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1. Introduction

Let X be, in general, infinite dimensional Banach vector space, and let L(X) denote set of all bounded linear operators
defined on X . We recall that the Drazin inverse of the operator A ∈ L(X) is the unique operator AD ∈ L(X), provided it
exists, satisfying the following conditions

AD A = A AD , AD A AD = AD , Aν+1 AD = Aν .

The smallest natural number ν satisfying the previous system of equations is known as the index of the operator A and is
denoted by ind(A). It is well known that the Drazin inverse of the operator A ∈ L(X) exists if and only if 0 /∈ σ(A) \ {0}
and the point zero, provided 0 ∈ σ(A), is a pole of the resolvent R(λ, A) = (λ − A)−1. Here σ(A) denotes spectrum of the
operator A, and for W ⊂ C symbol W denotes closure of W.

Assume that Banach space X has the splitting X = Y ⊕ Z , where Y , Z ⊂ X are closed subspaces of X . Denote by P Y ,
P Z = 1 − P Y , projections on Y , Z , along Z , Y , respectively. Let M ∈ L(X), where X = Y ⊕ Z , then we can express M in the
form of the operator matrix

M =
∥∥∥∥ A B

C D

∥∥∥∥ ,

where A = P Y (M�Y ) ∈ L(Y ), B = P Y (M�Z ) ∈ L(Z , Y ), C = P Z (M�Y ) ∈ L(Y , Z) and D = P Z (M�Z ) ∈ L(Z). Here L(Y , Z) is
the set of bounded linear operators mapping Y to Z , and M�Z is the operator M restricted to the subspace Z . We can
express the resolvent of the operator matrix M in the following form

(λ − M)−1 =
∥∥∥∥∥ Q −1 Q −1 B(λ − D)−1

(λ − D)−1C Q −1 (λ − D)−1 + (λ − D)−1C Q −1 B(λ − D)−1

∥∥∥∥∥ , (1)
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where Q = λ − A − B(λ − D)−1C . Expression is valid, provided Q is invertible, at least in the neighborhood of complex
infinity, since all operators A, B , C and D are bounded (see [12,23]). In the sequel we are going to provide exact conditions
under which we are going to have invertibility of Q .

In an earlier paper Castro-González et al. (see [6]) gave an expression for the Drazin inverse M D subject to the condition
BC A = 0. In the present paper we assume instead ABC = 0. The earlier result [6, Theorem 4.2] is derived from a result [6,
Theorem 2.3] about sums; here we proceed directly to the matrix result, deriving some result for the sum as a consequence.
The presented results for the operator matrices are proven using factorization of the operator Q . It is shown that such
simple approach can be used to derive much of the results about the Drazin inverse of operator matrices, including results
derived in [6].

If the Drazin inverse AD of the operator A exists, we have

(λ − A)−1 =
ν∑

k=1

λ−k Ak−1 Aπ −
+∞∑
k=0

λk(AD)k+1
, Aπ = 1 − A AD , ν = ind(A). (2)

From this identity it is clear that we can identify the Drazin inverse of an operator by reading the coefficient with λ0 in the
Laurent expansion of the resolvent function in the punctured neighborhood of zero, i.e.,

AD = − 1

2π i

∮
|λ|=ε

1

λ
(λ − A)−1 dλ,

where ε is such that {λ | |λ| � ε} ∩ σ(A) = {0}. A list of references about Drazin inverses include [1–26].

2. Results

The results we present are in the series form like already presented in [10,26].

Theorem 1. Assume A, BC and D are Drazin invertible with ν1 = ind(A), ν2 = ind(BC), ν3 = ind(D). If ABC = 0, B D = 0 and
DC = 0 then

M D =
∥∥∥∥ Ψ A Ψ B

CΨ D D + C(Ψ AD + (BC)D(Ψ A − AD))B

∥∥∥∥ ,

where

Ψ =
ν2∑

k=1

(BC)k−1(BC)π
(

AD)2k +
[(ν1+1)/2]∑

k=1

(
(BC)D)k

A2k−2 Aπ .

Proof. Under given assumptions we have B(λ − D)−1 = λ−1 B , (λ − D)−1C = λ−1C , Q = λ − A − λ−1 BC . The point is the
following factorization, namely,

λ − A − λ−1 BC = (λ − A)
(
1 − λ−2 BC

)
,

which is valid under the condition ABC = 0. If we assume that BC A = 0, we would have an inverse order of factors and
we end-up in the results presented in [6]. Under this factorization of Q , we can state that Q −1 has the Laurent expansion
in the punctured neighborhood of zero, since Q −1 is a product of two analytic functions at the punctured neighborhood of
the point zero. Similarly, all other entries at the resolvent matrix (λ − M)−1 have the Laurent expansion at the punctured
neighborhood of the point zero. We note that being a product of meromorphic functions in the neighborhood of zero, all
elements of the matrix (λ − M)−1 are meromorphic as well. Accordingly, all elements in the operator matrix have Drazin
inverses. Finally, M has the Drazin inverse since

(λ − M)−1 = Q −1 P Y + Q −1 B(λ − D)−1(1 − P Y ) + (λ − D)−1C Q −1 P Y

+ (
(λ − D)−1 + (λ − D)−1C Q −1 B(λ − D)−1)(1 − P Y ),

is the sum of meromorphic functions at the neighborhood of the point zero. Using this representation of (λ − M)−1 and
according to linearity of integration, in order to determine the Drazin inverse of M we only need to determine coefficients
with λ0 in the Laurent series of the elements of the operator matrix (λ − M)−1.

The result presented in this theorem is obtained in this way. For example, at the position (1,1) the term with λ0 in the
operator matrix, we read from

Q −1 = λ2(λ2 − BC
)−1

(λ − A)−1

= λ2

(
ν2∑

k=1

λ−2k(BC)k−1(BC)π −
+∞∑
k=0

λ2k((BC)D)k+1

)(
ν1∑

k=1

λ−k Ak−1 Aπ −
+∞∑
k=0

λk(AD)k+1

)
.

Similarly, we proceed for all other entries of the operator matrix. �
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We mention special cases of this theorem already presented in the literature. In [26], results are given under considera-
tion A = D = 0. In which case Q = λ − 1

λ
BC , expression for resolvent becomes

(λ − M)−1 =
∥∥∥∥∥ (λ − 1

λ
BC)−1 1

λ
(λ − 1

λ
BC)−1 B

1
λ
(λ − 1

λ
BC)−1 1

λ
(1 + 1

λ
C(λ − 1

λ
BC)−1 B)

∥∥∥∥∥ .

We note that Laurent expansion for (λ2 − BC)−1 is needed.
In [13], or [24], authors considered case B = 0. In such case Q = λ − A, so that results are generated directly, with

resolvent given by

(λ − M)−1 =
∥∥∥∥∥ (λ − A)−1 0

(λ − D)−1C(λ − A)−1 (λ − D)−1

∥∥∥∥∥ .

In this case we need Laurent expansions for (λ − A)−1 and (λ − D)−1, as well as product of these series.

Theorem 2. Assume A, D and BC are Drazin invertible with ν1 = ind(A), ν2 = ind(BC), ν3 = ind(D). If ABC = 0, DC = 0 and BC
be nilpotent, then

M D =
∥∥∥∥∥ Ψ A Ψ Φ + Θ

CΨ D D + C(Ψ ADΦ + Σ)

∥∥∥∥∥ ,

where

Φ =
ν3∑

m=1

(
AD)m−1

B Dm−1 Dπ , Nk+1 = (
Nk − (

AD)k
B
)

D D ,

N2 = (
ΔD D − AD B

)
D D , Δ =

ν1∑
k=1

Ak−1 Aπ B
(

D D)k−1
,

Θ =
ν2∑

k=1

(BC)k−1N2k, Σ =
ν2∑

k=1

(BC)k−1N2k+1.

Proof. Now we have (λ − D)−1C = λ−1C , Q = (λ − A)(1 − λ−2 BC) and (BC)D = 0, since BC is nilpotent. This gives

Q −1 = λ2(λ2 − BC
)−1

(λ − A)−1 = λ2

(
ν2∑

k=1

λ−2k(BC)k−1

)
(λ − A)−1.

The rest of the proof is the same as in the previous theorem. �
In the case BC = 0 and B D = 0 we have Q = λ − A, and resolvent matrix is given by

(λ − M)−1 =
∥∥∥∥ (λ − A)−1 (λ − A)−1 1

λ
B

(λ − D)−1C(λ − A)−1 (λ − D)−1 + (λ − D)−1C(λ − A)−1 1
λ

B

∥∥∥∥ .

Expression for the Drazin inverse can be generated using method presented in previous theorem. Special results, in which
case resolvent matrix is even more reduced, are presented in [13] and [17].

Finally, we state the last result.

Theorem 3. Assume A and BC are Drazin invertible with ν1 = ind(A), ν2 = ind(BC) and ν3 = ind(D). If ABC = 0, DC = 0 and D
be nilpotent, then

M D =
∥∥∥∥∥ Ψ A Ψ A ADΦ + F (Σ) − Θ D

CΨ C(Ψ ADΦ + (BC)D F (Ω) − Θ)

∥∥∥∥∥ ,

where

Σ = Ψ Aπ (B + AB D), Ω = Ψ Aπ (AB + B D), Θ =
ν3∑

m=1

Nm+1 B Dm−1,

N2m+1 = N2m AD , N2m+2 = (
N2m+1 + (

(BC)D)m+1)
AD , N1 = 0,

F (X) =
[(ν3+1)/2]∑

m=1

(
(BC)D)m−1

X D2m−2.
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Proof. In this case (λ − D)−1C = λ−1C , Q = (λ − A)(1 − λ−2 BC) and D D = 0, since D is nilpotent. �
We give an illustration using matrices. Let

A =

∥∥∥∥∥∥∥∥∥∥∥

1 −1 0 0 1 2
1 −1 −1 0 3 4
1 −1 −1 0 5 6
1 −1 −1 0 7 8
1 −1 0 1 1 0
0 0 0 1 1 2

∥∥∥∥∥∥∥∥∥∥∥
, B =

∥∥∥∥∥∥∥∥∥∥∥

1 −1 2 3 4
1 −1 5 6 7
0 0 8 9 10
0 0 11 12 13
0 0 14 15 16
0 0 17 18 19

∥∥∥∥∥∥∥∥∥∥∥
,

C =

∥∥∥∥∥∥∥∥∥

1 1 1 0 0 0
1 −1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∥∥∥∥∥∥∥∥∥
, D =

∥∥∥∥∥∥∥∥∥

0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

∥∥∥∥∥∥∥∥∥
.

Then, we easily verify ABC = 0, DC = 0 and clearly D is nilpotent. Applying Theorem 3, we obtain

M D =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

− 1
2

1
2

9
4 − 7

4
1
2 − 1

2
1
2 − 1

2 − 55
2 −30 637

16

−1 1 1 −1 0 0 1
2 − 1

2 − 57
4 − 63

4
97
4

1 −1 −1 1 0 0 0 0 57
4

63
4 − 65

4

0 0 1
2 − 1

2 0 1 0 0 −6 −6 − 57
8

− 1
2

1
2 − 7

4
5
4

1
2 − 1

2 0 0 19 39
2

149
16

1
2 − 1

2
5
4 − 3

4 − 1
2

1
2 0 0 − 45

4 − 45
4 − 171

16
3
2 − 1

2 − 29
4

11
2

1
4 −2 0 0 1285

16
1359

16 − 425
8

3
2 − 3

2 − 21
4

9
2

1
4 −2 0 0 1029

16
1095

16 − 175
8

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

We want to illustrate an application of derived results to the computation of the Drazin inverse of the sum of two
operators. Classical approach uses the fact that if F , G ∈ L(X) then Q = ‖ F 1 ‖ ∈ L(X ⊕ X, X) and R = ∥∥ 1

G

∥∥ ∈ L(X, X ⊕ X),

then obviously Q R = F + G and R Q = ∥∥ F 1
G F G

∥∥ ∈ L(X ⊕ X). Expressions for Q R and R Q actually give connection between
Drazin inverses of operator matrices and Drazin inverses of the sum of two operators, using the following fact (see [6,16]),
let Q ∈ L(X, Y ), R ∈ L(Y , X) if Q R is Drazin invertible then R Q is Drazin invertible, moreover,

(R Q )D = Q
(
(Q R)2)D

R = Q
(
(Q R)D)2

R.

Using this observation we give the following lemma.

Lemma 4. Let F , G ∈ L(X) and assume that F , G and G F are Drazin invertible. If F G F = 0 and G2 F = 0 then F + D is Drazin
invertible and

(F + G)D = (
1 + G F D)

F D + F
[

F D H + HG D]
G + G F D(Ψ Φ + N3)G + (

G D + G
(

F D)2
Φ + G F N3

)
G D G,

where H = Ψ Φ + N2 , Ψ is as in Theorem 1 and Φ , Nk, k = 2,3, are as in Theorem 2.

Proof. Using described procedure we get that F + G is Drazin invertible if and only if operator matrix M = ∥∥ F 1
G F G

∥∥ is

Drazin invertible. We easily check, assuming A = F , B = 1, C = G F and D = G , that ABC = F G F = 0, DC = G2 F = 0 and
BC = G F is nilpotent, since (G F )2 = G F G F = 0. Accordingly, we can apply Theorem 2. We have Ψ = (1 + G F D)(F D)2,
Φ = ∑ν3

k=1(F D)k−1 F π (G D)k−1, Δ = ∑ν1
k=1 F k−1 F π (G D)k−1, Θ = N2 + G F N4, Σ = N3 + G F N5, N2 = Δ(G D)2 − F D G D , N3 =

Δ(G D)3 − (F D)2G D − F D(G D)2, N4 = Δ(G D)4 − (F D)3G D − (F D)2(G D)2 − F D(G D)3, N5 = Δ(G D)5 − (F D)4G D − (F D)3(G D)2 −
(F D)2(G D)3 − F D(G D)3, which gives

M D =
∥∥∥∥∥ (1 + G F D)F D Ψ Φ + N2 + G F N4

G F D G D + G(F D)2Φ + G F N3

∥∥∥∥∥ .
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Using previous formula, we obtain

(F + G)D = ∥∥ F 1
∥∥(

M D)2
∥∥∥∥ 1

G

∥∥∥∥
= ∥∥ F 1

∥∥∥∥∥∥∥ Ψ (1 + G F D)F D H + (H + G F N4)G D

G(F D)2 G F D H + (G D + G(F D)2Φ + G F N3)G D

∥∥∥∥∥
∥∥∥∥ 1

G

∥∥∥∥
= (

1 + G F D)
F D + F

[
F D H + HG D]

G + G F D(Ψ Φ + N3)G + (
G D + G

(
F D)2

Φ + G F N3
)
G D G.

In the derivation we used heavily identities G D F = G D F D = F D G F = F G F D = F D G F D = 0, which can be derived easily from
the conditions of the lemma. �
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