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SUMMARY

Human pluripotent stem cell (hPSC) differentiation
typically yields heterogeneous populations. Knowl-
edgeof signalscontrollingembryonic lineagebifurca-
tions could efficiently yield desired cell types through
exclusion of alternate fates. Therefore, we revisited
signals driving induction and anterior-posterior pat-
terning of definitive endoderm to generate a coherent
roadmap for endoderm differentiation. With striking
temporal dynamics, BMP and Wnt initially specified
anterior primitive streak (progenitor to endoderm),
yet, 24 hr later, suppressed endoderm and induced
mesoderm. At lineage bifurcations, cross-repressive
signals separated mutually exclusive fates; TGF-b
and BMP/MAPK respectively induced pancreas
versus liver from endoderm by suppressing the alter-
nate lineage. We systematically blockaded alternate
fates throughout multiple consecutive bifurcations,
thereby efficiently differentiating multiple hPSC lines
exclusively into endoderm and its derivatives.
Comprehensive transcriptional and chromatin map-
ping of highly pure endodermal populations revealed
that endodermal enhancers existed in a surprising
diversity of ‘‘pre-enhancer’’ states before activation,
reflecting the establishment of a permissive chro-
matin landscape as a prelude to differentiation.
Ce
INTRODUCTION

At developmental junctures, multipotent progenitors choose be-

tween multiple fates (Graf and Enver, 2009; Loh and Lim, 2011).

Extrinsic signals often instruct a particular fate while repressing

alternate lineages. It is critical to decipher the extrinsic signals

that direct such lineage segregations in order to efficiently differ-

entiate human pluripotent stem cells (hPSCs) into pure popula-

tions of desired cell types in the absence of mutually exclusive,

unwanted lineages. However, the precise lineage outcomes

specified by these signals at particular bifurcations remain to

be fully clarified, despite informative insights from in vivo genetic

perturbations (Tam and Loebel, 2007; Zorn andWells, 2009) and

explant approaches (Bernardo et al., 2011; Deutsch et al., 2001).

Pertinent issues include how alternate lineages are segregated

at each branchpoint as well as the exact order and kinetics of

dynamic signaling switches that drive successive cell fate transi-

tions (Wandzioch and Zaret, 2009).

The present work revisits signaling dynamics that drive in-

duction and anterior-posterior patterning of the definitive

endoderm (DE) germ layer and subsequent organ formation.

DE is the embryonic precursor to organs including the thyroid,

lungs, pancreas, liver, and intestines (�Svajger and Levak-

Svajger, 1974). The pluripotent epiblast (E5.5 in mouse

embryogenesis) differentiates into the anterior primitive streak

(E6.5), which generates DE (E7.0–E7.5) (Lawson et al., 1991;

Tam and Beddington, 1987). DE is then patterned along the

anterior-posterior axis into distinct foregut, midgut, and hind-

gut territories (E8.5), and endoderm organ primordia arise
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from specific anteroposterior domains (E9.5) (Zorn and Wells,

2009).

Various methods to differentiate hPSCs toward DE employ

animal serum, feeder coculture, or defined conditions (Cheng

et al., 2012; D’Amour et al., 2005; Touboul et al., 2010), but they

typically yield a mixture of DE and other contaminating lineages,

with induction efficiencies fluctuating between hPSC lines

(Cohen and Melton, 2011; McKnight et al., 2010). Viewed from

the perspective of lineage bifurcations, these mixed lineage

outcomesmight stem from incomplete exclusion of alternate fates

at such junctures. Heterogeneous early DE populations harboring

contaminating lineages complicate the subsequent generation of

endodermal organ derivatives (McKnight et al., 2010).

In vertebrate embryos and during PSC differentiation, TGF-b/

nodal/activin signaling is imperative for DE specification,

whereas BMP broadly induces mesodermal subtypes (e.g.,

Bernardo et al., 2011; D’Amour et al., 2005; Dunn et al., 2004).

Yet, TGF-b signaling (even with additional factors) is insufficient

to specify homogeneous DE (quantified by Chetty et al., 2013).

BMP, fibroblast growth factor (FGF), VEGF, and Wnt have also

been employed together with TGF-b signals to generate DE

(Cheng et al., 2012; Green et al., 2011; Kroon et al., 2008; Nostro

et al., 2011; Touboul et al., 2010). However, these factors have

also been implicated in mesoderm formation (Davis et al.,

2008), and their precise involvement in DE induction remains to

be clarified.

We have systematically elucidated how mutually exclusive

lineages are separated at four consecutive steps of endoderm

development: PS induction, segregation of endoderm versus

mesoderm germ layers, DE anterior-posterior patterning, and

bifurcation of liver and pancreas. Accurately defining which sig-

nals instructed or repressed specific fates at each endodermal

bifurcation enabled homogeneous hPSC differentiation down

one path or the other. Knowledge of precise temporal signaling

dynamics, combined with efficient differentiation throughout

successive developmental steps, culminated in a single strategy

to universally differentiate diverse hPSC lines into pure popula-

tions of endodermal lineages by excluding alternate lineages at

each branchpoint. Altogether, this provides a coherent view of

signaling logic underlying multiple steps of endoderm induction

and patterning. This also furnishes the means to molecularly

profile highly homogeneous endoderm populations, allowing

us to comprehensively capture transcriptional and chromatin

dynamics underlying endoderm specification.

RESULTS

BMP, FGF, TGF-b, and Wnt Initially Establish the
Primitive Streak and Anteroposteriorly Pattern It
This work was preceded by findings that activin, in conjunction

with FGF, BMP, and a phosphatidinositol 3-kinase (PI3K) inhibi-

tor (‘‘AFBLy’’) (Touboul et al., 2010) or together with animal

serum (D’Amour et al., 2005), induced hESCs toward DE. How-

ever, we and others (Chetty et al., 2013) observed that these

methods still yielded mixed lineage outcomes, which was

evident during the differentiation of five hESC lines (Figures 1A

and 2B and 2C; Figures S1–S3 available online). For example,

AFBLy (Touboul et al., 2010) concurrently generated mesoderm,

upregulating skeletal, vascular, and cardiac genes (p < 10�8;
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Figure 1A; Figures S1A–S1D), whereas activin and serum treat-

ment (D’Amour et al., 2005) yielded a proportion of undifferenti-

ated cells (Figures 2B, 2C, and 2F). Creation of impure early DE

populations might explain the emergence of nonendoderm line-

ages after downstream differentiation (Kroon et al., 2008; Reza-

nia et al., 2012).

Guided by prior in vivo and in vitro findings, we selectively

perturbed developmental signals (>3,200 signaling conditions)

at specific embryonic stages of hPSC differentiation in serum-

free conditions and assessed resultant lineage outcomes by

qPCR (yielding >16,000 data points, Figure S1–S4). These

signaling perturbations revealed elements of the signaling logic

underlying DE induction (Figures 1, 2, 3, and 4).

In vivo, DE arises from the primitive streak (PS, E6.5) (Levak-

Svajger and �Svajger, 1974). The anteriormost PS (APS)

generates DE (E7.0–E7.5), whereas posterior PS (PPS) forms

mesoderm (Lawson et al., 1991; Tam and Beddington, 1987).

Determinants of anterior versus posterior PS from hPSCs remain

to be elucidated.

We found both APS and PPS were combinatorially induced by

BMP, FGF, and Wnt on day 1 of hESC differentiation. These sig-

nals have been individually implicated in PS induction (Bernardo

et al., 2011; Blauwkamp et al., 2012; Gadue et al., 2006), but their

roles in PS patterning have not been dissected in detail. If BMP,

FGF, or Wnt were inhibited, both APS and PPS formation failed

(Figure 1B), corroborating the lack of PS inBMPandWnt pathway

knockout mice (Beppu et al., 2000; Liu et al., 1999; Mishina et al.,

1995). FGF signaling was equally permissive for both APS and

PPS emergence, and endogenous FGF was sufficient to drive

either outcome (Figure 1Bi, Figures S2A–S2C). However, exoge-

nousWnt (either Wnt3a or GSK3 inhibition [CHIR]) was necessary

to maximize PS induction, and Wnt broadly promoted both APS

and PPS (Figure 1Bii and 1Biii). Limited PS formation could occur

without exogenousWnt, but was dependent on endogenousWnt

(Figure 1Bii). BMP levels arbitrated between APS and PPS; lower

(endogenous) BMP levels elicited APS, whereas higher BMP

yielded PPS (Figure 1Biv; Figure S2B). Nonetheless, the absolute

necessity of BMP forMIXL1-GFP+ APS induction (Figure 1Di, p <

0.025) was unexpected, because BMP was typically thought to

be posteriorizing (Bernardo et al., 2011). Therefore, FGF, Wnt,

and low BMP were essential for APS specification.

A Dynamic Switch in BMP and Wnt Signaling Induces
Primitive Streak but Subsequently Suppresses DE
Emergence
To further differentiate APS toward DE, prior studies used similar

factors to induce both lineages over 3–5 days (Nostro et al.,

2011; Touboul et al., 2010). Instead, we found that APS and

DE were sequentially driven by diametrically opposite signals

within 24 hr of differentiation. BMP and Wnt initially specified

APS fromhESCs on day 1, but, 24 hr later, BMP andWnt induced

mesoderm and reciprocally repressed DE formation from PS on

days 2–3 (Figures 1Ci and 1Cii). Interestingly, not only removing

exogenous BMP but neutralizing endogenous BMP (using

noggin or DM3189/LDN-193189) was critical to eliminate meso-

derm and to reciprocally divert PS differentiation toward DE

(Figure 1Ci). This was evinced by 3,000-fold downregulation of

MESP1 and concurrent upregulation of SOX17, HHEX, FOXA1,

and FOXA2 in two hESC lines (Figures S1C–S1E). Given that
.
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Figure 1. Dynamic Signaling Switch for Primitive Streak and Endoderm Formation

(A) Microarray analysis of genes upregulated >2-fold during AFBLy treatment of H9 hESC (Touboul et al., 2010) and GO analysis.

(B) To test effects of increasing FGF2 (10–40 ng/ml), Wnt3a (15–100 ng/ml), CHIR99021 (50–1,000 nM), or BMP4 (3–20 ng/ml) (panels Bi, Bii, Biii, and Biv,

respectively) and respective inhibitors (100 nM PD173074, 2 mM IWP2, 150 ng/ml Dkk1 and 250 nM DM3189) on PS formation, H1 hESCs were differentiated

toward PS for 24 hr with indicated base combinations of activin (100 ng/ml), FGF2 (20 ng/ml) and 10 mM LY294002 (‘‘AFLy’’ or ‘‘ALy’’) in conjunction with the

indicated signaling perturbations, and qPCR was performed (day 1).

(C) To test effects of increasing BMP, FGF, orWnt signaling (10 ng/ml BMP4, 3 mMCHIR, and 5–20 ng/ml FGF2; panels Ci, Cii, and Ciii, respectively) on DE versus

mesoderm emergence from PS, H1 hESCs were initially differentiated with AFBLy toward PS for 24 hr and then subsequently differentiated with AFLy, AFBLy, or

ALy + 250 nM DM3189 (‘‘ADLy’’) for 48 subsequent hours with indicated signaling perturbations, and qPCR was performed (day 3).

(D) HES3 MIXL1-GFP+ PS (Davis et al., 2008) induced by 100 ng/ml activin, 2 mM CHIR, and 50 nM PI-103 (ACP) by day 1 of differentiation was blocked by

concomitant addition of (Di) BMP inhibitors (300 ng/ml noggin or 250 nMDM3189), (Dii) truth table, (Diii) and schematic of dynamic signaling during differentiation.

See also Figure S1.
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prolonged BMP and Wnt were known to induce mesoderm

(Bernardo et al., 2011; Gadue et al., 2006), our results altogether

argue against prior sustained BMP treatment to induce DE

(Cheng et al., 2012; Nostro et al., 2011; Touboul et al., 2010),

which we show abrogated DE and, instead specified mesoderm.

Timed BMP inhibition also improved DE induction from mouse

ESCs (mESCs), although which developmental step(s) it

benefited remain unclear (Sherwood et al., 2011). In summary,

understanding the precise kinetics of BMP signaling was essen-

tial to thwart extraneous mesoderm production.

Similarly, endogenous Wnt/b-catenin signals directed PS

toward mesoderm, such that inhibiting endogenous Wnt (using

IWP2, Dkk1, or XAV939) on days 2 and 3 blockedmesoderm for-

mation from two hESC lines (Figure 1Cii; Figures S1G and S1H).
Ce
However, individually inhibiting either BMP or Wnt was sufficient

to abolish mesoderm, indicating that inhibiting both was redun-

dant (Figure S1H). Thus, we subsequently only inhibited BMP to

derive DE from PS. Finally, our results contrast with prolonged

Wnt treatment to induce DE (Sumi et al., 2008), which we

show specified mesoderm from PS and blocked DE instead. In

summary, BMP and Wnt induced mesoderm from PS and sup-

pressed endoderm; therefore, their inhibition ablated mesoderm

and diverted differentiation toward DE.

Whereas BMP and Wnt specified mesoderm (Gertow et al.,

2013), we found DE formation from PS was jointly driven by

FGF (Figure 1Ciii) and TGF-b signaling (Bernardo et al., 2011;

D’Amour et al., 2005). If FGF was inhibited, mesoderm formation

was re-enabled, even in the absence of promesodermal BMP
ll Stem Cell 14, 237–252, February 6, 2014 ª2014 Elsevier Inc. 239



Figure 2. Efficient DE Induction in Defined Conditions by SR1

(A) H1 hESCs differentiated by ACP for 24 hr stained for BRACHYURY, FOXA2, EOMES, and LHX1 (nuclear staining byDAPI); scale bar, 100 mm for all subsequent

figures (left); FACS shows >99% of HES3 hESCs are MIXL1-GFP+ (Davis et al., 2008) after 24 hr of ACP treatment (right).

(B) Microarray heatmap of independent triplicates; undifferentiated HES3 hESCs (day 0), ACP-induced APS (day 1), SR1-induced DE (day 3), or hESC differ-

entiated by AFBLy (Touboul et al., 2010) or serum (D’Amour et al., 2005) for 3 days.

(C) FOXA2 and SOX17 staining of SR1-, serum-, or AFBLy-treated H1 hESCs after 3 days of differentiation (top); summary of CXCR4+PDGFRa� DE percentages

in hPSCs (gray) or after SR1 differentiation (blue) from seven hPSC lines, dots depict experimental replicates (bottom left); histogram summarizing

CXCR4+PDGFRa� DE percentages after various differentiation protocols, error bars depict standard deviation (bottom right).

(D) FACS analysis of H9 SOX17-mCHERRY hESCs; reporter expression before or after 2 days of SR1 differentiation.

(E) FACS analysis of CXCR4 and PDGFRa expression before or after SR1 differentiation from indicated hPSC lines.

(F) Single-cell qPCR heatmap of 80 single cells (H7 hESCs, or those differentiated by SR1, AFBLy or serum for 2 days).

(G) To test their neural competence, H1 hESCs, after 0–2 days of SR1 induction, were transferred (‘‘/’’) into neuralizing media (‘‘N,’’ 3 days), and neural gene

expression was compared to SR1-induced DE (‘‘day 3 DE’’); see Supplemental Experimental Procedures.

See also Figures S2 and S3.

Cell Stem Cell

Signaling Logic Underlying Endoderm Development

240 Cell Stem Cell 14, 237–252, February 6, 2014 ª2014 Elsevier Inc.



Cell Stem Cell

Signaling Logic Underlying Endoderm Development
(Figure 1Ciii), showing that FGF prevented illegitimate conver-

sion of prospective DE to mesoderm. FGF is also essential for

DE formation from mESCs, yet, paradoxically, it was previously

found that exogenous FGF was detrimental to DE induction

(Hansson et al., 2009), which we did not observe (Figure 1Ciii).

In conclusion, these data uncovered a signaling cross antago-

nism in which BMP and Wnt versus FGF and TGF-b respectively

induced mesoderm versus endoderm from the PS and did so by

cross-repressing the alternate fate (Figures 1Dii–1Diii). Further-

more, BMP and Wnt yielded dichotomous lineage outcomes,

depending on the developmental time of exposure; their effects

became reversed within 24 hr (Figure 1D; Figure S1F).

Universal Generation of Highly Purified DE from Diverse
hPSC Lines through Sequential APS Formation and
Mesoderm Suppression
The above findings that APS and DE were sequentially specified

by opposing signals, together with the necessity of BMP inhibi-

tion to eliminate mesoderm from the PS, motivated a serum-

free monolayer approach (‘‘SR1’’) for DE induction. We first

differentiated hPSC to APS in 24 hr (Figure 2A) while excluding

ectoderm by combining high activin/TGF-bwith CHIR (emulating

Wnt/b-catenin signaling) and PI3K/mTORC inhibition (Figures

S2C–S2E), abbreviated ‘‘ACP.’’ This yielded a 99.3% ± 0.1%

MIXL1-GFP+ PS population (Davis et al., 2008) in which pan-

PS TF BRACHYURY was coexpressed with APS-specific TFs

EOMES, FOXA2 and LHX1 (Figure 2A; Figure S2H). Twenty-

four hours later, CHIR was withdrawn and APS was subse-

quently differentiated into DE for forty-eight hours by high activin

concomitant with BMP blockade (DM3189) to exclude meso-

derm. Exogenous FGF was superfluous as endogenous FGF

sufficed (Figure 1Ciii; Figure S2A).

Sequential APS formation followed by DE induction universally

yielded a 94.0%±3.1%CXCR4+PDGFRa�DEpopulation from 9

diverse hESC (H1, H7, H9, HES2, and HES3) and hiPSC (BJC1,

BJC3, HUF1C4, and HUF58C4) lines by day 3 of differentiation

(Figures 2B–2E; Figure S2I), overcoming line-to-line induction

variability. SR1 abundantly elicited SOX17+FOXA2+ DE (Fig-

ure 2C; Figure S3C) and downregulated hPSC marker CD90

(Figure S2J). hESC (94.0% ± 3.1%) and hiPSC (94.0% ± 3.4%)

did not markedly differ in DE induction efficiencies (p > 0.97,

Figure S3D). We further exploited a SOX17-mCHERRY knockin

hESC reporter line to quantify differentiation efficiencies and

found SR1 induced >90% SOX17-mCHERRY+ DE (Figure 2D).

SR1 generated definitive instead of extraembryonic endoderm

(ExEn) as evinced by lack of PDGFRa and SOX7 (Figure 2E;

Figure S3A).

We directly compared DE induction by SR1 against two

prevailing protocols, AFBLy (Touboul et al., 2010) or activin

and serum treatment (D’Amour et al., 2005), across five hESC

lines (Figure S3A). SR1 differentiation exclusively yielded DE

(SOX17, FOXA1, FOXA2, CER1, and FZD8) from all five hESC

lines with minimal mesoderm, neuroectoderm, or ExEn (Fig-

ure 2B; Figure S3A). In contrast, the other DE protocols gener-

ated modest amounts of SOX17+FOXA2+ DE (Figure 2B and

2C; Figure S3C) and produced mixed lineage outcomes; AFBLy

upregulated mesoderm TFs (FOXF1, HAND1, MSX1, and ISL1),

whereas pluripotency TF expression (OCT4,SOX2, andNANOG)

persisted after serum induction across all five lines (Figure 2B;
Ce
Figure S3A). At a clonal level, both FACS quantification (Fig-

ure 2C; Figure S3B) and single-cell qPCR (Figure 2F) confirmed

SR1 yielded purer DE than either AFBLy or serum treatment;

20/20 of SR1-differentiated cells were FOXA2+, whereas few

cells after AFBLy (1/20 cells) or serum induction (2/20 cells) high-

ly expressed FOXA2 (Figure 2F). Thus, even though all three dif-

ferentiation protocols utilized high activin, clearly, activin alone

was insufficient to generate pure DE.

Finally, neural competence was relinquished within 24 hr of

SR1 induction (Figure 2G), showing that mutually exclusive ecto-

derm potential was lost upon APS commitment.

Anteroposterior Patterning of hESC-Derived DE into
Mutually Exclusive AFG, PFG, and MHG domains by
BMP, FGF, RA, TGF-b, and Wnt Signaling
After its initial specification in vivo, DE is patterned along the

anteroposterior axis into distinct domains, which are the regional

antecedents to endodermal organs (Zorn and Wells, 2009). The

anterior foregut (AFG) gives rise to lungs and thyroid, the poste-

rior foregut (PFG) to pancreas and liver, and the midgut/hindgut

(MHG) to small and large intestines (Figures 3A and 3B). There-

fore, having induced mostly homogeneous DE from hPSCs by

day 3, we next attempted to anteroposteriorly pattern it into

distinct AFG, PFG, or MHG populations by 4 subsequent days

of differentiation (Figure 3A) based on increasing knowledge of

signals controlling DE patterning in vivo (Zorn and Wells, 2009)

and in vitro (e.g., Green et al., 2011; Sherwood et al., 2011;

Spence et al., 2011).

In vertebrate embryos, tailbud mesoderm expresses BMP4,

FGF4/8, and WNT3A and is juxtaposed with posterior endo-

derm, suggesting these signals might posteriorly pattern the

nearby MHG. In vitro, we found BMP markedly posteriorized

DE (Figure 3Ci) by inducing MHG TFs (e.g., CDX2, EVX1, and

50 HOX genes), congruent with zebrafish data (Tiso et al.,

2002). Wnt (emulated by CHIR) was similarly posteriorizing (Fig-

ure 3Cii), and FGF could also partially posteriorize PFG intoMHG

(Figure S4A), confirming prior work (Sherwood et al., 2011;

Spence et al., 2011). BMP, FGF, and Wnt all reciprocally sup-

pressed anterior endoderm TF SOX2 (Figure 3C; Figure S4A).

Hence, we used a combination of BMP, CHIR, and FGF to

pattern day 3 DE into >99% CDX2+ MHG (Figure 3D) while sup-

pressing foregut (Figure 3E) in serum-free conditions.

Conversely, inhibiting posteriorizing BMP signals broadly

yielded anterior endoderm (foregut). Combining BMP inhibition

with TGF-b inhibition (Green et al., 2011) yielded >98% OTX2+

AFGpharyngeal endoderm (Figure 3D) by day 7 of differentiation.

Separately, BMP inhibition in conjunction with RA signaling

generated PFG (Figures 3E and 3F), consistent with how RA re-

gionalizes the PFG in vivo (Stafford and Prince, 2002). AFG and

PFG were functionally distinct, because only PFG was compe-

tent to subsequently form liver and pancreas (Figure 3G).

Invoking the above signaling logic, we generated separate

AFG, PFG, andMHGpopulations fromDE in amutually exclusive

manner. Global microarray profiling of distinct patterned pop-

ulations revealed that anteroposterior marker expression was

clearly developmentally demarcated (Figure 3E and 3F, repro-

duced in two hESC lines). Graded, spatially collinear HOX gene

expression (Zorn and Wells, 2009) was observed after in vitro

patterning, whereby PFG expressed 30 anterior HOX genes
ll Stem Cell 14, 237–252, February 6, 2014 ª2014 Elsevier Inc. 241



Figure 3. Anteroposterior Patterning of hESC-Derived DE

(A) Overview of anteroposterior patterning strategy.

(B) TF expression in anteroposteriorly patterned endoderm in vivo, see Table S1.

(C) To test effects of (Ci) increasing BMP4 (10–25 ng/ml) or (Cii) increasing CHIR (3–6 mM) on MHG induction, day 3 DE was differentiated for 4 subsequent days

with indicated base conditions together with designated signaling perturbations until day 7, with AFG and PFG controls indicated (subsumed by Figure S4A); (Ci)

FGF+CHIR, 100 ng/ml FGF2 + 3 mM CHIR; (Cii) BF, 10 ng/ml BMP4 + 100 ng/ml FGF2.

(D) OTX2, FOXA2, and CDX2 staining of H1-derived day 7 AFG and MHG, respectively, with quantification.

(legend continued on next page)
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(e.g., HOXA1), but MHG exclusively expressed 50 posterior HOX

genes and CDX genes (Figures 3E and 3F).

TGF-b Competes with BMP/MAPK Signaling to Specify
Mutually Exclusive Bifurcation of Pancreatic and
Hepatic Fates
In vivo, liver and pancreas develop from a common PFG precur-

sor (Chung et al., 2008; Deutsch et al., 2001). During PSC differ-

entiation, BMP and FGF are typically used to induce liver,

whereas Hedgehog inhibition and FGF are applied to generate

pancreas (e.g., Cho et al., 2012; Kroon et al., 2008). We executed

a signaling analysis encompassing >500 conditions (Figure 4A;

Figure S4B) to clarify how pancreas versus liver might be segre-

gated in a mutually exclusive way (Figure 4B).

We found TGF-b signaling promoted PDX1+ pancreas forma-

tion, whereas BMP and FGF/MAPK signaling specified AFP+

liver (Figure 4A). Importantly, we clarified that each of these sig-

nals reciprocally repressed formation of the alternate lineage

(Figure 4A), explaining why the PFG lineage decision is bistable

(Chung et al., 2008). Due to such cross repression, eliminating

propancreatic TGF-b reciprocally expanded liver (Figures 4Ai

and 4Aii), whereas inhibition of prohepatic FGF/MAPK (Deutsch

et al., 2001) diverted differentiation toward pancreas (Fig-

ure 4Aiv). Our findings differ fromprior work andmay explain pre-

vious inefficiencies in liver or pancreas induction. Prior use of

FGF for pancreatic induction (Cho et al., 2012; Kroon et al.,

2008; Nostro et al., 2011) may, in fact, block pancreas and

instead specify liver (Figure 4Aiv), as suggested by embryonic

studies (Deutsch et al., 2001). On the other hand, provision of

TGF-b for hepatic induction (Cho et al., 2012) may abrogate liver

and, instead drive pancreas (Figures 4Ai and 4Aii).

In summary, a dichotomy in TGF-b versus BMP in respectively

specifying pancreas versus liver (Figure 4B) has not been, to our

knowledge, previously elucidated and is reminiscent of how

these signaling pathways often cross repress each other’s trans-

duction (Candia et al., 1997). We further identified combinatorial

interactions between these morphogens. For example, TGF-b

signaling andMAPK inhibition was essential for pancreas forma-

tion, because MAPK inhibition was ineffective if TGF-b was in-

hibited in parallel (Figure S4Bi). Conversely, hepatic induction

cooperatively required TGF-b inhibition and MAPK signaling

(Figure 4Aiv; Figure S4Bi), because TGF-b inhibition failed to effi-

ciently create liver if MAPK was simultaneously inhibited.

hESC-Derived Hepatic Progeny Engraft Long Term into
Unconditioned Mouse Liver
To differentiate DE toward liver while explicitly inhibiting

pancreas, we induced DE toward PFG for 1 day (Figure 4Bi; Fig-

ure S4Biv) and then employed BMP and other factors together

with inhibition of propancreatic TGF-b signaling to direct PFG

toward liver over 3 subsequent days with minimal pancreatic

contamination (Figure S4C). We generated 72.3% ± 6.3% AFP+

early hepatic progenitors (Figure 4C) from four hESC lines within
(E) Microarray heatmap of HES3-derived AFG, PFG, and MHG populations on d

(F) qPCR of day 7 AFG, PFG, and MHG populations from H7 and HES3 hESC lin

(G) To test their pancreatic or hepatic competence, day 3 DEwas patterned into A

pancreas or liver for 3 further days; see Supplemental Experimental Procedures.

See also Figure S4.

Ce
7 days of differentiation, which is twice as rapid as prior methods.

Moreover liver markers were induced 60–210 times higher than

what was obtainable with earlier protocols (Figure S4D).

To validate the hepatic potential of early AFP+ liver progenitors,

they were empirically matured in vitro with oncostatin M and

dexamethasone (Kamiya et al., 1999) into a mixed albumin

(hALB)+ hepatoblast population (Figure S5A), which exhibited

some CYP3A4 metabolic activity (Figure 4Di), expressed low

density lipoprotein receptor (LDLR) and could uptake cholesterol

(Figure 4Dii). When transplanted into neonatal mouse livers, early

AFP+ hepatic progenitors failed to engraft (Figure S5B). However

when their differentiated hALB+ progeny were transplanted, hu-

man albumin (mean 15.1 ng/ml) was detected in the blood of

47% of recipients 2–3 months posttransplantation, indicating

long-term engraftment (Figure 4E). Indeed, foci of hALB+ hESC-

derived hepatic cells (marked with constitutively expressed

GFP prior to transplantation) were present in all lobes of the adult

liver (Figure 4E; Figure S5B). This suggested hALB+ hepatic cells

had integrated and/or migrated throughout the liver and they

were not simply locally persisting at the site of transplantation.

Finally, hALB+ cells coexpressed human hepatic marker

HepPar1 (Figure S5C), but did not detectably express fetal

marker AFP (Figure S5D), suggesting they had progressed past

the fetal stage. To our knowledge, this is one of the first demon-

strations that hESC-derived hepatic cells could engraft long term

into normalmouse livers that were not compromised by extensive

pharmacologic or genetic damage (cf. Yusa et al., 2011).

Comprehensive Transcriptional and Chromatin State
Mapping of Endoderm Induction and Anteroposterior
Patterning
Capitalizing on our ability to obtain rather homogenous popu-

lations of hESC-derived endodermal lineages, we captured

genome-wide transcriptional and chromatin dynamics during

endoderm development by profiling a hierarchy of six pure pro-

genitor populations (hESC, APS, DE, AFG, PFG, andMHG) using

RNA sequencing (RNA-seq) and chromatin immunoprecipitation

sequencing (ChIP-seq) for four histone H3 modifications

(K4me3, K27me3, K27ac, and K4me2; Figures 5, 6, and 7; Fig-

ures S5–S7). This yielded 30 transcriptional and chromatin state

maps spanning four embryonic stages (epiblast, PS, DE, and an-

teroposterior patterning), totaling >1.3 billion aligned reads (Fig-

ure S5E) and providing a global view of molecular events driving

endoderm development.

Our analyses captured acute developmental transitions. RNA-

seq revealed dramatic transcriptional changes within 24 hr

during synchronous transit from pluripotency to APS in vitro (Fig-

ure 5A), mirroring how epiblast (E5.5) and PS (E6.5) arise within

1 day in the mouse. The BRACHYURY and NODAL promoters

were bivalently marked by activation-associated K4me3

and repression-associated K27me3 in hESCs. Yet, within 24 hr

of APS induction, they were unilaterally resolved, losing repres-

sive K27me3 and gaining active marks K27ac and K4me3
ay 7 in independent triplicate.

es; HOX genes boxed.

FG or PFG for 1–2 days, and each was then subsequently differentiated toward
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Figure 4. Bifurcation of Liver versus Pancreas from Posterior Foregut

(A) To test effects of increasing amounts of (Ai–Aiii) BMP/TGF-b signaling or (Aiv) FGF/MAPK signaling on pancreas versus liver induction, day 3 DE was

differentiated with indicated conditions with (Ai and Aii) 5–20 ng/ml activin or (Aii and Aiii) 5–10 ng/ml BMP4 and respective inhibitors (1 mM A8301, 250 nM

DM3189, 100 nM PD173074, 500 nM PD0325901) where indicated. Abbreviations for base conditions: (Ai) RS, 2 mM RA + SANT1; (Aii and Aiii) RS+PD, RS +

PD0325901; (Aiv) DRK, DM3189 + RA + KAAD-cyclopamine.

(legend continued on next page)
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concomitant with rapid BRACHYURY and NODAL upregulation

in APS (Figure 5B).

Endoderm Enhancer Activation Is Associated with
EOMES, SMAD2/3/4, and FOXH1 Co-occupancy
To map K27ac-marked active enhancers (Rada-Iglesias et al.,

2011) throughout all six profiled lineages, we employed DFilter

(Kumar et al., 2013) to identify distal elements with significant

K27ac enrichment. Distinct batteries of active enhancers were

invoked during each endodermal lineage transition (Figure 5C).

APS enhancers (e.g., BRACHYURY and NODAL) were rapidly

activated within 24 hr (Figure 5B). During DE patterning, distinct

cohorts of enhancers were commissioned in each anteroposte-

rior domain in AFG (SIX1 and TBX1; Figure S7A), PFG (HOXA1;

Figure S7B), andMHG (CDX2 and PAX9; Figure 5D; Figure S5G).

Upon DE specification, 10,543 enhancers were activated

(Table S5), gainingK27acdespite being largely inactive in hESCs.

Active DE enhancers flanked archetypic DE regulators, e.g.,

SOX17 (Figure 6G) and CXCR4 (Figure S5F). Gene ontology ana-

lyses (McLean et al., 2010) associated these enhancers most

significantly with endoderm development (p < 3.84 3 10�26)

and gastrulation (p < 7.923 10�26; Figure 6A), affirming the purity

of differentiated DE populations. Genes adjacent to active DE

enhancers were upregulated in gastrula-stage endoderm in vivo

(p < 1.383 10�39, Figure 6A) and upon DE differentiation in vitro

(Figure 6B). Active DE enhancers coincided with euchromatic

mark K4me2 (Figure S6A), were devoid of repression-associated

K27me3 (Figure S6A), were evolutionarily conserved (Figure 6C),

and were broadly inactive in other lineages (Figure S6B).

DEenhancers previously remainedelusive, becausemost prior

work only assessed promoter marks (Kim et al., 2011; Xie

et al., 2013). However, enhancer profiling of hESC-derived DE

was recently reported (Gifford et al., 2013), and, therefore, we

compared our two DE data sets using identical analytic methods

(Table S6). Unexpectedly, DE enhancers from the former data set

(Gifford et al., 2013) were highly enriched for neural functions (p <

3.93 3 10�28; Figure 6D), because enhancers for neural TFs

BRN2 and PAX3 were activated, but SOX17 enhancers were

virtually dormant (Figure S6C). Association of DE enhancers

with neural genes led to the prior conclusion that endoderm

and ectoderm development are related (Gifford et al., 2013),

which contradicts the in vivo order of germ layer segregations

(cf. Tzouanacou et al., 2009). By contrast, neural terms were

largely absent in SR1-derived DE (Figure 6A), and, ultimately,

only 4.8% of DE enhancers were shared between our and their

data sets. Thus, molecular profiling of mixed DE populations

(potentially enriched for ectoderm)may have precluded accurate

molecular description of endoderm development.

How DE enhancers are inaugurated during differentiation re-

mains obscure. Motifs for multiple TFs, including DE specifiers
(B) Depictions of (Bi) dynamic signaling inputs, (Bii) truth table and (Biii) dichotom

(C) AFP immunostaining of day 7 early liver progenitors and quantification.

(D) Substrate luciferase assay for CYP3A4metabolic activity (Di) and staining for L

progeny.

(E) CAG-GFP+ hESC differentiated into early hepatic progenitors or late hepatic p

mouse sera, each dot is an individual mouse (fractions of successfully engraftedm

and subfields indicated; scale bar, 5 mm (middle right); costaining for human alb

See also Figures S4 and S5.

Ce
EOMES and FOXA2 as well as TGF-b signaling effectors

SMAD2/3 and FOXH1 (p = 10�59–10�197), were enriched in DE

enhancers (Figure 6E), which is consistent with how these TFs

specify DE in vivo (e.g., Dunn et al., 2004; Teo et al., 2011). Inter-

estingly, we found EOMES, SMAD2/3, SMAD4, and FOXH1 (Kim

et al., 2011; Teo et al., 2011) co-occupied an extensive series

of DE enhancers (Figure 6F), including a SOX17 enhancer (Fig-

ure 6G). Although EOMES individually engaged some elements,

colocalization of EOMESwith TGF-b signaling effectors SMAD2/

3/4 and FOXH1 correlated with maximal enhancer acetylation

(Figure 6F, p < 10�300). Thus, convergence of both lineage-

specifying and signaling-effector TFs may propel full-fledged

enhancer activation upon differentiation (Calo and Wysocka,

2013).

Endoderm Enhancers Reside in a Diversity of
‘‘Pre-enhancer’’ States in Uncommitted Cells prior to
Activation
It remains unclear how DE enhancers are swiftly engaged

upon hESC differentiation. SMAD2/3/4 and FOXH1 occupy DE

enhancers upon differentiation, but infrequently do so in the

uncommitted state (Figure S6A). Perhaps these enhancers are

instead primed for activation at the level of chromatin. Premark-

ing of developmental enhancers by euchromatic K4me1 in ESCs

signifies a ‘‘window of opportunity’’ for subsequent enhancer

activation (Calo and Wysocka, 2013; Rada-Iglesias et al.,

2011). We looked back in developmental progression, assessing

occupancy of DE enhancers by >24 histone modifications and

chromatin regulators (Ernst et al., 2011) in hESCs prior to

enhancer activation (Figure 7A). Unexpectedly, K4me1 labeled

less than one-third of future DE enhancers in hESCs, implying

that ‘‘poising’’ by K4me1 in hESCs is not always essential for

immediate enhancer activation (Figures 7A and 7B). Thus, we

sought to systematically discover all possible ‘‘pre-enhancer’’

chromatin states of DE enhancers in hESCs.

Unsupervised clustering revealed 25% of DE enhancers ex-

isted in a pre-enhancer state (cluster 1) in hESCs largely defined

by histone variant H2AZ and no other known chromatin marks

(Figure 7A; Figure S6D). Despite virtual absence of K4me1,

H2AZ-marked pre-enhancers became rapidly activated within

3 days of DE induction (Figure 7A). DE enhancers less frequently

resided in a repressed state designated by heterochromatic

mark K9me3 (cluster 2) (Zhu et al., 2012) or a ‘‘latent’’ pre-

enhancer state largely lacking known histone modifications

(cluster 5, Figure 7A) (Ostuni et al., 2013). Only 10% of DE pre-

enhancers were marked by K27me3 in hESCs (Figure 7B), sug-

gesting Polycomb (Rada-Iglesias et al., 2011) was not always

necessary to repress developmental enhancers in hESCs.

Instead, perhaps the absence of K27ac/histone acetyltrans-

ferases (HATs) was sufficient to confer inactivity. Only a minority
y of BMP and TGF-b signaling for liver versus pancreas induction.

DLR expression and LDL-DyLight 594 uptake (Dii) in hESC-derived late hepatic

rogeny were transplanted (Chen et al., 2013) (top left); human albumin levels in

ice indicated; top right); recipient whole-liver cross-section with different lobes

umin and GFP in four distinct hepatic lobes, fields numbered above (bottom).
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Figure 5. Comprehensively Mapping Transcriptional and Epigenetic Dynamics during Endodermal Development

(A) RNA-seq heatmap of stage-specific genes upregulated at indicated lineage transitions (Supplemental Experimental Procedures).

(B and D) Compiled ChIP-seq (histone modifications), RNA-seq (gene expression), vertebrate conservation (Phastcons), and coding gene structure at selected

genomic loci with cell types and genomic distance indicated. Numbers indicate fold enrichment over input (ChIP-seq) and FPKM values (RNA-seq).

(C) Binary heatmap of H3K27ac-marked active enhancers activated at respective differentiation phases (Supplemental Experimental Procedures); each row is an

individual enhancer.

See also Figures S5–S7.
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Figure 6. TGF-b Signaling Inaugurates Endodermal Active Enhancers

(A) Top-ranked GO terms associated with DE-specific active enhancers by GREAT (McLean et al., 2010) without preselection.

(B) Boxplot of RNA-seq FPKM expression values of genes adjacent to DE-specific enhancers at indicated in vitro differentiation stages.

(C) Phastcons score of DE-specific active DE enhancers.

(D) Top-ranked GO terms associated with DE enhancers identified from a previous data set (Gifford et al., 2013) using identical analytic methods (Table S6).

(E) TF motifs overrepresented in DE-specific active enhancers (Table S5B).

(F) Left: ChIP-seq signal heatmap based on all distal EOMES, SMAD2/3/4, and FOXH1 peaks in DE, showing TF overlap with one another and K27ac; each row is

a single distal element (6 kB window size). Right: average H3K27ac tag count at DE distal elements bound by all 1, 2, 3, or 4 DE TFs (EOMES, SMAD2/3, SMAD4,

and FOXH1).

(G) EOMES, FOXH1, and SMAD2/3/4 colocalize at conserved SOX17 enhancer. MTL, multiple TF locus.

See also Figure S6.
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of DE pre-enhancers (10%) were preloaded with HAT p300

(Rada-Iglesias et al., 2011) (Figure 7B), suggesting that rapid

enhancer acetylation during differentiation may largely involve

de novo HAT recruitment.

A pre-enhancer state solely delineated by H2AZ without

other detectable distinguishing factors has not been previously
Ce
described. H2AZ-laden nucleosomes are unstable and are

readily displaced by TFs (Jin et al., 2009; Li et al., 2012). This

may permit endoderm TFs to rapidly infiltrate DE enhancers

upon differentiation, explaining rapid enhancer activation.

Indeed, H2AZ-marked DE pre-enhancers in hESCs more readily

attracted EOMES, SMAD2/3/4, and FOXH1 upon differentiation
ll Stem Cell 14, 237–252, February 6, 2014 ª2014 Elsevier Inc. 247



Figure 7. A Constellation of Diverse ‘‘Pre-enhancer’’ States

(A) ChIP-seq signal heatmap of indicated chromatin marks across future DE enhancer regions in hESCs, organized by unbiased clustering; each row is a single

pre-enhancer.

(B) Frequency of DE pre-enhancers overlapping with a given chromatin mark in hESCs.

(C) Occupancy of DE enhancers by endoderm TFs in DE cells that were originally either H2AZ-only pre-enhancers (class 1) or latent pre-enhancers (class 5)

in hESCs.

(D) Pre-enhancer state summary.

See also Figure S6.
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(Figure 7C, p = 10�13–10�15) when compared to latent pre-

enhancers.

In sum, initial K4me1 ‘‘poising’’ is not the only predictor of sub-

sequent enhancer activation. We show that there is a diversity of

pre-enhancer states characterized by different combinations of

chromatin marks (Figure 7D).
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DISCUSSION

PSC differentiation typically yields a range of developmental

outcomes that vary between PSC lines. Contaminating lineages

may generate undesired tissues upon transplantation and

obscure molecular analyses of lineage commitment. To meet
.
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this challenge, we delineated the signaling logic for induction and

anteroposterior patterning of human endoderm from PSC and

for subsequent bifurcation of pancreas versus liver, clarifying

the separation of alternate lineages at each stage. Such knowl-

edge permitted us to rationally exclude alternate fates at every

step following the in vivo hierarchy of germ layer segregations

(Tzouanacou et al., 2009). This approach yielded precise induc-

tion of a single lineage (endoderm) from diverse hESC and hiPSC

lines without extraneous lineages typically induced by earlier

protocols. This level of endodermal purity enabled accurate

chromatin analysis of endoderm induction at a resolution

previously unattainable due to contaminating lineages. There-

fore the highly homogeneous DE populations described here

constitute an ideal starting point to efficiently generate down-

stream endodermal derivatives (McKnight et al., 2010), a notion

we validate by producing engraftable liver cells. In summary,

this work expounds a coherent view of signaling logic and chro-

matin dynamics propelling endoderm specification and

patterning, thereby availing both developmental biology and

hPSC differentiation.

Developmental Segregation of Mutually Exclusive
Endodermal Fates
Throughout four successive stages of endoderm development,

we accurately defined the signals that instructed or repressed

a given lineage, thus providing a clearer view of how endodermal

lineage bifurcations are driven. In fact, this refined understanding

suggested that previous protocols provided incorrect signals

that repressed DE formation, thereby leading to inefficient differ-

entiation. For example, BMP, FGF, TGF-b, and Wnt have been

used to elicit both endoderm (Touboul et al., 2010) and meso-

derm (Gadue et al., 2006), and, therefore, the exact lineages

induced by these signals has remained ambiguous.

We generated DE in the virtual absence of mesoderm or ecto-

derm. We found that combined FGF, TGF-b, and Wnt together

with low BMP signaling (Bernardo et al., 2011; Blauwkamp

et al., 2012; Gadue et al., 2006) was necessary to specify APS

(>99% MIXL1+) and repress ectoderm, abolishing ectoderm

competencewithin 24 hr of APS induction. After ectoderm exclu-

sion, mesoderm was sequentially eliminated by BMP inhibition,

which, when combined with TGF-b and endogenous FGF

signaling (Bernardo et al., 2011; D’Amour et al., 2005), exclu-

sively drove PS toward DE. It was crucial to suppress endoge-

nous mesoderm-inducing BMP and Wnt signaling within PS to

achieve pure DE populations. We also clarified nuances in the

interpretation of combinations of signals, showing that reception

of one signal altered the response to others. For example,

although BMP inhibition typically eradicated mesoderm from

the PS, if DE-inducing FGF was blocked in parallel, mesoderm

formation was re-enabled. Thus, FGF was obligatory to consol-

idate DE commitment.

Following PFG formation, TGF-b and BMP signaling dueled

to specify pancreas versus liver, and each bilaterally cross-

repressed the alternate fate, reminiscent of in vivo findings

(Chung et al., 2008; Deutsch et al., 2001). Therefore, efficient

liver induction required TGF-b inhibition to eliminate pancreatic

fates in conjunction with BMP and MAPK to positively drive

liver and vice versa. In sum, we show that, in order to efficiently

drive hPSC differentiation down a single developmental route,
Ce
it is critical not only to provide the relevant positive inductive

signals, but it is equally important to inhibit repressive

signals that instead drive progression down alternate lineage

pathways.

By inhibiting alternate fates at each juncture, we could univer-

sally differentiate nine diverse hESC/hiPSC lines into highly pure

DE populations in defined conditions. This is contrary to the

notion that different hPSC lines have distinct differentiation

biases and that each might require customized signals to drive

efficient commitment. Our observations are timely, because a

prerequisite for cell replacement therapy is the consistent gener-

ation of homogeneous lineages from hPSCs under defined con-

ditions (Cohen and Melton, 2011; McKnight et al., 2010). Recent

strategies to generate ‘‘self-renewing’’ DE (Cheng et al., 2012) or

liver buds (Takebe et al., 2013) from hPSCs are appealing, but

require coculture with heterologous feeders and thus suit a

different type of application.

Obligatory Endodermal Signaling Inputs Are Highly
Temporally Dynamic
The precise sequence and kinetics of endoderm signaling transi-

tions remain to be fully elucidated, despite their evident impor-

tance in vivo and in vitro (Green et al., 2011; Wandzioch and

Zaret, 2009). For example, BMP and Wnt have been associated

with mesoderm induction through studies of prolonged treat-

ment over several days (Bernardo et al., 2011; Gadue et al.,

2006). However we found that BMP and Wnt initially specified

APS, but within 24 hr of differentiation, signaling requirements

were reversed such that BMP and Wnt repressed DE from PS

and instead induced mesoderm. Prior protocols reduced APS

andDE induction into a single lengthy stage and persistently pro-

vided BMP for 3–5 days (Nostro et al., 2011; Touboul et al.,

2010), likely generating contaminating mesoderm at later stages

and inhibiting DE formation. The dynamism with which BMP and

Wnt signals are interpreted during hPSC differentiation (within

24 hr) closely tracks how Wnt is initially inactive in E5.5 postim-

plantation epiblast, transiently elicited in E6.5 PS and then

silenced once again in E7.5 DE in vivo (Maretto et al., 2003).

Therefore, assigning BMP and Wnt as either proendoderm or

antiendoderm is a misnomer because these signals can induce

either outcome depending on timing within just 24 hr in vivo

and in vitro.

Developmental Competence and a Diversity of
Pre-enhancer States
To gain insight into endodermal lineage commitment mecha-

nisms, we globally mapped transcriptional changes and regula-

tory element redeployment across multiple steps of endoderm

induction and patterning. This resource could unveil novel

drivers or markers of DE specification by identifying TFs upregu-

lated at distinct stages. Here, we exploited the accompanying

chromatin data to explore how endoderm competence is pre-

configured in pluripotent cells.

Since Waddington’s formalism of developmental competence

(Waddington, 1940), its molecular basis has remained cryptic.

Competence may be foreshadowed by permissive chromatin

priming of developmental enhancers in progenitors (Calo

and Wysocka, 2013). Various models proposed that such en-

hancers resided in ‘‘poised’’ or ‘‘latent’’ chromatin states prior
ll Stem Cell 14, 237–252, February 6, 2014 ª2014 Elsevier Inc. 249
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to activation (Ostuni et al., 2013; Rada-Iglesias et al., 2011).

However, the prevalence of ‘‘poised’’ or ‘‘latent’’ pre-enhancer

states (and whether they represented all pre-enhancer states)

remained uncertain. With a priori knowledge of a catalog of DE

enhancers, we systematically determined their antecedent

‘‘pre-enhancer’’ states in hESCs. Individual DE enhancers ex-

isted in a wide continuum of differentially marked pre-enhancer

states prior to activation, extending beyond ‘‘poised’’ or ‘‘latent’’

states. Only a subset of DE enhancers were premarked by

K4me1, p300 or other proposed ‘‘poising’’ factors in hESCs,

showing there is no universal poising signature.

Strikingly, we found that many prospective DE enhancers

were marked exclusively by H2AZ in the general absence of

other chromatin marks. Thus, H2AZ is sometimes the earliest

recognizable enhancer mark in lieu of K4me1. H2AZ preposi-

tioning at DE enhancers enhanced future infiltration by EOMES,

SMAD2/3/4, and FOXH1 upon differentiation and combinatorial

occupancy by all of these TFs correlated with maximal

enhancer activation. Indeed, H2AZ is essential for DE induction

from mESCs, and it was shown that its presence at promoters

increased FOXA2 recruitment (Li et al., 2012). Our related find-

ings with DE enhancers suggest the primordial chromatin state

of a DE enhancer in hESCs can influence its future engagement

upon differentiation. Because some mesoderm enhancers are

likewise exclusively marked by H2AZ in hESCs (Figure S6F),

H2AZ prepositioning on developmental enhancers may broadly

signal future fates available to uncommitted precursors. How

H2AZ is deployed to these silent enhancers in ESCs remains

unclear. It may be targeted by pluripotency TFs (e.g., Oct4),

which physically interact with H2AZ depositor p400 (van den

Berg et al., 2010), and might guide it to lineage specification

genes in uncommitted ESCs to functionally presage future

differentiation potential (Loh and Lim, 2011; Teo et al., 2011).

Yet, half of endoderm enhancers apparently lack H2AZ in

hESCs; therefore, to understand developmental competence,

we must decipher the whole range of alternative pre-enhancer

states.

EXPERIMENTAL PROCEDURES

SR1 DE Induction and Patterning

mTeSR1-grown hPSCs (Figure S2f) were passaged �1:3 as small clumps,

using collagenase IV onto fibronectin- or Matrigel-coated plates. One to two

days later, they were washed and differentiated with Activin A (100 ng/ml),

CHIR99021 (2 mM), and PI-103 (50 nM) in serumless CDM2 basal medium

for 24 hr to specify APS (day 1), followed by Activin A (100 ng/ml) and

DM3189 (250 nM) for 48 subsequent hr to specify DE (day 3). DE was antero-

posteriorly patterned into AFG (A-83-01, 1 mM and DM3189, 250 nM), PFG

(RA, 2 mM and DM3189, 250 nM), or MHG (BMP4, 10 ng/ml; CHIR99021,

3 mM; and FGF2, 100 ng/ml) for 4 subsequent days until day 7. For detailed

differentiation methods, see Supplemental Experimental Procedures.

Hepatic Induction and Empirical Maturation

Day 3DEwas differentiated for 24 hr into early PFGby DM3189 (250 nM), IWP2

(4 mM), PD0325901 (500 nM), and RA (2 mM) and further differentiated into

hepatic progenitors by A-83-01 (1 mM), BMP4 (10 ng/ml), IWP2, and RA for 3

further days until day 7. They were then empirically matured in vitro with

BMP4 (2 days), followed by dexamethasone (10 mM) and oncostatin M

(10 mg/ml) for 10 days (Kamiya et al., 1999) and then intrahepatically trans-

planted into newborn NOD-SCID Il2rg�/� mice (Chen et al., 2013). All animal

experiments were performed as ordained by A*STAR Institutional Animal

Care and Use Committee guidelines.
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Chromatin State Analysis

For ChIP-seq, H7-derived endoderm lineages were formaldehyde fixed, lysed

to extract nuclei, sonicated, and precleared (Supplemental Experimental Pro-

cedures). Chromatin was probed overnight using K4me2, K4me3, K27ac, and

K27me3 antibodies (Table S7) conjugated to Protein G Dynabeads (Invitro-

gen). Subsequently, chromatin was precipitated, rigorously washed (eight

times), and cross-linking undone by overnight 65�C heating before RNase/

Proteinase K treatment and column purification. Ten nanograms of chromatin

were used to generate libraries (TruSeq Kit, Illumina) for Hi-Seq 2000

sequencing (Illumina, 36bp single-end reads; Figure S5E). Reads were aligned

to hg19 (Bowtie), extended, and input normalized (MACS). DE enhancers

(Table S5A) were assigned by DFilter (Kumar et al., 2013) as peaks

with R4-fold more K27ac tags in DE than hESCs and were associated with

gene ontology (GO) terms via the Genomic Regions Enrichment of Annotations

Tool (GREAT) (McLean et al., 2010).

ACCESSION NUMBERS

Transcriptional and ChIP-seq data are available under Gene Expression

Omnibus accession number GSE52658.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and seven tables and can be found with this article online at

http://dx.doi.org/10.1016/j.stem.2013.12.007.
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Note Added in Proof

After this manuscript was accepted, we found that using the differentiation

approach described here with the SOX17-mCHERRY knockin reporter line,

which provides a sensitive means of tracking endoderm specification, we

are able to generate 99.1% ± 0.4% SOX17+ DE from hESCs (n = 3 indepen-

dent experiments). This finding further substantiates our conclusion that the

differentiation protocol that we describe enables highly efficient endoderm

induction.
.
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