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In this paper, we first prove the unique global strong solution with
vacuum to the two-dimensional nonhomogeneous incompressible
MHD system, as long as the initial data satisfies some compatibility
condition. As a corollary, the global existence of strong solution
with vacuum to the 2D nonhomogeneous incompressible Navier–
Stokes equations is also established. Our main result improves all
the previous results where the initial density need to be strictly
positive. The key idea is to use some critical Sobolev inequality
of logarithmic type, which is originally due to Brezis and Wainger
(1980) [7].
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1. Introduction

Magnetic fields influence many fluids. Magnetohydrodynamics (MHD) is concerned with the inter-
action between fluid flow and magnetic field. The governing equations of nonhomogeneous MHD can
be stated as follows [13],

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρt + div(ρu) = 0, in Ω × [0, T ),

(ρu)t + div(ρu ⊗ u) − div
(
2μ(ρ)d

) − (B · ∇)B + ∇ P = 0, in Ω × [0, T ),

Bt − λ�B − curl(u × B) = 0, in Ω × [0, T ),

div u = 0, div B = 0, in Ω × [0, T ).

(1.1)

* Corresponding author.
E-mail addresses: xdhuang@amss.ac.cn (X. Huang), yunwang@math.mcmaster.ca, ywang3@suda.edu.cn (Y. Wang).
0022-0396/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jde.2012.08.029

https://core.ac.uk/display/82101721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jde.2012.08.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:xdhuang@amss.ac.cn
mailto:yunwang@math.mcmaster.ca
mailto:ywang3@suda.edu.cn
http://dx.doi.org/10.1016/j.jde.2012.08.029


512 X. Huang, Y. Wang / J. Differential Equations 254 (2013) 511–527
Here ρ and u are the density and velocity field of fluid respectively. P is the pressure. B is the
magnetic field. μ(ρ) � 0 denotes the viscosity of fluid, which we assume in this paper is a positive
constant. λ > 0 is also a constant, which describes the relative strengths of advection and diffusion
of B . For simplicity of writing, let μ = λ = 1, d = 1

2 (∇u + (∇u)t) is the deformation tensor.
In this paper, we focus on the system (1.1) with the initial–boundary conditions

u = 0, B · �n = 0, curl B = 0 on ∂Ω × [0, T ), (1.2)

(ρ, u, B)|t=0 = (ρ0, u0, B0) in Ω. (1.3)

Here Ω is a bounded smooth domain in R
2.

If there is no magnetic field, i.e., B = 0, MHD system turns to be nonhomogeneous Navier–Stokes
system. In fact, due to the similarity of the second equation and the third equation in (1.1), the study
for MHD system has been along with that for Navier–Stokes one. Let’s recall some known results for
3D nonhomogeneous Navier–Stokes equations. When the initial density ρ0 is bounded away from 0,
the global existence of weak solutions was established by Kazhikov [21], see also [4]. Moreover, An-
tontsev, Kazhikov, and Monakhov [5] gave the first result on local existence and uniqueness of strong
solutions. For the two-dimensional case, they even proved that the strong solution is global. But the
global existence of strong or smooth solutions in 3D is still an open problem. For more results in this
direction, see [24,28,18] and references therein.

If the initial density ρ0 allows vacuum, the problem becomes more complicated. Simon [29] proved
the global existence of weak solutions, see also [26]. Choe and Kim [12] constructed a local strong
solution under some compatibility conditions on the initial data. More precisely, they proved that if
(ρ0, u0) satisfy

0 � ρ0 ∈ L
3
2 (Ω) ∩ H2(Ω), u0 ∈ D1

0(Ω) ∩ D2(Ω), (1.4)

and the compatibility conditions

div u0 = 0, −μ�u0 + ∇ P0 = ρ
1
2

0 g, in Ω, (1.5)

with some (P0, g) belonging to D1(Ω) × L2(Ω), then there exist a positive time T and a unique
strong solution (ρ, u) ∈ C([0, T ); H2(Ω))×C([0, T ); D1

0(Ω)∩ D2(Ω)) to the nonhomogeneous Navier–
Stokes equations, where D1

0(Ω) and D2(Ω) denote the usual homogeneous Sobolev spaces. Recall that
D1

0(R
3) = {u ∈ L6(R3): ∇u ∈ L2(R3)} and D1

0(Ω) = H1
0(Ω) if Ω ⊂⊂ R

3.
After the local existence of strong solution, one question came out naturally, which is whether

the solution blows up in finite time. Suppose the finite blow-up time T ∗ exists, Kim [22] proved the
Serrin type criterion, which says that

T ∗∫
0

∥∥u(t)
∥∥s

Lr
w

dt = ∞, for any (r, s) with
2

s
+ n

r
= 1, n < r � ∞, (1.6)

where n is the dimension of the domain and Lr
w is the weak Lr space. (The proof was given in

[22] only for 3D case, but almost the same proof works for 2D case.) In particular, for the 2D
case, it follows from the energy inequality the solution satisfies that sup0<T <T ∗(‖√ρu‖L∞(0,T ;L2) +
‖∇u‖L2(0,T ;L2)) is bounded, which implies that u ∈ L4(0, T ∗; L4) if ρ is bounded away from 0. Hence
the criterion (1.6) in fact implies global existence of strong solution provided that ρ0 is bounded
away from 0. However, if the density is allowed to vanish, whether the strong solution exists globally
remains unknown. This is the main problem we shall address in this paper.
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Let’s go back to the MHD system (1.1). As said before, the research for MHD goes along with that
for Navier–Stokes equations. The results are similar. When ρ is a constant, which means the fluid is
homogeneous, the MHD system has been extensively studied. Duraut and Lions [17] constructed a
class of weak solutions with finite energy and a class of local strong solutions. In particular, the 2D
local strong solution has been proved to be global and unique. While for the three-dimensional case,
different Serrin type criteria similar to (1.6) were given in [20,19,8,30]. As for the 3D Navier–Stokes
equations, whether the local strong solution is global is still open.

When the fluid is nonhomogeneous, Gerbeau and Le Bris [16], Desjardins and Le Bris [14] studied
the global existence of weak solutions of finite energy in the whole space or in the torus. Global
existence of strong solutions with small initial data in some Besov spaces was considered by Abidi
and Paicu [1]. Moreover, Abidi and Paicu [1] allowed variable viscosity and conductivity coefficients
but required an essential assumption that there is no vacuum (more precisely, the initial data are
closed to a constant state). Chen, Tan, and Wang [10] extended the local existence in presence of
vacuum. In conclusion, if the initial data satisfies that

0 � ρ0 ∈ H2, (u0, B0) ∈ H2, (1.7)

and the compatibility conditions

u0 = 0, B0 · �n = 0, curl B0 = 0, on ∂Ω,

div u0 = div B0 = 0, −�u0 + ∇ P0 − (B0 · ∇)B0 = ρ
1
2

0 g, in Ω, (1.8)

with some (P0, g) ∈ H1 × L2, then there exist a positive time T and a unique strong solution (ρ, u, B)

to the problem (1.1)–(1.3), such that

ρ ∈ C
([0, T ]; H2), (u, B) ∈ C

([0, T ]; H2),
p ∈ C

([0, T ]; H1) ∩ L2(0, T ; H2), (ut, Bt) ∈ L2(0, T ; H1),
and (ρt,

√
ρut, Bt) ∈ L∞(

0, T ; L2). (1.9)

For all the techniques, refer to [11].
It comes to the question whether the local strong solution blows up. After the proof of [22] for

nonhomogeneous Navier–Stokes equations, one can get the same criterion (1.6) for nonhomogeneous
MHD, see also [31]. In particular, for the 2D case, it says that ‖u‖L2

t L∞
x

becomes unbounded once
the local strong solution blows up. On the other hand, the energy inequality tells us ‖∇u‖L2

t L2
x

is
uniformly bounded, which only imply that ‖u‖L2

t (BMOx)
is uniformly bounded. Therefore, in view of the

blowup criterion (1.6), it’s not enough to extend the local strong solution to global one. To improve
the regularity of the velocity, we choose to apply a critical Sobolev inequality of logarithmic type,
which is originally due to Brezis and Gallouet [6] and Brezis and Wainger [7]. In this paper, we use
some extension, which was proved by Ozawa [27]. For a new proof, see [23]. The inequality is stated
as follows,

Lemma 1.1. Assume f ∈ H1(R2) ∩ W 1,q(R2), with some q > 2. Then it holds that

‖ f ‖L∞(R2) � C
(
1 + ‖∇ f ‖L2(R2)

(
ln+ ‖ f ‖W 1,q(R2)

) 1
2
)
, (1.10)

with some constant C depending only on q.
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The same proof with some proper extension theorem (see [2]), in fact gives the following modified
inequality, which involves the integral with respect to time. For completeness, we will give the proof
in Section 2.

Lemma 1.2. Assume Ω is a bounded smooth domain in R
2 and f ∈ L2(s, t; H1(Ω))∩ L2(s, t; W 1,q(Ω)), with

some q > 2 and 0 � s < t �∞. Then it holds that

‖ f ‖L2(s,t;L∞(Ω)) � C
(
1 + ‖ f ‖L2(s,t;H1(Ω))

(
ln+ ‖ f ‖L2(s,t;W 1,q(Ω))

) 1
2
)
, (1.11)

with some constant C depending only on q and Ω , and independent of s, t.

The application of (1.11) is the key idea of this paper. Due to this, we can close the estimates for
‖(u, B)‖L∞

t H1
x
. The higher order estimates are in the same spirit of [22]. For more details, see Section 3.

Finally, we get the result about global existence of strong solution.

Theorem 1.3. Assume that the initial data (ρ0, u0, B0) satisfies (1.7) and the compatibility conditions (1.8).
Then there exists a global strong solution (ρ, u, B) of the MHD system (1.1)–(1.3), with

ρ ∈ C
([0,∞); H2), (u, B) ∈ C

([0,∞); H2),
P ∈ C

([0,∞); H1) ∩ L2
loc

(
0,∞; H2), (ut, Bt) ∈ L2

loc

(
0,∞; H1),

and (ρt,
√

ρut, Bt) ∈ L∞
loc

(
0,∞; L2). (1.12)

Some remarks are given about this theorem.

Remark 1.1. The local existence of unique strong solution with vacuum to the system (1.1) in a two-
dimensional bounded domain can be established in the same manner as [12] and [10]. Through this
paper, we will concentrate on establishing global estimates for the density, velocity and magnetic
field.

Remark 1.2. If we consider the most special case, where ρ is a constant (the fluid is homogeneous)
and B = 0 (no magnetic field), then the system (1.1) becomes the classical Navier–Stokes system. The
global existence of strong solution has been proved by Leray [25]. More generally, if we consider the
case that only ρ is a constant, the system (1.1) becomes the classical homogeneous MHD system. As
said before, the corresponding result has been derived by Duraut and Lions [17].

Remark 1.3. Our proof here can also be applied to the two-dimensional periodic case with positive
mass (not density) and existence of global strong solution is consequently derived.

If B = 0, Theorem 1.3 in fact gives a positive answer to the global existence of strong solutions
with vacuum of the 2D nonhomogeneous Navier–Stokes system. It covers the corresponding result
in [5], where the density is strictly positive.

Corollary 1.4. Assume that the initial data (ρ0, u0) satisfies (1.7) and the compatibility conditions (1.5). Then
there exists a global strong solution (ρ, u) of the Navier–Stokes equations, with

ρ ∈ C
([0,∞); H2), u ∈ C

([0,∞); H2),
P ∈ C

([0,∞); H1) ∩ L2
loc

(
0,∞; H2), ut ∈ L2

loc

(
0,∞; H1),

and (ρt,
√

ρut) ∈ L∞
loc

(
0,∞; L2). (1.13)
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We conclude this section with some notations and lemmas. Lr(Ω), W k,r(Ω), (1 � r � ∞), are the
standard Sobolev spaces, and we use Lr = Lr(Ω), W k,r = W k,r(Ω). Especially, when r = 2, denote
Hk = W k,2. For simplicity, let

∫
f dx �

∫
Ω

f dx.

Some more lemmas will be used during the proof of Theorem 1.3. One is following from the
regularity theory for Stokes equations. For its proof, refer to [15].

Lemma 1.5. Assume that (u, P ) ∈ H1
0 × H1 is a weak solution of the stationary Stokes equations,

⎧⎪⎨
⎪⎩

−�u + ∇ P = F , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω,

(1.14)

and F ∈ Lq, 1 < q < ∞. Then it holds that

‖u‖W 2,q � C‖F‖Lq + C‖u‖H1 , (1.15)

with some constant C depending on Ω and q. Moreover, if F ∈ H1 , then

‖u‖H3 � C‖F‖H1 + C‖u‖H1 , (1.16)

with some constant C depending only on Ω .

The other lemma is responsible for the estimates for B and follows from the classical regularity
theory for elliptic equations. For its proof, refer to [3].

Lemma 1.6. Assume that B ∈ H1 is a weak solution of the Poisson equations

{
�B = G, in Ω,

B · �n = 0, curl B = 0, on ∂Ω,
(1.17)

and G ∈ Lq, 1 < q < ∞. Then it holds that

‖B‖W 2,q � C‖G‖Lq + C‖B‖H1 , (1.18)

with some constant C depending on Ω and q. Moreover, if G ∈ H1 , then

‖B‖H3 � C‖G‖H1 + C‖B‖H1 , (1.19)

with some constant C depending only on Ω .
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2. Proof of Lemma 1.2

This section is dedicated to the proof of Lemma 1.2. First we will prove the inequality (1.11) for
the whole space case, which is

‖ f ‖L2(s,t;L∞(R2)) � C
(
1 + ‖ f ‖L2(s,t;H1(R2))

(
ln+ ‖ f ‖L2(s,t;W 1,q(R2))

) 1
2
)
. (2.20)

The proof follows exactly that in [23] and lies mainly on the Littlewood–Paley decomposition. So we
introduce here some new notations associated with the decomposition. Define C to be the ring

C =
{
ξ ∈R

2:
3

4
� |ξ | � 8

3

}
,

and define D to be the ball

D =
{
ξ ∈R

2: |ξ | � 4

3

}
.

Let χ and ϕ be two smooth nonnegative radial functions supported respectively in D and C , such
that

χ(ξ) +
∑
j∈N

ϕ
(
2− jξ

) = 1 for ξ ∈R
2, and

∑
j∈Z

ϕ
(
2− jξ

) = 1 for ξ ∈R
2 \ {0}.

Denote the Fourier transform on R
2 by F and denote

h = F−1ϕ, h̃ = F−1χ.

The frequency localization operator is defined by

� j f = F−1[ϕ(
2− jξ

)
F( f )

] = 22 j
∫
R2

h
(
2 j y

)
f (x − y)dy,

and

S j f = F−1[χ(
2− jξ

)
F( f )

] = 22 j
∫
R2

h̃
(
2 j y

)
f (x − y)dy.

Now it’s ready to prove (2.20).

Proof. Decompose f into three parts such as

f (x, τ ) = S−N f (x, τ ) +
∑

| j|�N

� j f (x, τ ) +
∑
j>N

� j f (x, τ )

= f1(x, τ ) + f2(x, τ ) + f3(x, τ ). (2.21)

By Bernstein’s inequality (see [9]),

‖ f1‖L2(s,t;L∞(R2)) � C−2N/q‖ f ‖L2(s,t;Lq(R2)). (2.22)
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Similarly, by Schwarz inequality and Bernstein’s inequality,

‖ f2‖L2(s,t;L∞(R2)) �
∑

| j|�N

‖� j f ‖L2(s,t;L∞(R2))

� C N
1
2
(∥∥∇(� j f )

∥∥2
L2(s,t;L2(R2))

) 1
2

� C N
1
2 ‖∇ f ‖L2(s,t;L2(R2)), (2.23)

and

‖ f3‖L2(s,t;L∞(R2)) �
∑
j>N

‖� j f ‖L2(s,t;L∞(R2))

� C
∑
j>N

22 j(1/q−1/2)‖∇ f ‖L2(s,t;Lq(R2))

= C2(2/q−1)N‖∇ f ‖L2(s,t;Lq(R2)). (2.24)

If we set κ = min(2/q, 1 − 2/q), then

‖ f ‖L2(s,t;L∞(R2)) � C
{

2−κN‖ f ‖L2(s,t;W 1,q(R2)) + N
1
2 ‖∇ f ‖L2(s,t;L2(R2))

}
. (2.25)

Choose N = [log2κ

‖ f ‖L2(s,t;W 1,q (R2))

‖∇ f ‖L2(s,t;L2(R2))
] + 1, hence we derive that

‖ f ‖L2(s,t;L∞(R2)) � C‖∇ f ‖L2(s,t;L2(R2))

(
1 +

(
ln+ ‖ f ‖L2(s,t;W 1,q(R2))

‖∇ f ‖L2(s,t;L2(R2))

)1/2)
, (2.26)

which implies (2.20). �
Combining the extension theorem (see [2]) and (2.20), we prove Lemma 1.2.

3. Proof of Theorem 1.3

This section is dedicated to the proof of Theorem 1.3. Define the quantity Φ(T ) as follows,

Φ(T ) = sup
0�t�T

(∥∥ρ(t)
∥∥2

H2 + ∥∥u(t)
∥∥2

H2 + ∥∥B(t)
∥∥2

H2

) + ‖√ρut‖2
L∞(0,T ;L2)

+
T∫

0

(∥∥u(t)
∥∥2

H3 + ∥∥B(t)
∥∥2

H3

)
dt +

T∫
0

(‖ut‖2
H1 + ‖Bt‖2

H1

)
dt. (3.27)

Suppose the local strong solution blows up at T ∗ < ∞, we will prove that in fact there exists a
generic constant M̄ < ∞ depending only the initial data and T ∗ such that

sup
0�T <T ∗

Φ(T ) � M̄. (3.28)
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Having (3.28) at hand, it is easy to show without many difficulties that we can extend the strong
solution beyond T ∗ , which gives a contradiction. Hence the local strong solution does not blow up in
finite time. Also, the uniqueness of strong solutions is a standard procedure.

Through out this section, C denote a generic constant only depending on the initial data and T ∗ .
The proof is divided into five steps, due to different level estimates.

Before proceeding, we write another equivalent form of (1.1) for convenience, which is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρt + u · ∇ρ = 0,

ρut − �u + (ρu · ∇)u − (B · ∇)B + ∇ P = 0,

Bt − �B + (u · ∇)B − (B · ∇)u = 0,

div u = 0, div B = 0.

(3.29)

Now we start the proof of Theorem 1.3.

Step I. L∞ bound for ρ . Eq. (3.29)1 for density is a transport equation, then for every 0 � t < T ∗ ,

∥∥ρ(t)
∥∥

L∞ = ‖ρ0‖L∞ . (3.30)

Step II. Basic energy estimate.

Proposition 3.1 (Energy inequality). There exists a constant M depending only on ‖√
ρ0u0‖L2 and ‖B0‖L2 ,

such that for every 0 < T < T ∗ ,

‖√ρu‖2
L∞(0,T ;L2)

+ ‖B‖2
L∞(0,T ;L2)

+
T∫

0

‖∇u‖2
L2 dt +

T∫
0

‖∇B‖2
L2 dt � M. (3.31)

Proof. The proof is standard. Multiplying (3.29)2 and (3.29)3 by u and B respectively, then adding
the two resulting equations together, integrating over Ω , one can get that

1

2

d

dt

∫
ρ|u|2 dx + 1

2

d

dt

∫
|B|2 dx +

∫
|∇u|2 dx +

∫
|∇B|2 dx = 0, (3.32)

where integration by parts was applied. It implies that the inequality (3.31) holds and consequently
completes the proof. �

Step III. Estimates for ‖(√ρut , Bt)‖L2(0,T ;L2) and ‖(∇u,∇B)‖L∞(0,T ;L2) .
This is a crucial step during the proof. Higher order estimates of the density, velocity and magnetic

field can be done in a standard way provided that ‖(u, B)‖H1 is uniformly bounded with respect to
time. To prove that, we will make use of some extension of critical Sobolev inequality of logarithmic
type, as indicated by Lemma 1.2.

Proposition 3.2. Under the assumptions in Theorem 1.3, it holds that

sup
0<T <T ∗

{∥∥(
u(T ), B(T )

)∥∥2
H1 +

T∫
0

∥∥(
√

ρut, Bt)
∥∥2

L2 dt

}
< ∞. (3.33)
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Proof. Multiplying Eq. (3.29)2 by ut and integrating over Ω lead to

1

2

d

dt

∫
|∇u|2 dx +

∫
ρ|ut |2 dx = −

∫
(ρu · ∇u) · ut dx +

∫
(B · ∇)B · ut dx. (3.34)

By Hölder’s inequality and Young inequality,

∣∣∣∣
∫

(ρu · ∇)u · ut dx

∣∣∣∣ � C‖√ρut‖L2 · ‖u‖L∞ · ‖∇u‖L2

� 1

2
‖√ρut‖2

L2 + C‖u‖2
L∞‖∇u‖2

L2 . (3.35)

Applying integration by parts with the conditions that div B = 0 in Ω and B · �n = 0 on ∂Ω , then

∫
(B · ∇)B · ut dx = d

dt

∫
(B · ∇)B · u dx −

∫
(Bt · ∇)B · u dx −

∫
(B · ∇)Bt · u dx

= − d

dt

∫
(B · ∇)u · B dx +

∫
(Bt · ∇)u · B dx +

∫
(B · ∇)u · Bt dx

� − d

dt

∫
(B · ∇)u · B dx + C‖B‖2

L∞‖∇u‖2
L2 + 1

2
‖Bt‖2

L2 . (3.36)

Hence, combining (3.34)–(3.36), we get that

1

2
‖√ρut‖2

L2 + 1

2

d

dt

∫
|∇u|2 dx + d

dt

∫
(B · ∇)u · B dx

� C
(‖u‖2

L∞ + ‖B‖2
L∞

)‖∇u‖2
L2 + 1

2
‖Bt‖2

L2 . (3.37)

Similarly, multiplying Eq. (3.29)3 by Bt and integrating over Ω lead to

1

2

d

dt

∫
|∇B|2 dx +

∫
|Bt |2 dx

= −
∫

(u · ∇B) · Bt dx +
∫

(B · ∇)u · Bt dx

� 1

2
‖Bt‖2

L2 + C‖u‖2
L∞‖∇B‖2

L2 + C‖∇u‖2
L2‖B‖2

L∞ , (3.38)

which implies that

d

dt

∫
|∇B|2 dx + ‖Bt‖2

L2 � C‖u‖2
L∞‖∇B‖2

L2 + C‖B‖2
L∞‖∇u‖2

L2 . (3.39)

The term
∫
(B · ∇)u · B dx on the left hand of (3.37) cannot be determined positive or negative,

so we choose some appropriate positive terms to control it. Note that it follows from Gagliardo–
Nirenberg inequality that
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∣∣∣∣
∫

(B · ∇)u · B dx

∣∣∣∣ � ‖B‖2
L4‖∇u‖L2

� C‖B‖L2‖B‖H1‖∇u‖L2

� 1

4
‖∇u‖2

L2 + C1‖B‖2
L2

(‖B‖2
L2 + ‖∇B‖2

L2

)
. (3.40)

Next, we multiply (3.39) by 2C1M + 2, where C1 and M are constants appearing in (3.40) and (3.31),
add it to (3.37) and integrate with respect to time, then for every 0 � s < T < T ∗ ,

∫ ∣∣∇u(T )
∣∣2

dx +
∫ ∣∣∇B(T )

∣∣2
dx +

T∫
s

‖√ρut‖2
L2 dτ +

T∫
s

‖Bt‖2
L2 dτ

� C

[∫ ∣∣∇u(s)
∣∣2

dx +
∫ ∣∣∇B(s)

∣∣2
dx

]
exp

{
C

T∫
s

(‖u‖2
L∞ + ‖B‖2

L∞
)

dτ

}
+ C . (3.41)

Denote

Ψ (t) = e + sup
0�τ�t

(∥∥u(τ )
∥∥2

H1 + ∥∥B(τ )
∥∥2

H1

) +
t∫

0

(‖√ρut‖2
L2 + ‖Bt‖2

L2

)
dτ , (3.42)

then (3.41) and (3.31) give that for every 0 � s < T < T ∗ ,

Ψ (T ) � CΨ (s)exp

{
C

T∫
s

(‖u‖2
L∞ + ‖B‖2

L∞
)

dτ

}
. (3.43)

To get a proper estimate for ‖u‖L2
t L∞

x
and ‖B‖L2

t L∞
x

, we get help from Lemma 1.2,

‖u‖2
L2(s,T ;L∞)

+ ‖B‖2
L2(s,T ;L∞)

� C
{

1 + (‖u‖2
L2(s,T ;H1)

+ ‖B‖2
L2(s,T ;H1)

)(
ln+ ‖u‖L2(s,T ;W 1,4) + ln+ ‖B‖L2(s,T ;W 1,4)

)}
. (3.44)

Applying Lemma 1.5 to Eq. (3.29)2 yields

‖u‖W 1,4 � C‖u‖H1 + C‖ρut‖
L

4
3

+ C
∥∥(ρu · ∇)u − (B · ∇)B

∥∥
L

4
3
, (3.45)

which implies

‖u‖L2(s,T ;W 1,4) � C‖u‖L2(s,T ;H1) + C‖√ρut‖L2(s,T ;L2)

+ C‖u‖L2(s,T ;H1)‖∇u‖L∞(s,T ;L2) + C‖B‖L2(s,T ;H1)‖∇B‖L∞(s,T ;L2). (3.46)

Similarly, applying Lemma 1.6 to Eq. (3.29)3 to obtain

‖B‖L2(s,T ;W 1,4) � C‖B‖L2(s,T ;H1) + C‖Bt‖L2(s,T ;L2)

+ C‖u‖L2(s,T ;H1)‖∇B‖L∞(s,T ;L2) + C‖B‖L2(s,T ;H1)‖∇u‖L∞(s,T ;L2). (3.47)
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Note that the constant C in (3.46) and (3.47) does not depend on u, B , s or T . It only depends on the
domain Ω . Taking the energy inequality (3.31) into consideration, then for every 0 � s < T < T ∗ ,

‖u‖2
L2(s,T ;L∞)

+ ‖B‖2
L2(s,T ;L∞)

� C2
{

1 + (‖u‖2
L2(s,T ;H1)

+ ‖B‖2
L2(s,T ;H1)

)
ln

(
C
(
M, T ∗)Ψ (T )

)}
, (3.48)

where C2 is constant which only depends on Ω , and C(M, T ∗) is a constant depending on M in (3.31)
and T ∗ .

Substituting (3.48) into (3.43), it arrives at

Ψ (T ) � CΨ (s)
[
C
(
M, T ∗)Ψ (T )

]C2(‖u‖2
L2(s,T ;H1)

+‖B‖2
L2(s,T ;H1)

)
. (3.49)

Recall the energy estimate (3.31), one can choose s close enough to T ∗ , such that

lim
T →T ∗ C2

(‖u‖2
L2(s,T ;H1)

+ ‖B‖2
L2(s,T ;H1)

)
� 1

2
, (3.50)

then for every s < T < T ∗ , we have

Ψ (T ) � CΨ (s)2 · C
(
M, T ∗)2

, (3.51)

which completes the proof of Proposition 3.2. �
Remark 3.1. Unfortunately, we cannot get any explicit bound for ‖(u, B)‖H1 in terms of the initial
data, due to the technique used here.

We have some more estimates as corollaries of Proposition 3.2.

Proposition 3.3. Assume that

sup
0<T <T ∗

{∥∥(
u(T ), B(T )

)∥∥2
H1 +

T∫
0

∥∥(
√

ρut, Bt)
∥∥2

L2 dt

}
� C3. (3.52)

Then there exists a constant C4 depending on C3 , such that

sup
0<T <T ∗

{‖u‖L2(0,T ;H2) + ‖B‖L2(0,T ;H2)

}
� C4. (3.53)

Proof. Eq. (3.29)2, together with Lemma 1.5, gives us that

‖u‖H2 � C‖u‖H1 + C‖ρut‖L2 + C
∥∥(ρu · ∇)u

∥∥
L2 + C

∥∥(B · ∇)B
∥∥

L2

� C‖u‖H1 + C‖√ρut‖L2 + C‖u‖L∞‖∇u‖L2 + C‖B‖L∞‖∇B‖L2 . (3.54)

Similarly, by Lemma 1.6,

‖B‖H2 � C‖B‖H1 + C‖Bt‖L2 + C‖u‖L∞‖∇B‖L2 + C‖B‖L∞‖∇u‖L2 . (3.55)

Combining the two inequalities (3.54) and (3.55), we have
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‖u‖H2 + ‖B‖H2 � C‖√ρut‖L2 + C‖Bt‖L2 + C
(‖u‖L∞ + ‖B‖L∞ + 1

) · (‖u‖H1 + ‖B‖H1

)
� C

(‖u‖H2 + ‖B‖H2

)1/2(‖u‖L2 + ‖B‖L2

)1/2 · (‖u‖H1 + ‖B‖H1

)
+ C

(‖u‖H1 + ‖B‖H1

) + C‖√ρut‖L2 + C‖Bt‖L2 , (3.56)

where Gagliardo–Nirenberg inequality was used. Hence,

‖u‖H2 + ‖B‖H2 � C‖√ρut‖L2 + C‖Bt‖L2 + C
(
1 + ‖u‖H1 + ‖B‖H1

)3
, (3.57)

which completes the proof for (3.53). �
Proposition 3.4. Assume (3.52) holds, then there exists some constant C5 depending on C3 such that

sup
0<T <T ∗

{‖u‖L4(0,T ;L∞) + ‖B‖L4(0,T ;L∞)

}
� C5. (3.58)

Proof. By Gagliardo–Nirenberg inequality,

‖u‖L∞ � C‖u‖1/2
L2 · ‖u‖1/2

H2 , (3.59)

and

‖B‖L∞ � C‖B‖1/2
L2 · ‖B‖1/2

H2 , (3.60)

which together with (3.53) completes the proof for (3.58). �
Step IV. Estimates for ‖(√ρut , Bt)‖L∞(0,T ;L2) and ‖(∇ut ,∇Bt)‖L2(0,T ;L2) . From now on, the estimates

are standard, due to the proof in [22]. We write them down here for completeness.

Proposition 3.5. Under the assumptions in Theorem 1.3, it holds that

sup
0<T <T ∗

{∥∥(√
ρut(T ), Bt(T )

)∥∥
H1 +

T∫
0

∥∥(∇ut,∇Bt)
∥∥2

L2 dt

}
< ∞. (3.61)

Proof. Taking t-derivative of Eq. (3.29)2, then one gets that

ρutt + (ρu · ∇)ut − �ut + ∇ Pt

= −ρt ut − (ρt u · ∇)u − (ρut · ∇)u + (Bt · ∇)B + (B · ∇)Bt . (3.62)

Multiplying (3.62) by ut and integrating over Ω ,

1

2

d

dt

∫
ρ|ut |2 dx +

∫
|∇ut |2 dx

= −
∫

ρt |ut |2 dx −
∫

(ρt u · ∇)u · ut dx

−
∫

(ρut · ∇)u · ut dx +
∫

(Bt · ∇)B · ut dx +
∫

(B · ∇)Bt · ut dx. (3.63)
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We estimate the terms on the right hand one by one. Taking (1.1)1 into consideration, we get that

−
∫

ρt |ut |2 dx =
∫

div(ρu)|ut |2 dx

= −
∫

2ρu · ∇ut · ut dx

� 1

8
‖∇ut‖2

L2 + C‖√ρut‖2
L2‖u‖2

L∞ , (3.64)

and also for the second term,

−
∫

(ρt u · ∇)u · ut dx = −
∫

ρu · ∇[
(u · ∇)u · ut

]
dx

�
∫

|ρut ||u||∇u|2 dx +
∫

|ρut ||u|2∣∣∇2u
∣∣dx

+
∫

ρ|u|2|∇u||∇ut |dx. (3.65)

Here by Gagliardo–Nirenberg inequality,

∫
|ρut ||u||∇u|2 dx � ‖√ρut‖L2‖u‖L∞‖∇u‖2

L4

� C‖√ρut‖L2‖u‖L∞‖∇u‖L2‖∇u‖H1

� ‖u‖2
L∞‖√ρut‖2

L2 + C‖∇u‖2
L2‖u‖2

H2 . (3.66)

By Young inequality,

∫
|ρut ||u|2|∇2u|dx � C‖√ρut‖L2‖u‖2

L∞
∥∥∇2u

∥∥
L2

� ‖u‖4
L∞‖√ρut‖2

L2 + C‖u‖2
H2 . (3.67)

And similarly,

∫
ρ|u|2|∇u||∇ut |dx � C‖u‖2

L∞‖∇u‖L2‖∇ut‖L2

� 1

8
‖∇ut‖2

L2 + C‖u‖4
L∞‖∇u‖2

L2 . (3.68)

For the third term of the right hand of (3.63), by Poincaré inequality and Gagliardo–Nirenberg
inequality,

−
∫

(ρut · ∇)u · ut dx � C‖√ρut‖L2‖∇u‖L4‖ut‖L4

� C‖u‖2
H2‖√ρut‖2

L2 + 1

8
‖∇ut‖2

L2 . (3.69)
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Since div Bt = 0 in Ω and Bt · �n = 0 on ∂Ω , then

∫
(Bt · ∇)B · ut dx = −

∫
(Bt · ∇)ut · B dx

� 1

8
‖∇ut‖2

L2 + C‖B‖2
L∞‖Bt‖2

L2 . (3.70)

And similarly,

∫
(B · ∇)Bt · ut dx

� 1

8
‖∇ut‖2

L2 + C‖B‖2
L∞‖Bt‖2

L2 . (3.71)

Now we turn to the equation for B . Taking t-derivative of (3.29)3, multiplying by Bt and integrat-
ing over Ω , then

1

2

d

dt

∫
|Bt |2 dx +

∫
|∇Bt |2 dx

= −
∫

(ut · ∇)B · Bt dx +
∫

(Bt · ∇)u · Bt dx +
∫

(B · ∇)ut · Bt dx. (3.72)

Here Poincaré inequality gives that

−
∫

(ut · ∇)B · Bt dx � ‖ut‖L4‖∇B‖L4‖Bt‖L2

� 1

8
‖∇ut‖2

L2 + C‖∇B‖2
H1‖Bt‖2

L2 . (3.73)

Gagliardo–Nirenberg inequality gives that

∫
(Bt · ∇)u · Bt dx � ‖Bt‖2

L4‖∇u‖L2

� 1

8
‖Bt‖2

H1 + C‖∇u‖2
L2‖Bt‖2

L2 . (3.74)

And Hölder’s inequality gives that

∫
(B · ∇)ut · Bt dx

� 1

8
‖∇ut‖2

L2 + C‖B‖2
L∞‖Bt‖2

L2 . (3.75)

Collecting all the estimates (3.63)–(3.75) and taking Propositions 3.2, 3.3, 3.4 into account, we get
that
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1

2

d

dt

∫
|√ρut |2 dx + 1

2

d

dt

∫
|Bt |2 dx + 1

4

∫
|∇ut |2 dx + 1

4

∫
|∇Bt |2 dx

� C
(
1 + ‖u‖4

L∞ + ‖B‖2
L∞ + ‖u‖2

H2 + ‖B‖2
H2

)(‖√ρut‖2
L2 + ‖Bt‖2

L2

)
+ C‖∇u‖2

L2‖u‖2
H2 + C‖u‖4

L∞‖∇u‖2
L2 , (3.76)

which together with Gronwall’s inequality completes the proof of Proposition 3.5. �
As a corollary, we can bound ‖u‖L2

t W 2,4
x

, which will play an important role in the estimates for ρ .

Proposition 3.6. Under the assumptions of Theorem 1.3, it holds that

sup
0<T <T ∗

{‖u‖L2(0,T ;W 2,4)

}
< ∞. (3.77)

Proof. It follows from Lemma 1.5 that

‖u‖W 2,4 � C‖u‖H1 + C‖ρut‖L4 + C
∥∥(ρu · ∇)u

∥∥
L4 + C

∥∥(B · ∇)B
∥∥

L4

� C‖u‖H1 + C‖∇ut‖L2 + C‖u‖L∞‖∇u‖L4 + C‖B‖L∞‖∇B‖L4

� C‖u‖H1 + C‖∇ut‖L2 + C‖u‖L∞‖∇u‖1/2
L2 ‖u‖1/2

H2 + C‖B‖L∞‖∇B‖1/2
L2 ‖B‖1/2

H2 ,

which finishes the proof of (3.77), owing to Proposition 3.5. �
Furthermore, we have the following proposition.

Proposition 3.7. Under the assumptions of Theorem 1.3, it holds that

sup
0<T <T ∗

{‖u‖H2 + ‖B‖H2

}
< ∞. (3.78)

Proof. If the inequality (3.48) is reconsidered, then the proof is done. �
Step V. Estimates for ‖∇ρ‖L∞(0,T ;H1) and ‖(u, B)‖L2(0,T ;H3) .

Proposition 3.8. Under the assumptions of Theorem 1.3, it holds that

sup
0<T <T ∗

{
‖ρ‖L∞(0,T ;H2) +

T∫
0

(‖u‖2
H3 + ‖B‖2

H3

)
dt

}
< ∞. (3.79)

Proof. Taking the x j ( j = 1,2)-derivative of (3.29)1,

(ρx j )t + u · ∇ρx j = −ux j · ∇ρ. (3.80)

Multiplying the new equation by ρx j , integrating over Ω , and summing up, then we obtain

d
∫

|∇ρ|2 dx � C

∫
|∇u||∇ρ|2 dx � C‖∇u‖L∞‖∇ρ‖2

L2 . (3.81)

dt
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Similarly, we have the following higher order estimate for ρ ,

d

dt

∫ ∣∣∇2ρ
∣∣2

dx � C

∫ (|∇u|∣∣∇2ρ
∣∣2 + ∣∣∇2u

∣∣|∇ρ|∣∣∇2ρ
∣∣)dx

� C‖∇u‖L∞
∥∥∇2ρ

∥∥2
L2 + ∥∥∇2u

∥∥
L4‖∇ρ‖L4

∥∥∇2ρ
∥∥

L2 . (3.82)

Making use of Sobolev embedding inequality and Gronwall’s inequality, we get that

∥∥∇ρ(T )
∥∥2

H1 � C‖∇ρ0‖2
H1 exp

( T∫
0

C
∥∥∇u(t)

∥∥
W 1,4 dt

)
< ∞. (3.83)

It follows from Lemma 1.5 that

‖u‖H3 � C
(‖u‖H1 + ‖ρut‖H1 + ‖ρu · ∇u‖H1 + ‖B · ∇B‖H1

)
� C

(‖u‖H1 + ‖∇ρ‖L2‖ut‖L2 + ‖ut‖H1 + ‖∇ρ‖L2‖u‖L∞‖∇u‖L2

)
+ C

(‖∇u‖2
L2 + ‖u‖L∞‖∇u‖H1 + ‖B‖2

H1 + ‖B‖L∞‖∇B‖H1

)
(3.84)

which implies that sup0<T <T ∗ ‖u‖L2(0,T ;H3) < ∞. Similar proof leads to the same conclusion for B .
This completes the proof of Proposition 3.8. �

Combining all the estimates in Propositions 3.2, 3.5 and 3.8, we prove that (3.28) holds and com-
plete the whole proof of Theorem 1.3.
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