® 8(sl>u)’l((sﬂu)’1<1(s>u)’l)’ls’l(squ)’1

—1 -1
= Z(s >u) (s<u) " ® I N Zus ® 5,

on a change of summation variables in which s > u is replaced by s~! and
s > u by u~!. Finally, the element u in any quasitriangular Hopf algebra
implements the square of the antipode. But for any bicrossproduct, the
antipode is involutive; hence u here is central. |i

COROLLARY 2.4. Quer a field with involution, kX ><4 k(Y) is antireal-
quasitriangular in the sense (*+ ® *N%) =R .

Proof. This is known for the quantum double D(H) of any Hopf
«-algebra [10], and hence follows from Theorem 2.2. |

As an application, the finite-dimensional modules of any quasitriangular
Hopf algebra have a natural “quantum dimension” dim defined as the
trace of u in the representation. The modules of kX >« k(Y), as a cross
product algebra, are just the Y-graded X-modules V" such that [x > v| = x
> |v| for all v € VV homogeneous of degree | |.
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PROPOSITION 2.5. The quantum dimension of a general kX >4 k(Y)-
module V' is

dim(V) = ) trace, m(y),

yeY

where V,, is the subspace of degree y and w(y): V, — V, is the restriction to V,
of the actton of y viewed as an element of X.

Proof.  We write V= @/ for our Y-graded X-module. The action of
fek)is f(y) on V,. A general element x € X acting on V' sends
V, = V.z,. Hence, in particular, y viewed in X sends V, -V, as y >y =

y from Proposition 2.1. This is the operator on V] denoted 7T(y) Let {e\)}
be a basis of V,, with dual basis {f’}. Then

Tr(w) = X X(f(x®38,).e)
yEY, x€EX a
= L X(f O yed) = X Trym(y).
yEY a yeY

For example, we may take the natural representation in k(Y) by left
multiplication of k(Y) and the left action of X induced by its action on Y.
This is the so-called Schrodinger representation of any cross product
algebra. The spaces V, are one-dimensional with basis {6} and 7(y)3, =
8(y ' > () =28z,=25 is the identity. So dim(k(Y)) = |Y|
d|m k(Y), where |Y| is the order of group Y. So for this representation the
guantum dimension is the usual dimension.

EXAMPLE 2.6. We consider the factorisation of the group S, into a
subgroup of order 3 and a subgroup of order 2. The quantum double of the
associated bicrossproduct is kS, >4 k(Cy).

Proof. Consider a factorisation of the group §; of permutations of
three objects, which we label 1, 2, and 3. Let G be the subgroup consisting
of the 3-cycles and the identity, and let the subgroup M consist of the
transposition (1,2) and the identity. Then, in the notation of this section,
X =3S; and Y= GM® is a cyclic group of order 6. The left action of X
on Y is the adjoint action of the group S, on the set §;, and the right
action of Y on X is given by

u<dv=u, qu(l,2)=u*1, u(l,2)5u=u(l,2),
u(1,2) <0(1,2) = u"(1,2),
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where u and v are any 3-cycles or the identity. This leads to a quasitrian-
gular structure % on kX ><k(Y), given by

R = Y ovles ®e®s,

u,veG,teM
+ Y v ®8,5,®(1,2) ® 5,4,
u,veG,teM

The group Y X X is of order 36 and is easily seen to have no center and 15
elements of order 2; hence it is isomorphic to S; X S;. 1

3. SUBFACTORISATION FROM AN ORDER-REVERSING
ISOMORPHISM

Let 6 be an automorphism of X which reverses its factors GM (i.e.,
0(G) = M and 6(M) = G). It is shown in [2] that 6 induces a semi-skew
automorphism of D(H) (i.e., an algebra antiautomorphism and coalgebra
automorphism), which we denote 0:

O(5,®u®t®F,) =0, ®0(t<v) ® O(s>u) ® 8§, (6)

Via Theorem 2.2, we may view this as a semi-skew automorphism of
kX >4 k(Y). When the ground field is equipped with an involution, we
may follow @ by the star operation and obtain an antilinear Hopf algebra
automorphism = 0.

LEmMA 3.1.  If 0 is a factor-reversing automorphism of X then the induced
antilinear automorphism of kX >4 k(Y is given by

+O(x ®8,) = 0(x) ® §,
when y is viewed in X (and the inverse is also in X).
Proof. We define = ® via  and (6). Thus,
# (S ) ® O(1> 1) ® (s> 1) ® Sy, 4,)

#((0(t>v) > (<)) 0(s > u)

® 86(s Qu)( (s> u)< (s <u) "ot >v) o(s> u))
=+ (0(t7H (s > 1) @ Sy auptae v tso up)
9((s < u)_lt) ® Sy Tyt <)ol

£ OP(8,0 U8 1®5,) = *0((s>u) 18 8,41,

as required after changing variables to general elements of X,Y. |
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We observe that * ®-invariant basis elements x ® S, are characterized
by the property that 6x = x and 6(y) =y~* (computed in X).

PROPOSITION 3.2. There is a subgroup X° of X consisting of those
elements x for which 6x = x, and a subset Y*° of Y consisting of those elements
y for which 0y =y~ (inverse in X). The actions > , < restrict to X, Y",
forming a double cross product group Y° X X factorising into Y°, X°. The
corresponding bicrossproduct kX° >4 k(Y?) Hopf algebra has an isomorphic
coalgebra to that of kM >4 k(G).

Proof.  The proof that the_ > action restricts is immediate. If we take
xeX’and y € Y’ then x >y = xyx~! (adjoint action in the X multipli-
cation). If we apply 6 to this, then

0(x>y) = 0(xx7t) = 0(x)0(y)0(x1) =xy~ix Y,

which in the inverse (in X) of x >y = xyx%,s0 x &> y € Y’. The proof for
the other action is rather more difficult, and we first find formulae for the
elements of X’ and Y’. If y = vr € Y?, then 6y =y~ (inverse in X), so
we can substitute 8(y) = 0(v)6(¢) and y~* = ¢ 'v~! and use uniqueness
of factorisation to say that 6(v) =¢~'. Then we can write y = Y(v) =
v0(v)~t. Now we can write a simple formula for the multiplication in Y? as

yy =Y(v).Y(V) = (U@(U)fl).(v’(i(u’)fl)
=o0'0(v') o) = 0f(w') T = Y ().

This shows that Y? is actually isomorphic to G. Meanwhile, if x = us € X°,
then 6x = x, so we can substitute

0(x) = 0(u)0(s) =x=us= (s t<u?) (s ipul) "

and use uniqueness of factorisation to say that 6(s) = (s ' >u"1"1
Then u ! =s> 0(s)" %, so we can write x = X(s) = (s > 0(s)" 1) 1s.
This shows that X? is bijective as a set with M. Finally, we may consider
the right action

X(s) AY(0) = (s> 0(s)7Y) s Too(p)
= ((s av)o() s (s> 6(s) 7)) (s <o)
= ((s<v)o(e) > 0(s) ) (s <o)

= ((s <qv) > (s« U)_l)il(s <v) =X(s <v).
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In particular, this shows that the result is in X’ We therefore have a
bicrossproduct Hopf algebra kX >« k(Y?). Its coalgebra is determined by
the action of Y? on X and the group structure of Y?; hence we see that
it is isomorphic via the maps X,Y to the coalgebra of kM >« k(G). 1

Also, by construction, we see that if we equip k& with the trivial
involution then

kX >4k(Y?) c (kX >ak(Y))*o

as algebras. The right-hand side denotes the fixed point subalgebra under
the algebra automorphism * ®. The inclusion is clear from Lemma 3.1 and
the inclusion X% c X as subgroups and k(Y*?) c k(Y) (extension by zero)
as X’%module algebras. That = © is also a coalgebra automorphism tells us
further that the coproduct of kX >« k(Y) applied to elements of the fixed
subalgebra yields elements invariant under = ® ® = @. It is natural to ask
to what extent the quasitriangular structure of kX >« k(Y) is likewise
invariant.

PRoPoOSITION 3.3.  The quasitriangular structure of kX >4 k(Y') obeys
(0 ®0) (%) =H,.

When the field has an involution, we have (x© ® = ONFE) = Ry*. More-
over, if 82 = id then ©2 = id and (* ©)? = id.

Proof. It is easier to do the first computations in D(H). There, we
have

(O®0)(Z)= ) O(5,0u®e®3,)®0(50e®s18§,)

u

VU, S,
= ) (80(8M) ® (e <) ® O(sD>u) @ 8y ay)
YU, S,

u s, t

® (Bpsuy ® O(s Tu) ® O(1> ) ® 8, 4,)

= 2 (100(s>u) ® 8 4u)) @ (S ® (s Tu) ® 1),

u,s

where the sums over v, ¢ are replaced by sums over ¢’ = 6(v), v' = 6(¢)
and give the unit elements of k(M) and k(G), respectively. Then we
change variables from u,s to s’ = 6(s > u), u' = 6(s < u), to recognise
H, in D(H). Hence the same result applies for kX >« k(Y). This com-
bines with Corollary 2.4 to obtain the corresponding property for = @.
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Also, ® in (6) clearly obeys
O (8, ®uBL®5,) = 8y, ® 07 (u) ® 0°(1) ® 8z,

and hence ©2? = id when 62 = id. The same feature for * ® is immediate
from Lemma 3.1. |

Hence & is not invariant in the usual sense (unless G, M are trivial),
due to the nondegeneracy of %,,.% in Corollary 2.3. Rather, one should
note that for any quasitriangular Hopf algebra, %,,' defines a second
‘“‘conjugate” quasitriangular structure. It corresponds in topological appli-
cations to reversing braid crossings; we see that our quasitriangular struc-
ture is invariant up to conjugation in this sense. Although kX >« k(Y?)
does not in general inherit a quasitriangular structure from %, its inclu-
sion as a fixed point subalgebra in a quasitriangular Hopf algebra equipped
with such an automorphism might be a useful substitute. Of course, it may
still happen that kX’ >« k(Y?) is quasitriangular for some other reason.

Another natural question, in view of Proposition 3.2, is whether
kX®><4k(Y?) is in fact isomorphic as a Hopf algebra to our original
bicrossproduct kM >« k(G). The following example also demonstrates
that it is not necessarily isomorphic to it.

EXAMPLE 3.4. We consider the example in [2] of the double cross product
of two cyclic groups of order 6 (Cy) which gives the product of two symmetric
groups Sy X S,. In this case kX° >4 k(Y?) is isomorphic to kS, >4 k(Cy) in
Example 2.6 and hence quasitriangular.

Proof. Consider the group X =S, X §; as the permutations of six
objects labelled 1 to 6, where the first factor leaves the last three objects
unchanged, and the second factor leaves the first three objects unchanged.
We take G to be the cyclic group of order 6 generated by the permutation
1, = (123)(45), and M to be the cyclic group of order 6 generated by the
permutation 1,, = (12)(456). Our convention is that permutations act on
objects on their right; for example, 1., applied to 1 gives 2. The intersec-
tion of G and M is just the identity permutation, and counting elements
shows that GM = MG = S§; X S;. We write each cyclic group additively;
for example, G = {05,1;,24,35,45.55)- The action of the element 1,, on
G is seen to be given by the permutation (1,5;)2;,4;), and that of 1,
on M is given by the permutation (1,,,5,,)2,,,4,,). The factor-reversing
automorphism 6 can be taken to be conjugation by the permutation
(1,4)(2,5)3, 6). Then if we split the elements of X into S, X S, we see
that the elements of X? are of the form o X o, for o € S5, and that the
elements of Y’ are of the form o X ¢~1. Then X’ is isomorphic to S;,
and the action of X% on Y is the adjoint action of the group S, on the set



BICROSSPRODUCT HOPF ALGEBRAS 699

S,. Finally, deleting the points 4,5, 6 gives the explicit correspondence of
kX >4 k(Y?) with the bicrossproduct in Example 2.6; we have the maps
oX oo for X% and o X o7t — ¢ for Y? corresponding to the
subsets of S; used in Example 2.6. |

4. A *-REPRESENTATION OF D(H) ON A
HILBERT SPACE

In this section we provide a Hilbert space representation of D(H),
which is one of the motivations behind Theorem 2.2. Recall that it was
shown in [2] that representations of D(H) are G — M-bigraded bicrossed
G — M-bimodules. We shall use |w| for the G-grading and {w) for the
M-grading of a homogeneous element w of the representation.

ProPOSITION 4.1.  There is a representation of D(H) on a vector space E
with basis {, ,|s € M, u € G}, with gradings

Ing =u, (n,>=s
and with group actions
LD My = Mrauy o u Ne,u V= Nygqyp, (s> v) tuv-
The corresponding action of D(H) is

(8s duoetr® 5Lr) > nr,w = 61J,W8t_1x(t<lU),rns<1u,(sl> w) > wyur

Proof. The definition of the group actions is made precisely so that the
matching conditions in [2] are true. The corresponding actions of the Hopf
algebras H* and H are

(t®8,)>m,, =8, >0, M, <(8®0)=25m,, <0,
and the formula (a ® #) > w = (h > w) < a gives the action of D(H) as
(1®1®8,) > M, =8 Mhsgawimu
(6,@v®I)> 7, = O Myav.(sev)tuvs

which gives the formula stated. |

As far as the original group double cross product is concerned, the E
representation is more symmetric than the standard [8] “Schrodinger”
representation of D(H) in H, as we do not have to decide to take the
group algebra of one factor subgroup and the function algebra of the
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other. The E representation is one of the motivations behind the isomor-
phism ¢ in Theorem 2.2, when one compares it with the action of the type
characteristic for a bicrossproduct.

Also, over C, it is easy to verify that

(T’s,u’nr,w) = 5s,réu,w (7)

defines an inner product (n, £) on E (conjugate linear on the first variable
and linear on the second) and

(a>m &) =(na*>7) (8)

for any @ € D(H). Thus D(H) with its natural =-structure is represented
as a =*-algebra.

ProPoOSITION 4.2.  E with the coalgebra structure

AE(ﬁr’s,u) = Z na,w ® nb,z’ 6(713,.4) = 85,8814,6

ab=s,wz=u
becomes a left-module coalgebra under the action of D(H ).

Proof. That E forms a coalgebra as stated is trivial. For the module
coalgebra property

Ap(a>m) = Y ag > 0 ® ag > 1y

we let a=1®¢® 5, and leave the other case to the reader. We set
n=m,,. Then

Yoag > 1y © ag) B 1

= 5L=,u Z Ma(r<x)~t, 1> x ® Ne<axyb(t<uyt,@g<ax)sy:
xy=u,ab=s

On the other hand, a > 1 = 0, , M5 <u)-*, (>« @Nd hence

AE(a > 7]) = 6L!,u Z na’,x’ ® nh’,y”

X'y =t>u,ab =ts(t<tu)”*

as required on using the correspondences a' = ta(t <\x)~ 1, b’' = (¢t < x)b(¢
Qw7 X =t>x, and y =(t<x)>y. We also need to show that
e(a> n) = e(a)e(n). Using a =6, ®u ®t® 5, and n = 7, ,, we have

6((1 > n) = 81!,w8t’1x(t<1u),re(nrqu,(sbu)’l(tb w)u)
= 61},w8t’ls(l<1U),r8s<1u,66(s>u)’l(tbw)u,e
v, W

=9 Bt_ls(t<lU),ras,ea(sbu)_l(tbw)u,e

= 8L',w 8t’1(t <), r85, e 8u’1(t > wu, e
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)

w,e

= 8v,w6t’1(t<1u) r8s 68([l> w), e = 81} Wat’l(tﬂu),ras,e
= 61!,68t’1(t<1 v), r6 g =96 0, ,0; .0

s, e "w,e v,e e, r ”s,e-w,e

€(,®u®t®s)e(n.,) N
Over C, it is easy to see that

where we use the tensor product inner product on E ® E. Finally, suppose
that 6 is an order-reversing isomorphism of the double cross product
group X = GM. As previously mentioned, from [2] we have an antilinear
Hopf algebra automorphism = ®: D(H) — D(H).

PropPosITION 4.3.  Quer C, there is an antilinear map 9: E—>E defined
by

H(nv,u) = Mo(w), 6(s)>

which obeys
6(a>n) =(+0Oa) > 6(n), VaecD(H).

Proof.  As usual we shall only prove this in the case o =1 ® t ® §, and
leave the other case to the reader. We begin with

+O(1®1®8,) = #(85, ®0(t<10)) @I =25, ®06(t<1v) &I,
where we have used the equation 6(t > v) < 6(¢t < v) = 6(v). Now

-1
(Se(u) ®0(t<v) ~® I) > Towy, ocs)

= 89(1:), o) (u) < 0(r <1 0)™L, () > 0t < v)"H~0(s)0(t < v) L+
Since 6 is 1-1, we can replace &, 4, by 6, ,. Also we calculate

O(u) > 0(t<v) " =0((t<v) < u‘l)fl,

O(u) < 6(r<v) P =0((t<v)>ut)

so the equation above becomes

—1
(59(1:) ® 0(t<v) ©® I) D> Mow), o¢s)

= 61?, un(i((t av)buH L e <av)y<uHe(s)e@<av) L
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Now, using the §, , to put v = u in the equation,

-1
(8o ® 0(1 <0) 7 @ 1) B 1000 sy

= 8[;,un6(tl>u),B(t)G(s)H(tﬂu)’l = 51,',un6(t>u),e(ts(t<lu)’1)'

which is the formula for 6(a > n,.,) as required. [

5. FIRST ORDER BICOVARIANT DIFFERENTIAL
CALCULI ON H

In this section, we regard the Hopf algebra A4 = H* = k(M)»< kG
associated to a group factorisation GM as a ‘‘coordinate ring” of some
non-commutative geometric phase space. This is the point of view intro-
duced in [4], where H* is an algebraic model for the quantization of a
particle on M moving along orbits under the action of G. Here we develop
some of the “non-commutative geometry” associated to this point of view.
To simplify reducibility questions we will assume throughout the section
that k is algebraically closed and of characteristic zero.

First, on any algebra A, one may define a first order differential
calculus or “cotangent space” Q! in a standard way (cf. [11]):

1. Q' is an A-bimodule.

2. d: A—- Q' is a linear map obeying the Leibniz rule d(ab) =
(da)b + adb.

3. A®A - Q!givenbya ® b — adb is surjective.
When A is a Hopf algebra, we add left and right covariance (bicovari-
ance) under A. Thus [6]

4. Q! is an A-bicomodule and the bimodule structures and d are
bicomodule maps.

Here Q' ® 4 and 4 ® Q' have the induced tensor product bicomodule
structures, where A is a bicomodule under its coproduct.

From [12] one knows that compatible bimodules and bicomodules (Hopf
bimodules) are of the form (say) Q! = IV ® A for some left-crossed A-
module V. The latter in our finite-dimensional setting means nothing more
than left modules of the Drinfeld quantum double D(A). A particular
module is ker e C A, a restriction of the canonical Schrodinger representa-
tion of D(A) on A (by multiplication and the coadjoint action; see [8]). As
observed in [6], the further conditions for O, d amount to requiring V' to
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be a quotient of ker € as a quantum double module. Then
da = (m, ®id)(a, ®ay —1®a), VaecA, (10)

where 7, ker e = V' is the quotient map. The right (co)module structure
on V' ® A is by right (co)multiplication in A; the left (co)module structure
is the tensor product of that of 17 and left (co)multiplication in A.

In the finite-dimensional setting which concerns us, one may equally
well work in the dual picture in terms of H = kM ><4k(G) and L = V'*,
By definition (cf. [6]), a bicovariant quantum tangent space L for H is a
submodule of ker e € H under the quantum double D(H). Here D(H)
acts on ker € by

h>g=hq,gShg,
a>g= (a,g(l)>g(2) —<a,g)1,Yhe H VgekerecH,a € H*

as a projection to ker e of the Schrodinger representation. A quantum
tangent space is irreducible if L is irreducible as a quantum double
module. It corresponds to Q! having no bicovariant quotients. This dual
point of view has been used recently in [7], where the irreducible bicovari-
ant quantum tangent spaces over a general quasitriangular Hopf algebra
have been classified under the assumptions of %,, % nondegenerate and a
Peter—Weyl decomposition for the regular representation. In the same
manner, we now classify the irreducible bicovariant quantum tangent
spaces L when H is a bicrossproduct. The corresponding Q' will be given
as well.

The canonical or Schrodinger representation of D(H) on H =
kM >4 k(G) has been computed in [2]. Moreover, it is shown there that
D(H) is a coproduct twisting of D(X), the double of the group algebra of
X. Since D(X) = k(X) X kX as an algebra, this will make it easier to
decompose representations into irreducibles. One can also use the isomor-
phism in Theorem 2.2 to transfer to an action of kX >« k(Y), but this
appears to be less natural for the present purpose.

LEMMA 5.1.  The canonical action of D(H) in [2] corresponds to an action
of k(X) X kX on H given by

us > (1 ®6,) = (s"ts) Qu™ ® 8, .

5us > (t ® 61) = 6u,l,'((t<lv)’1>L"1)83<1U,(t<1u)’1t ® 60’

where s" = s < v(t > v)7L.
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Proof. Using the description of D(H) modules as M — G-bicrossed
bimodules (as recalled in Section 4), the canonical action is [2]

lt® 8= (t>0v)vt, (t®§,) =t,
(11)

s> (t®86,) =sts " ®8 (t®8)<du=t<9u®s,1,,

s'> v
where s' =5 < (¢t > v)v~!. The corresponding X-grading || || and X-
action can be computed from this M — G-bicrossed bimodule structure as
Iwll = <(wd Hwland us >w = (s <|w| ) >w)<u?! for all w in the
module. Hence

lt® 8,l=t"*(t>v)o t=v(t"t < (t>0))o t =v(r<av) oY,
us> (t®8,) =(s">(t®3,)) qu!
= ("5 @ 8, ,) Qut = (5"t QuTt ® 8,0 )

Motivated by the form of ||z ® §,I| in the proof of the preceding lemma,
we chose new bases for the vector space on which D(X) acts.

LEMMA 52. Let ¢, =t <v"r® 8, Here {¢,} is a basis of H
labelled by vt € X. Then the action in Lemma 5.1 is

us > ¢UZ = ¢usut(x<1n)’1' 6143' > ¢th = SLL&',UIU’l(bvt'

Proof. Here ||, |l =vtv™r = v(t > v )Nt <v™!) gives the action of
,, by evaluation against the degree. This can be written more explicitly as
8ys > by = 84 v 0105, v+ by @Nd s thereby equivalent to the action
in Lemma 5.1. Moreover,

s"(t7t<vt)s s<v((rt <o) > o) 1)(t’l Qv st
<ot o)) (et qott)sT!

=
= (s
((s<ov)yrt)y v )s™!
(s
(

Qo) (s <o) )<1(s>u)_1

(sav)i(s<v)?) <(spo)t

as(s<v)i>Gro)yt=vtand(s<v) P <(s>ov)t=s""!forany
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matched pair of groups. Then

us> ¢, =us> (P <ot @)= (s"(r7 v s qut

® 0

u(s > v)

= ((s<ao)e(s<v) ™) < (uls > 0) PO dns

= d’u(s > o)s<o)(s< L')’1 = d’usvt(s < U)’1 :

Our task is to decompose ker e € H into irreducibles under this action
of k(X) X kX. We begin by decomposing the action in Lemma 5.2 into
irreducibles and afterwards projecting to ker e. Note that Lemma 5.2 tells
us that when we identify H = kX as linear spaces by the above basis, the
action of X is the linear extension of a certain group action of X on itself.

ProrPosITION 5.3. Let X act on itself by the action us > ot = usvt(s <

v)~t asin Lemma 5.2. Let |lvt|l = ||| = vtv™! as an X-valued function on
X.

(i) Let ~ denote the equivalence relation on X defined by vt ~ us if
and only if ||lus|| = llvt|l. Then > descends to an action of X on the quotient
space X/ ~ .

(i) Let E,,,) € X denote the isotropy subgroup of an equivalence class
[vt] e X/~ . Then

i = {us € X lusllvell = llvtllus},

the centraliser of ||vt] in X.

Proof. (i) may be verified directly. However, it follows from Lemma
5.2 since an action of k(X) X kX (where X acts on X by the adjoint
action in the semidirect product) requires |lus > ¢, || = usll,,l(us) "
terms of the group X this is [lus > vtll = usllvll(us)~*. This also |mpI|es
(i) since the group =, consists of us € X such that us > ot~ ut, e,
such that ||us > vtl| = |lvt]l. |

We denote by &, the orbit containing the point [vt] in X/~ .

EXAMPLE 5.4.  We may restrict attention to orbits of the form &, where
s € M. Then the elements of the equivalence class [s] may be identified with
the subset of M fixed under the action of s, [s] = {sv|s > v = v}. The stabiliser
H[ ) consists of all elements of X which commute with s. The action of E B on
elements of the equivalence class [s] is given by ut > sv = su(t > v). In the
particular case where s = e, we get [e] = G and B B =X
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Proof. This may seem to be a rather specialised example, but in fact
any orbit & in X/~ contains a point of the given form, since

[us]
[s] € @,,.,. We compute
[

us]

[s] = {vtlow™ =5} ={orlo(t>v ) =e,t vt =5

={v(s <v)ls>v="0}.

This can be simplified if we note that if s > v = v, then v(s < v) = (s >
v)(s < v) = sv, giving the result stated. The action of =, is computed as

ut > s = ut & o(s <o) =uw(s <v)(r<v)’

= utso(t <Av) "t =suw(t <) " =su(t > )

as stated. |

For x € X/~ , define %, = kp~*(x) C kX, where p is the canonical
projection to X/~ . Here % is the linear span of the elements of x
viewed as a leaf in X and is a linear EX representation since, by definition,
the action of E, sends p~'( x) to itself.

PROPOSITION 5.5.  Let @ be an orbitin X/ ~ under the action of X. Then
My =D, CkXis a subrepresentation under the action of k(X) X kX
in Lemma 5.2. Moreover, kX = @ ,#, is a decomposition of kX into

subrepresentations.

Proof. The action of §,,,-1 € k(X) on kX in Lemma 5.2 is the
projection operator

8usu’1 > (;but = 8usu’1,vtu’1d)vt'

This is evident since the action of k(X) is by evaluation against ||, Il (or,
explicitly, put 8,1 = 8,5, 1ys<,-1 INt0O Lemma 52). We see that

Tius) = 8,5~ > Projects kX onto the subspace .#,,; and
kX = 699;=€9(693;)=69//@ (12)
X & \xe@ @

as vector spaces. Then the operator

T, = Z’WX

Xeﬁ
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commutes with the action of k(X) X kX and is a projection to .#,. To see
that 7, does commute with the action of the algebra, we can calculate

T o(8, ®y>)=(8,®y>)em-1z,,

and note that the operation y~* > isal-1 correspondence on the set &.

In what follows, we fix an orbit @ C X/~ and a base point y, on it.
We denote by E the isotropy subgroup at x,, and S =L

PROPOSITION 5.6. Let = & -+ &%, be a decomposition _into irre-
ducibles under the action of E. Let x../; = us >.% when x = us > x, (this
is independent of the choice of us). Then

M= D XS CMg
XECG

are irreducible subrepresentations under k(X) X kX. Moreover, My = D4,
is a decomposition of M4, into irreducibles.

Proof. Let x, € X be a choice of us such that us > Xo = x- Define
x-% = x, >.%. Now if we take any x so that x > x, = x, then x 'x € E
S0

x> =x > (x;lx D&’l—) =x, D> = xS,

as .% is a representation of E. Moreover, . N n.S; = {0} for x,n
distinct, so .#; spanned as shown is a direct sum.

Let P;: ¥ —.% be a E-map which projects to ., c.%, with all the other
% contained in its kernel. Now define the map Q;: .#, —».#, by the

J
formula

Q= XL (x,>)ePeo(xt>)om,

XEO

and observe that Q, is a projection to .#,. We now show that it is a
k(X) X kX map. Begin with the equations

Q;°(8,®y>) = Y (x,>)ePo(x; >)om (5 ®yD)

XEﬁ

Y (xyp)ePe(x;t>)e(8, ®@y>)omaz,.
XECG
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Now set n =y~ > y and write

(x;l l>)0(8x®y >)om- 1z, = (8 Ly ® X Myx, l>)0(x;1 |>)°’7T,,l,

Xy XXy
where x;lyxn € E and so commutes with P. Also 8 -.,, is either zero or
X X

the identity on all of .% and so commutes with P; too. Then we see that
Qi ° ( 6): ® y [>)

=) (xXD)o(Sx;lmx®x;1yx,7 D)oPio(x;l >)em,
XECG

= Z (Sx ®y|>)o(xn[>)oPio<x;1 [>)O7Tn = (8x®y [>)°Qi'
XECO

Then each .7 is a representation of the algebra and, since Q,Q; = 0 for
i #j, we see that .7, = ©,.4,.

We now prove irreducibility. Let m €.#, be nonzero. Then there is
some x such that the projection m, to x.% is nonzero and then
x,' >m, is a nonzero element of .. Since .% is irreducible under
E c X, we know that vectors of the form §x;1 >m,, for § E, span all
of .. Since the projection is itself the action of an element of k(X) X kX,
we see that .% is contained in the space spanned by the action of this
algebra on m. Moreover, by using x, >.%; = n.; we see that every n..;
is contained in the image of m under k(X) X kX. Hence ., = (k(X) X
kX).m; i.e., A is irreducible. |

These two propositions give a total decomposition of kX into irre-
ducibles. In particular, we obtain irreducible subrepresentations for every
choice of orbit and every irreducible subrepresentation of the associated
isotropy group. The converse also holds by similar arguments to those in
the preceding proposition.

PROPOSITION 5.7.  Let .# C kX be an irreducible subrepresentation under
k(X) X kX in Lemma 5.2. Then as a vector space # is of the form

M= D x.,
XE@’

for some orbit @ (with base point x,) and some irreducible subrepresentation
My . under B. (Here x..M#y = us >M#, when x = us > x,.)

Proof. Consider .# c kX and let ., = = (%) for any y € X/~ .
Choose a x, so that .z, is nonzero, write .#, =.#, , and let = be the
stabiliser of y,. Now .#Z, must be a representation of E. If %, is an

o

irreducible subrepresentation of .#, under =, then, by the previous
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proposition,

) X CH
XG@'

is an (irreducible) representation of the algebra, where & is the orbit
containing x,. Since .Z is irreducible, this representation must be .#, and
in particular .#, is irreducible. |

It is now a short step to obtain the classification for subrepresentations
of ker e C H. Note that every Hopf algebra is a direct sum k1 @ ker e as
vector spaces, with associated projection II(h) = h — 1e(h). In our case,
ker € is spanned by the projected basis elements

q_sut = H(d)w) =, — SL!,e Z Due

ueG

and the action in Lemma 5.2 projects to the action

us > gut = ausgvt’ 3143 > gvt = 8LlS,UIU_1 gllt (13)

on ker € (such that IT: kX — ker € is an intertwiner).

THEOREM 5.8.  The irreducible quantum tangent spaces L. C ker € are all
given by the following two cases:

(@) For an orbit @ +# {lel} in X/~ , choose a base point x, € @. For
each irreducible subrepresentation #, C.¥ of E, we have an irreducible
quantum double subrepresentation A = ®, cpXx- My CkX and an isomor-
phic quantum double subrepresentation L = TI(.#) C ker e.

(b)  For the orbit @ = {lel} in X/ ~ , choose the base point x, = [e] €
@. For any irreducible subrepresentation #y C. of E other than the trivial
one (multiples of 1), we have an irreducible quantum double subrepresenta-
tion # = ® _,x. My CkX and an isomorphic quantum double subrepre-
sentation L = 11(.#) C ker €. Here ¥ = kG and 5 = X, as in Example 5.4.

Proof. In the cases above, .# = ©, _, x..#, is an irreducible repre-
sentation of the unprojected action. By the above remarks, II: .# — L is a
map of representations, where L c ker e uses the projected representa-
tion. The map is onto, and if it is 1-1 then the two representations are
isomorphic, and hence L is also irreducible.

The only case where the map II is not 1-1 is where 1 €.7. Since k1l is a
representation and .7 is assumed irreducible, this is just the nontriviality
exclusion stated in the theorem. We have shown that the cases described
lead to irreducible subrepresentations of ker e.
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Now suppose that we have L, an irreducible subrepresentation of ker €.
Then its inverse image I1 1L c H is a representation of k(X) X kX and
contains the subrepresentation k1. if L # {0}, then there is at least one
other irreducible subrepresentation .# C H so that k1 ®.# c I1"*L. Then
# must be of the form described earlier, and by irreducibility II.# = L. 1

We are left only with the standard problem of finding the irreducible
subrepresentations of . in Theorem 5.8 under the group E. It is well
known (and follows easily from Schur’s lemma) that if .#Z; are inequivalent
irreducible representations of a group E, irreducible subrepresentations of

%169"1 P .- @/k@"k

are of the form
{0 & @(Awe o )\njw) @00 D - DN W e%}

for some j and some (A,..., A, ) € P(k™).

Thus, given an orbit @ with base point x,, we decompose . into
irreducibles. The full data set for a quantum tangent space is then
(@, #,, V), where .#, is an irreducible representation of = occurring in .%¥
with multiplicity » > 0, and A € P(k").

Bicrossproducts interpolate between group algebras and group function
algebras. As a check, we recover the seemingly quite disparate results
known separately for these two cases.

COROLLARY 5.9.  Suppose that G is trivial. Then H = kM. In this case ~
is the same as equality and X / ~ = X. In this case the equivalence classes are
singletons corresponding to points in M and s >t = sts™' is conjugation.
Hence the orbits @ are conjugacy classes in M. The action of the isotropy
group is trivial and hence these are the only data. We recover the result [13, 7]
that the irreducible quantum tangent spaces are the projected spans of the
nontrivial conjugacy classes.

COROLLARY 5.10.  Suppose that M is trivial. Then H = k(G). In this case
X is one entire equivalence class and X/~ = {[el}. Then there is only one
orbit @ = [e] and Theorem 5.8 reduces to the classification of irreducible
quantum tangent spaces in ker € C k(G), which has been obtained in [7] as
irreducible subrepresentations of the left regular representation. This gives the
classification as pairs (V, \) where V is a nontrivial irreducible representation
and A € P(V*).

We can also keep M, G nontrivial but let > or < be trivial in the
matched pair so that X is a semidirect product. In one case H is a tensor
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product algebra, while in the other it is a cross product kM X k(G) where
M acts by group automorphisms of G.

COROLLARY 5.11.  Suppose that the action > s trivial. If we start with
an orbit @ containing [s), then [s] = sG and E =A = {utltst™' = s < u}. The
canonical projection ut — u is a group homomorphism 2 — G and, identify-
ing = kG, the action of E is the pull back along this of the left regular
representation.

COROLLARY 5.12.  Suppose that the action < is trivial. If we start with
an orbit @ containing [s), then [s] = {svlsv = vs} may be identified with G
the intersection with G of the centraliser of s € X. The isotropy group is
B,y = {utlsu = us and st = ts} = G; X M, where M is the centraliser of
s € M. Identifying ¥ = kG,, the action of = is with M acting by > and G,
acting by the left regular representation.

As well as recovering these known special cases, we may now classify the
guantum tangent spaces for nontrivial bicrossproducts such as those occur-
ring earlier in the paper.

ExAaMpLE 5.13.  We completely solve the problem by hand for Example 2.6
where X = S5. We decompose k(X) into irreducible subspaces .# under (13)
and project to ker €. We verify that the result agrees with the abouve theory in
this special case.

The Orbit Decomposition. First we find the allowed orbits:

Orbit 1. # = {[e]}, choosing base point [e]. Then [e] = {e, (123), (321)}
and E = S,. The action of E on[e] is given by the formula uz > v = urwt™*
We have the eigenspaces of the G action .7, = (e + (123) + (321)),
My = {e + w(123) + w?(321)), and .#Z, = (e + 0*(123) + w(321)). Here
 is a primitive third root of unity. Now .#, forms a one-dimensional
representation of E, but this is annihilated by II. The action of (12) € B
is to swap .#, and .#,, so we get a two-dimensional irreducible representa-
tion .7, ®.#, of E, giving a two-dimensional irreducible subrepresenta-
tion in ker e.

Orbit 2. @ = {[(12)],[(13)],[(23)]}, choosing base point [(12)]. Then
[(12)] = {(12)} and E = M. The action of Z on [(12)] is the trivial one-
dimensional representation, giving a three-dimensional irreducible repre-
sentation in ker e.

The Direct Approach. The space ker e is spanned by the vectors {¢, |x

e S,}, where ¢, =TI¢,, and there is the linear relation d) + ¢(123) +
qb(m) 0. We use the relation to rewrite ¢(321) —p, — d)(m), giving a
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basis consisting of five elements. This is then split into two parts by the
action of X:

(1) The space spanned by the elements {@,, ¢,5). This has the X
action us > ¢, = ¢, and us > ¢qp3) = G,5123),-1, Where we remember to
rewrite o1y = — @, — Puags)- This gives a two-dimensional irreducible
representation.

(2) The space spanned by the elements {¢,), b3, bs)- This has
the X action us > ¢,z = ¢y55-1a2) fOr all v € G. This gives a three-
dimensional irreducible representation.

ExXAamPLE 5.14. We apply the theory above to Example 3.4 where X = Cg
X Cg and exhibit the final result. This is rather complicated to do directly
(hence justifying our methods). It is one of the simplest examples [2] of a true
bicrossproduct Hopf algebra.

First we identify the possible values of || - || and the orbits of these values
under X = S, X S,. Since ||lvt]] = vrv™?, the possible values and the orbits
are simply given by looking at the conjugacy classes of the elements ¢t € M
in X. These are:

Orbit 0. + = 0,, gives the conjugacy class consisting only of the
identity. We choose [0,,] as the base point for this orbit. Then =, = X,
and the equivalence class is [0,,] = G (as previously noted). The action of
B =X on [0y ] = G is given by the formula ut > v = u(t > v).

Let us now look at the decomposition of %= kG into irreducibles
under the action of =, = X. The element 1, € E acts on any irreducible
# C.%, and its action diagonalises; that is, .# is a sum of .Z(r € Cy),
where each ./, is zero or {f,),, where

f.=0;+ 0'l; + 02, + 0¥3; + 04, + 0>5;

for @ a primitive sixth root of unity. The action of 1,, is to send f, to f_,,
so we get the four irreducible representations ., = {fy), % = {f1. fs),
S =L fy, o), and &, = {f;). The two one-dimensional representations
&%, and % are not equivalent, as . is the trivial representation and .% is
not trivial. To show that %, and % are not equivalent, we use the trace
of 1, on the representations, which is w + ™! on %, and w? + ©™ 2 on
-
There are four inequivalent irreducible representations for this orbit,
but one is annihilated by II, leaving three irreducible representations in
ker e on application of TII.

Orbit 1. t =1,, and ¢ = 5,, give the conjugacy class consisting of
elements of the form (any 2-cycle in 1,2,3) (any 3-cycle in 4,5,6). We
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choose [1,/] as the base point for this orbit. Then =, =M, and the
equivalence class is [1,,] = {1,,0/1,, > v = v}. Since 1,, acts on G by the
permutation (1;,5,)2,4.), we find that [1,,] = {1,,0,,1,,3;}. The ac-
tion of E,, =M on [1,] is given by the formula > 1,0 = 1,(¢ > v),
which is the trivial action since both 0, and 3, are fixed by the left action
of M.

The decomposition of .= k{1,,05,1,,3;} into irreducibles under
the action of Em = M gives two copies of the trivial one-dimensional
representation.

Orbit 2. t = 2,, and ¢ = 4,, give the conjugacy class consisting of
elements of the form (any 3-cycle in 4,5,6). We choose [2,,] as the base
point for this orbit. Then E, =8, X C;, where C, is the group of
permutations of {4, 5, 6} consisting of the identity and the two 3-cycles. In
terms of the factorisation, =, consists of all elements of the form ut for
u €{05,25,45} and t € M. The equivalence class is [2,,] = {2,,0[2,, > v
=v}. Since 2,, has the trivial action on G, we find that [2,]=
{20106,21116:2126, 2436, 2046, 21563 Under the E,, action ut > sv =
su(t > v), [2,,] splits into two orbits, {2,,0;,2,2:,2,4;} and
{216.2,,35,2,,55}

First we decompose k{2,,05,2,,2,2,/4;} into irreducibles under the
action of E[z]. The action of 2, on this vector space diagonalises; that is,
k{2,,05,2,25,2,,46) =Hy M, ®M,, Where #y=2,0;+2,2;+
20860k, My =205 + ©2,,2; + 0?2,,4;, and #, = (2,,0, +
©°2,,2; + 02,,4:) (w being a primitive third root of unity). The effect
of 1,, on these eigenspaces is to swap .#, and .Z,. The decomposition into
irreducibles gives ., =.#, (trivial one-dimensional) and .%%, =.#, &.#,.

Next we decompose k{2,,1;,2,,3;,2,55)} into irreducibles under the
action of E[z]. The action of 2, on this vector space diagonalises; that is,
k2,,15,2,,36, 256 =4, @4, &4, where Ay =(2,,1; + 2,3, +
2,560k M = 2yls + ©2,,3; + ©°2,5:0, and A, = (2,1, +
0?2,,3; + ©2,,5;). The effect of 1,, on these eigenspaces is to swap.7;
and .#,. The decomposition into irreducibles gives ., =.#; (trivial one-
dimensional) and ., =.#; &.4,.

In fact the two two-dimensional representations ., and .%, are isomor-
phic, using the maps 2,,0; + 02,2, + 02,4, = 2,,1; + ©2,,3; +
0?2,,5; and 2,0, + 02,2, + 02,4; » 0*(2,,1; + ©°2,,3; +
®2,,55).

Orbit 3. r = 3,, gives the conjugacy class consisting of elements of the
form (any 2-cycle in 1, 2, 3). We choose [3,,] as the base point for this orbit.
Then E; = C, X §;, where C, is the group of permutations of {1, 2, 3}
consisting of the identity and (1,2). In terms of the factorisation, =j,
consists of all elements of the form wur for u € {0,,3;} and t € M. The
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equivalence class is [3,,] = {3,,v13,, > v = v}. Since 3,, acts on G by the
permutation (1;,5;)24,4;), we find that [3,,] = {3,,0,3,3}. The Ej
action on [3,,] is given by ut > sv = su(¢ > v) = suv.

Now decompose . = k{3,,0, 3,,35} into irreducibles under the action
of Ej. The action of 3; on this vector space diagonalises; that is,
F =M, &M, Where #, = (3,,0; + 3,3« and .#; = (3,,0; — 3,35k
The decomposition into irreducibles gives ., =.#, and .%, =.#,, which
are not equivalent.

This completes our classification of the bicovariant quantum tangent
spaces on bicrossproducts. It remains to dualise the results to obtain the
corresponding first order differential calculi, as outlined at the start of the
section. Explicitly, the dual of the inclusion i,: L — ker ¢, is a surjection
i¥: (ker eg)* = V, where V= L*. On the other hand, the inclusion j:
ker €;;, —» H dualises to a map j*: A — (ker ,)* where 4 = H*. Since
ker j* = (image j)* = (ker ;)" = k1, the restriction j*|ierc,: kere, —
(ker €;,)* is an isomorphism. Putting these together, we get a quotient map
7, kere, — V. Recall also that we can describe a representation L of
D(H) as a left H- and right H*-module, with actions obeying the compati-
bility condition

ho> (x<a)= Z((h(l) <ag)) > x) < (hgy > ag)

for all x € L, which can be further computed in terms of the mutual
coadjoint actions. (We freely identify a left H*°"-module as a right
H*-module). For a given a € H*, the action <a: L — L dualises to
(< a)*: V- V where V = L*. Similarly for the operators x > . We obtain
in this way a left action of 4 = H* and a right action of H on V, by
al>v=(<a)(v) and v <h = (h >)*(v), which make V' into a D(A)
representation. This is a general observation about the dualisation of
quantum double modules. Combined with the projection 7, and d in (10),
we obtain the corresponding first order differential calculus Q' = V' ® A.

To fully specify the resulting exterior differential d it is equivalent and
more convenient to give its evaluations d, = ({v, ) ® id)~d against all
v € L. These operators d,: A — A are the braided vector fields associated
to elements v € L. The term is justified because they obey a braided
version of the Leibniz rule [7]

d(ab) = (d,a)b + L V(a ®x) ? dyuenywb, VYa,beA xeL,
(14)

where ¥: L ® A - A ® L is the braiding induced by an action of the
quantum double, with inverse denoted explicitly by Y¥(a ® x)™® ® ¥(a
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® x)~®. Here

V(x®a) =) a,®Say,>x, Y (a®b)=)a,>x0a,.

(15)
Since we obtain L from the map II: .# — L, we specify equivalently the
operators

g, = ({m, »®id)(II* @ id)od, Vme.r. (16)

PROPOSITION 5.15.  Let @ = &, as in Example 5.4. Then
Fg=span{e,, s >ov=v}, ALy=span{ut> ¢, :s>v =v,utEX}.
For |l |l = s G.e., s > v =0) and llut > ¢, || = uts(ut)™* = 50,
autbar,,( 8r ® W) = 8rl>w,i'u(ll>1!)6§r dw — Se,iu(lbu)ar ®w,

W((ut> by,) ® (8, ®2)) = (8 1cana. 1 ®2) ® (c>2)ut > .

Proof.  First we calculate

ur> ¢sv = d)utsv(t ap)?

— — _ -1,-1 -1
- ¢utsz’1(t> v) ¢u(tsl> v)tstTr<(t>v)) T Is °t <u ® 8u(ts> v)?

and hence
Kut < ¢y, > ®id)A(5, ® w)
= Z 61‘s’1t’1<1u’1,(/16u(ls>U),az’lrl>w8a’1r @w
ab=r

= 8(:3’1t’1>u’l)’l(tDu),rl>w8(ts’1t’1<1u’1)’1r ®w,

Kut > ¢, > ®id)(1® 5, ®w)
= 8(ts’1t’1>u’1),(t\> L')Br @ w.
If we look at [lut > ¢, |l = urs(ut)~! = 50, it is apparent that § = (&5~ ¢!
<uH)tand D = (s~ > uH'ut This then gives 4, , as stated.
The computation of the braiding from (15) is similar and left to the reader.
One may use the formula for the Hopf algebra structure in [2]. |

ExAamMPLE 5.16. We provide the ¢ operators in a few cases from Example
5.14.
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We take orbit 0 in Example 5.14 and write
f,=0y®8; +w0y,®38 + w’l,®s,
+ @0¥0y ® 8, + 0¥0,, ® §, + 0”0y ® &,
where o is a primitive sixth root of unity. A short calculation gives

(8 ®v)= ) (8,®b>0v,f)5®v— 3.8 ®04, /)5 ®0

ab=t a

— (0" —1)5, ® .

We use the allowed spaces for .# for this orbit, which are {f;)x, {f1. fs k.
and {f3, fa)x-

Next we take a case from orbit 2, the irreducible representation given by
Sy = {81 827k,

2
8 = ba,0, T @by, 0, T 0D,y 4. =4y ® O, T @4y ® 5,
+ w2’4M ® 84(;'

and o is a primitive third root of unity. In this case the orbit consists of
more than_one point; in fact, & = {[2,,],[4),]}. We choose x, ;<€ X so
that x, J > [2,,]1 = [4,]; for example X4, = 1g- Now we can add 1, > g,

and 1; > g, to g; and g, to get a basis of the four-dimensional represen-
tation specified by @ and .#,, that is, .#Z = {g;,8,,1¢c > g1, 15 > &)k,
where

1G;gr = @10, T 0Py ,, w2’¢5G2M
=2y ®8 + 2,808 + w02, ®35
Then we may calculate the evaluations
&g,( 5 ®v) = (8(t—4)|> vo T @8 4, t w2r5(t—4)>n,4)8z—4
®v—2968v,
al(;;g,( 5 ®v) = (S(t—z)mv,l + 08, eyt wzr‘s(t—zw Lr,s)Sr—z ®v.

A further general feature of the quantum tangent space is [6, 14] a
“quantum Lie bracket” L ® L — L, defined by [x, y] = Ad (y) =
L.x1,y8x ). This obeys a braided Jacobi identity

[x.[y. 2]l = [[x.y]L 2] + [ [ 2]loW(x®y),  Vxyzel (17)
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for ¥: L ® L - L ® L induced by the action of the quantum double.
This is given by

V(x®y) =Adx(1)(y) ®xp — [x,y]® L (18)

The quantum Lie bracket here extends in the quasitriangular case to a
more complete theory of “braided Lie algebras” when viewed as a braided
Lie bracket [15].

PropPosITION 5.17.  The quantum Lie bracket and its braiding in the case

@ = O are given by the formulae

_ _ i _
[ut > ¢, u't > ¢“,] =8, uiv (5™ (1> 0))UT) > P,
- 5u(tl> L!),eu’t’ > (ﬁw"

W(ut> g, @ut' > ¢y ) = ((1s7 " <QuTt W)W t) > b ®w tur > ¢

Sv!

wherew = (¢'s % > H w Tk
Proof. From the Hopf algebra structure of the bicrossproduct one has
easily

Admaﬂ(?@ 55) = x1)¥S(%x))

Y (50 8;) (70 8)((F9) " @ 8ame o)

wZ=u

= Y 80 65)((§<1 0 'e 6((“@)”)71)

wz=u

= Z 8w tl>1)5? 271St(§< ﬁ) ® 5((§<W)I> Ht
WZ

u

<~ A~ ~ —1
= e pypt, 28t (5 AU) T ® S5y 1te 1)

Let h=rs"tt<qut® laute s,

u(ts > R and fﬁ_tsilt u'(t's> 0"
Thenseth—ut>d) —h—e(h)landm—ut>¢ =m — e(m)l, so
that [, m] = h,mSh,, — e(h)ii. To calculate the first term we set § =
s~ l<u L d=uls> o), T=ts" P <auwt and T = u/(¢'s > v') in
the above expression for Ad. We would like to give its output in the same
form as the input, namely as &gz, p5-1 au"t" > ¢, for some u” and ¢"
which we have to find. Then

_ - ~ ~ —1
We'> ¢, =t"s"H T <U T ® Sy =SH(SAT) ® S

W' (1" > v') (5> @) L(5T> D)
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under the condition that (7 > 7))t = . From this we calculate
s >0 =SS <an) < (e ) (> D)
(s~ L) (" <v) = (SF<a )5 < (5> D)

(" <) (sThav) (e av) Tt =

-1

=(F<(@eD)(r<av)(st Q)
x(r av) (Fa (D) .

From this we can identify a possible value of ¢ from " < v’ = (5§ <1 (f >
D)Xt < v'). However, instead of finding ¢’ on its own we combine it with
the equation u"(t" > v') = (5 > )~ *(5f > D) to write

wt'> o) (<) =u"t" = (5> ﬁ)_l(é‘t‘b D)(S<(t>D))(r <)
- (Fpa) 5T o)1 <av)
W't = (S<@)a Yt D) (¢ <v' ),
and on this we use the condition (r > 7)7~! = & to write

=1 =1

W't = (<)ot Qv "= (s (¢ > v)(F <v)o

=(S<uyut = (st < (1> )t
Now we just add e(%) = Syt v vy, and the formulae T>o=0s ">
W HH > ') and G0 = u(t > v)u' (¢ > ') in the condition (7 > D)0 1
= I to get the result given for the quantum Lie bracket. The computation
for the braiding follows similar lines and we omit it. i

Finally, once the quantum tangent space is known, one may recover the
differential forms as Q! = 1V ® A4 where I = ker €/Q. Here the ideal Q is
recovered as

0= span{q € kereled.q =0,Vx € L} (19)
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since ed.a = {x,m,(a — e(a))) from the definition of 4. Recall that in
the construction of the tangent spaces we used an irreducible representa-
tion & C.%. We write an element o €.%; as

o= Z oy ¢s v

visbuv=v

and the entire irreducible representation is spanned by translations of (i.e.,
ut > applied to) elements of this form. For convenience, we assume that
o, = 0if s > v # v. We use these coefficients o, to describe Q.

ProrosiTION 5.18. For @ = Oy as above, the ideal Q consists of all
elements of the form

q: ZI’LYW6I‘®W’
r,w

where the coefficients u,,, obey the equations

Z leu’lst_1<lu_1,u(tl> v) =0

visbuv=v
forall u,t and all o € .%.

Proof. We take a homogeneous element of the tangent space

X = Z O'Ul/lt > axvl

visbuv=v

where ut is fixed, and we take the derivative in this direction of an element
of the ideal g € Q given by

q=ZMVW6r®W

r,w
and then apply the counit to obtain
E(?Xq=€( Z O-I,J/*"’rw(8r>w,z7u(t>v)6§r®W_53,Uu(t>1;)8r®w)) =0.
r,w,v:s>bv=v

From the form of e on the bicrossproduct, this is

Z 0-1 /"Lrw(arbw,z_)u(IDU)S&r,e - 86,17u(t>v)67,e) = O

F,wW,vis>uv=0o

The first product of é-functions in this expression can be combined in the
form

6771(r > w), sou(t> v) = 6771(r > w), utst” Xt > v) = 8w(r aw) L u(e > v)(tstT < (> v))"
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From this we can read that w = u(t > v) and r =5t =tst ' <u 1. The
second product of &-functions in the expression is rather easier to deal
with

Z g, I‘Lrw6e,ﬁu(t> L?)Sr,e = Z a-uae,ﬁu(tbu))(Z/‘Lew) = O’
r,w,v:sb>ov=v visbuv=v w
as e(q) = 0 by the definition of Q. We are left with the following equation

on the coefficients

Z O-L'/“(‘tsz"1<1u’1,u(ll> v) = O’

v:sbuv=v

which must be satisfied by a sufficient number of x to span the tangent
space. |1

Moreover, the left and right A4-module structures on Q! may be
recovered from the directional derivatives as

(da-b)(x) = (d.a)b, (b-da)(x) =b(2)(¢9hm>xa), x€L.

PROPOSITION 5.19.  For @ = & as above, let a = 5, @ w, b = §, ® z,
and x = ut > ¢,,. Then

(da-b)(x)

= 6rl> w,z‘vu(ll>v)8§r<1w,c63‘r ® wz — 68,5‘u(ll>11)6r<w,c8r ® wz,
(b-da)(x)

= 6(cl>z)(rl> W),z'fu(tl>u)6c<12,r8§c ® zw — SCDZ,Eu(tDI:)6§c<1z,r6§c ® zw,

where s, v, §, and U are as in Proposition 5.15.

Proof. The right action of b is given directly by the multiplication in A4
and ¢J in Proposition 5.19. For the left action, we write Ab =Y, .5, ® f
>z ® § ® z, say, and from [2, (4.2)],

(8, ®f>z) D> (wt> ¢,)=(5"®8,0,) <(8®f>2)
=81 ,(f> 2) tut > .

S

From the &-function here we can calculate f = g~ 'c = 5c. Now we use the
result of Proposition 5.19 again to calculate

C?(fl> 2) rur> $“a = 8r\> w,O(f > z) " tu(t > U)5§r @w — Se,ﬁ(fb 2) " tu(t > L:)8r ®w,
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where 50 = (f > z) " 's50(f > z). Now use the equations 50(f > z) ! = (f
> z) 50 and 5ou = utst™* to find SD(f > z) " 'u = (f> z) " tutst™?, or

(ﬁ(fb z)_lu)71 =t Ut u(f>2)

(st P> u Y (e>z) =u (e > 2).
Now we can rewrite

a(f|> o tures 6,9
= Ba(fo oty s o w105 W = Saire oty (e 00 @ W
= 5:4*117*1(u> 2).(t> z;)(rl>w)*15§r dw — Slrlrl(wz),(» z))8r ®w
and also calculate the products
(6;,®2)( 8, ®W) =8, 56 ®zw,
(6,®2)(6,®w) =06;,,,6 ®zw.

~

Since 51 =5""<(f>2), we can write &, 5 = 8154, , =&
giving the result stated. i

c<z,r?

ExamMpLE 5.20.  Explicit description of the 1-forms in the case of Example
5.13.

In Example 5.13 we had .Z = {g,, §,, 15 > g1 1s > 827k, With
& = d’zMoG + wnd’zMzG + w2n¢2M4G-

First we shall find the ideal Q in this case. If we take a general element

P, X

and calculate its directional derivatives, we find

Op M= Z( Mp—2,0 — Iu"p,O)(Sp ® 0)
P

+ ) ((wnﬂp—z,z - /‘Lp,z)(Sp ® 2)

p even

+(w2nﬂp—2,4 - ,U~p,4)(8p ® 4))
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+ Z ((wznﬂpfz,z - /‘Lp,Z)(ap ® 2)
p odd

+(w”p«p_2,4 - ,U«p,4)(5p ® 4))’

‘91>g”M = Z (Mp+2,18p ®1+ wn:“p+2,35p ® 3+ w2”l“’p+2,58p ® 5)

p even

+ X (K128, ®5+ 0,38, ®3+ 0¥, ,18,®1).
p odd

If we now impose the conditions e(u) =0, €(g, n) =0, and €(d,, , p)
=0 (for n = 1,2), we get the following condltlons on the coefficients,

which define Q,

Z/"LOx =0

Mg + @y + 0Py = oo+ Moz T Mos

Mo + @'ty + 0¥y = 0.

Now we look for a left-module basis of the 1-forms. We define v, and v,
by, for n = 1 and 2,

6
= L X p(n)(8 ®2)d(8., 8 (~2)),

c=12z=2,4

where the coefficients p,.(n) are given by

1
pcz(n) = 1 _ wn’ pC4(n) = 1 _ n

if ¢ is even and by

1 1)
pC4(n)_ 1_wn’ pc‘z(n)_ 1_ n

w

if ¢ is odd. These have the property that Uy and v, both give zero when

evaluated in the directions 1, > g, and 1, > g,, and also that v (g, ) =
3, »1. We can also define v; and v, by the following formula, for n = 1
and 2,

6
2= L L q.(n)(8, ®2)-d(8,_, ® (-2)),

c=12z=1,5

where the coefficients ¢, ,(n) are given by

1
ch(n) = n __ 2n ! QCl(n) = n __ 2n
w w w w
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if ¢ is even and by

_wn

1
qe(n) = ——n+  4es(n) = ——=
w

w " — 0"
if ¢ is odd. These have the property that v, and v, both give zero when
evaluated in the directions g, and g,, and also that v,(1; > g,,) = 8 1.

n—2,m

In other words, the forms {v,,v,, v5,v,} give the dual basis for the basis
{g1, 8, 1; > g..1g > g,} (in that order) of the tangent space. From this we

can express any 1-form using the v, as a left-module basis; that is, for « a
1-form

a=uv;.a(g) +0v,.a(8;) + U3'a(lG > gl) + U4-0‘(1G > 82)-
Now we can examine the commutator b - da — da - b, where a = 6, ® w,
b = 6, ® z, and write it in terms of the basis elements v;. To do this, we

give its evaluation against the basis of the quantum tangent space and use
the formula above. Begin with the evaluations

(b-da —da-b)(¢,,)
= (3(c|>z)(r>w),u8c<1z,r - 8(c|>z),u8(c+2)<1z,r)5c+2 ® (w+2z)
— 04wy 000 +2)aw,cOrr2 ® (w+2z)
+80.,0, a8 ® (W +2),
(b-da —da-b)(1> ¢,,)
= O )rowy 1409 az 044 ® (w+2)
— O ) 1+0c+ayazrOc+a ® (w+2z)
O, o w1400+ 4y aw,cOrra ® (w+2z).
Now sum these over v even with powers of o to get
(b-da —da-b)(g,)
= (@CmarrEmyamy | ema/Dm )6,
®(w +2)
— (7 m/2mg i 2w, cOri2 ® (W +2)
+8, 4.6, ® (W +z),
(b-da —da-b)(1>g,)
= e+ (> W)*l)/z)m8c<]zyr56+4 ® (W + Z)
_w(((CDZ)_l)/Z)mé(c+4)<1 2 0cia ® (W H+2)

—1y/2
— =M=/ )ma(r+4)<w,c8r+4 ® (w+z).
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To interpret these formulae, remember that the right and left actions of
C, on itself are given by even elements having the trivial action and odd
elements acting by the additive inverse. To save writing many special cases,
we have also used the convention that «*/?™ is zero if k is odd and the
usual value if k is even.

This rather complicated result can be broken up into special cases. The
simplest case is to note that b - da — da - b = 0 if one of r, ¢ is odd and the
other is even. As an example of another case, let r, ¢, and z all be even
and w odd. Then

(b ‘dd - dd b)(gm) = (66+r,0 - w(Z/Z)m86+2,r)6r ® (W + Z),
(b ’ da - da ’ b)(l > gm) = w((W7l)/2)m(w(Z/2)m86,r - 5c+r,2)8r+4
(w + z),

and we can now use the v; as a right basis to write

b-da—da-b=(8,,0— 0/ ;)0 (8 & (w+2z))
+(85+r,0 - w26c+2,r)v2 ’ (6r ® (W + Z))
+w(w_l)/2(w2/280,r - 5c+r,2)1 > Uy (51‘+4 ® (W + Z))
+0" N 08, , = 8,,,,)1> 0, (8,4 © (W+2)).

Finally, we can ask what the left-module structure is in terms of the

right basis. If we start with (§, ® x)v, for n = 1 or 2, then, applying our
formula for v, we get

(8k ®x)Un = :224p(k<1x)z(n)(8k ®XZ) ‘d(6k<1x+2 ® (_Z))’

and evaluating this against g,,,

(6k ® x)Un(gm) = Z p(k<1x)z(n)(w(((k[>xz>+(k>(_2)))/2)m8k<1x,k<1x+2
z=2,4

k> 2
— 2/ )m‘s(k+2)<1x,k<1x+2)6k+2 ®x.

This vanishes if x is odd, and if x is even it gives

(5. 8)0,(8,) = = L p(mo @ rom)5 0 x

z=2,4

— _w((kl>x)/2)m( Z pkz(n)w((kbz)/Z)n1)8k+2 ® x.
z=2,4
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On evaluation against 1 > g,,, we find
(8k ® x)Un(l > gm) = Z p(k<1x)z(n)(w(((kbXZ)+(kl>(7Z))7l)/2)m

z=2,4

(k> xz)— l)/2)m8

X6k<1x,k<1x+2_w (k+4)<1x,k<1x+2)6k+4®x'

This vanishes if x is even, and if x is odd it gives
(8 ®x)v,(1>g,)

— k> -1)/2
- (T pentmos o), o
z=2,4

— k -1)/2 k> 2
= — k> x=1y )m( Z p(—k)z(”) wk>2)/ )m)8k+4 R x.
z=2,4

If we use the formulae for p,.(n) then we get, for n = 1 or 2,

(wn+m _ 1) wm
l1- "

= 6n,mw((kbX)/Z)mak+2 ®x'

(wn+m _ 1) wm
l1-w"

=4 w((kbx—l)/Z)m8k+4 ®x
n,m '

(8 ® x)v,(8) w(E2 /DM, @ x

(8k ®x)Un(1 > gm) 0‘)((k[>)C_l)/2)m§k-%—4 ®x

We can do a similar calculation for v, and v, to get, for n = 1 or 2,

(8k ®x)Un+2(gm) == Z q(k<1x)z(n)w((kb(x+2))/2)m8k+2 ®x
z=1,5
— _w((k>x+l)/2)m( Z Q(fk)z(”) w((kl>zfl)/2)m)
z=1,5
X Opip ®X,
(8/( ®x)Un+2(1 [>gm) = = Z Q(kﬂx)z(n) w((kb(x+2)7l)/2)m6k+4 ®x
z=1,5
= _w((kDX)/Z)m( Z qkz(n)w((kDZ—l)/Z)m)
z=1,5

X Oppq ®x.
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If we use the formulae for g,,(n) then we get, for n = 1 or 2,

w" — w2m

(0 ®X)0,42(80) = mw«kwﬂvz)m%u ®x

S w((kl> x+ 1)/2)m8k+2 ® x
n,m H

w" — w2m
_ k> 2
(8 ®x)0,,5(1 > g,) = — 5 @77, ®x

8y @ kZ /DMy, @ x
n,m .

Now we can use these evaluations to write the result in terms of the right
basis as

(8 ®x) v, = @CE2y - (8, ®x)
+ QP mDBNY o (8ips ®X),
(808 %) By = @572, (5 @)

+ DY, o (8is ® )

for n = 1,2. This is our final result for the commutation relations between
functions and differentials in this example.
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