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Interaction of cysteine proteinases with recombinant kininogen domain 2, 
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Abstract The caipain-binding domain 2 of the kininogens, the 
major plasma inhibitors of cysteine proteinases, was expressed in 
Escherichia coli. Expression of soluble protein was optimal at 
15°C and was augmented by growing the bacteria in sorbitol and 
betaine. The recombinant domain showed high affinity (Ki 0.3-1 
nM) for cathepsin L and papain, and a somewhat lower affinity 
(Ki~ 15 riM) for caipain. The binding to cathepsin H was substan- 
tially weaker, and no inhibition of actinidin and cathepsin B was 
detected. The affinity for catbepsin L was comparable to that 
reported for the domain isolated from plasma L-kininogen, 
whereas the affinities for papain and calpain were about tenfold 
lower. The latter difference may be due to the recombinant do- 
main being nonglycosylated. 
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this domain in E. coil The isolated domain was highly active, 
but  had slightly lower affinities for some proteinases than those 
reported for the domain  obtained by cleavage of L-kininogen. 
This difference may be due to the recombinant  domain lacking 
oligosaccharide side chains. 

2. Materials and methods 

2.1. Proteinases 
Papain (EC 3.4.22.2), actinidin (EC 3.4.22.14) and the inactive pa- 

pain, derivative, S-(methylthio)papain, were obtained as described ear- 
lier [12-14]. Recombinant rat cathepsin B (EC 3.4.22.1), expressed in 
yeast [15], was a gift from Dr. John S. Mort, Shriners Hospital, Mon- 
treal, Canada. Cathepsin H (EC 3.4.22.16) and cathepsin L (EC 
3.4.22.15), purified from bovine and sheep liver, respectively [16,17], 
were donated by Dr. Robert W. Mason, Alfred I. duPont Institute, 
Wilmington, DE, USA. m-Calpain (EC 3.4.22.17), isolated from rabbit 
lung [18], was a gift from Dr. Jan-Olof Karlsson, University of G6te- 
borg, Sweden. 

I. Introduction 

The low-molecular-weight (L-) and high-molecular-weight 
(H-) kininogens are the major plasma inhibitors of cysteine 
proteinases [14] .  In addition, both kininogens serve as precur- 
sors of kinins, and kininogen also participates in the contact 
phase of blood clotting [5-7]. The regions of the two kininogens 
that constitute the heavy chain after excision of the kinin seg- 
ment are identical and contain three domains homologous to 
low-molecular-weight tissue inhibitors of  cysteine proteinases, 
cystatins [1,8]. However, the N-terminal  domain,  domain 1, 
lacks the residues important  for proteinase binding in cystatins 
[9,10] and thus has no detectable inhibitory activity [8]. Both 
domains 2 and 3 inhibit  papain-like cysteine proteinases, but  
domain 2 is unique in that it also inactivates calpain [8]. The 
two inhibitory domains have been isolated by proteolytic cleav- 
age of plasma L-kininogen [8]. Kininogen domain 3 has also 
been expressed in E. coli, but  no expression of domain  2 was 
obtained in the system used [11]. 

To enable characterization of s tructure-function relation- 
ships in kininogen domain  2, in particular the background for 
calpain inhibition, we have developed an expression system for 
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2.2. Construction of expression vector 
cDNA was synthesized from human liver total RNA [19] with oligo- 

d(T)~6 as primer (GeneAmp RNA PCR kit; Perkin-Elmer Cetus). A 
segment of the kininogen cDNA from nucleotides 427 to 852, contain- 
ing the sequence coding for domain 2 [1], was amplified by PCR (Gene- 
Amp). The product had the expected sequence [1,20], except for a T--) C 
substitution at position 578, leading to a Met~Thr  replacement. The 
T of the published sequence was restored by site-directed mutagenesis 
(Altered Sites Mutagenesis System; Promega). A further PCR amplifi- 
cation of this cDNA fragment created a HindlII cleavage site by G--* C 
and G ~ T  substitutions at nucleotides 451 and 453, respectively, and 
a stop codon by a G ~ T substitution at nucleotide 837, following which 
a Sall cleavage site was introduced. The PCR product was ligated into 
the expression vector (pFLAG-1; International Biotechnologies) and 
the correct sequence of the construct verified. 

2.3. Expression and purification 
E. coli, strain UT5600, transformed with the construct were grown 

at 37°C in LB medium [21], containing 0.4% (v/v) glycerol, 50/lg/ml 
ampicillin, 1 M sorbitol and 2.5 mM betaine [22], to an absorbance at 
600 nm of 0.5-1. Expression was induced by adding isopropyl fl-o- 
thiogalacto-pyranoside to 0.5 raM, and the bacteria were grown at 
15°C for another 14-16 h. The cells were sonicated on ice in the pres- 
ence of 1 mM EDTA and 1.5 mM of the serine proteinase inhibitor, 
4-(2-aminoethyl)-benzenesulfonyl fluoride (Pentapharm). The lysate 
was applied to a 5-ml HiTrap N-hydroxysuccinimide-activated column 
(Pharmacia Biotech), containing ~6 mg S-(carboxymethyl)papain/ml 
gel, and the bound protein was eluted at pH 11.0. The fusion protein 
was digested for 24 h at 37°C with enterokinase (Biozyme) at an 
amount of 2/lg/mg protein in 0.05 M Tris-HC1, 0.1 M NaCI, 2 mM 
EDTA, 10% (v/v) glycerol, pH 8.0. Domain 2 was isolated by gel 
chromatography on a Superdex 16/60 column (Pharmacia Biotech). 

2.4. Protein analyses 
SDS-PAGE was done on 16.5% (w/v) gels with the Tricine buffer 

system [23]. N-terminal sequences were determined as described by 
Bj6rk et al. [24]. Molecular mass was analyzed in a Kratos Kompact 
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MALDI III instrument with ~-cyano-4-hydroxycinnamic acid as ma- 
trix. Fluorescence emission spectra were measured as reported previ- 
ously [12,25]. 

2.5. Proteinase binding 
Titrations of active papain or S-(methylthio)papain with domain 2 

for determination of apparent binding stoichiometries were monitored 
by fluorescence [12,13]. Binding stoichiometries were also determined 
by titrating 20 nM papain with increasing concentrations of inhibitor 
and assaying residual activity with the substrate, carbobenzoxy-L-phen- 
ylalanyl-L-arginine p-nitroanilide (200 pM; Bachem), in the presence of 
0.5 mM dithiothreitol at pH 7.4. 

Inhibition constants and association rate constants for the interac- 
tions of domain 2 with cysteine proteinases were measured at 25°C 
[8,15,26]. 

2.6. Protein concentrations 
Concentrations of domain 2 were determined by absorbtion meas- 

urements at 280 nm with the use of a calculated molar absorption 
coefficient [27] of 12,400 M -~.cm -1 and a relative molecular mass of 
14,500 [ l ] .  

3. Results and discussion 

The expression vector was constructed to express residues 
136 to 263 of the kininogen sequence [1,20], although with 
Val-136 replaced by Leu to allow in-frame cloning into the 
vector. The recombinant domain 2 is thus slightly longer than 
that isolated by cleavage of L-kininogen, which comprised res- 
idues 141 to 262 [8]. The N-terminus of the domain was fused 
to a FLAG sequence [28], containing an enterokinase cleavage 
site, followed N-terminally by the Omp A signal sequence. The 
latter sequence was designed to transport the fusion protein to 
the periplasmic space, with concomittant cleavage of this se- 
quence. 

Expression of soluble kininogen domain 2 increased at lower 
temperatures, 15°C being optimal. The amounts were also in- 
creased by growing the bacteria in sorbitol and betaine, condi- 
tions reported to augment expression of soluble forms of other 
recombinant proteins in E. coli [22]. Lysis of whole cells by 
sonication gave the highest yield of the domain. N-terminal 
analyses showed that the signal peptide had been cleaved from 
the protein isolated in this manner. Purification by affinity 
chromatography on immobilized papain was found to give a 
higher yield than affinity chromatography on a matrix-linked 
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Fig. 1. SDS-PAGE of kininogen domain 2 under reducing conditions. 
Lane 1, standards with the molecular masses in KDa indicated. Lane 
2, bacterial lysate. Lane 3, eluate from matrix-linked papain. Lane 4, 
eluate from matrix-linked papain, digested with enterokinase. Lane 5, 
kininogen domain 2 after final purification by gel chromatography. 
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Fig. 2. Fluorescence-emission difference spectra between complexes of 
recombinant human kininogen domain 2 (--) or cystatin C (---) with 
papain and the free proteins. The spectra were calculated from sepa- 
rately measured corrected emission spectra [25]. The concentration of 
papain was 1 pM and that of active kininogen domain 2 or cystatin C 
1.2/IM. 

antibody against the FLAG sequence. The latter sequence was 
removed from the fusion protein by cleavage with enterokinase 
(Fig. 1). About 0.25 mg of purified domain 2 was obtained per 
liter of bacterial culture. 

The isolated domain 2 showed only one band in SDS-PAGE 
(Fig. 1). It had the expected N-terminal sequence [1,20] and a 
molecular mass, as determined by mass spectroscopy, of 14,521 
Da, in good agreement with the calculated mass of 14,537 Da. 
Titrations of active papain or S-(methylthio)papain with the 
isolated domain gave apparent inhibitor to enzyme binding 
stoichiometries of 1.4-1.7, indicating that the preparations con- 
tained 60-70% inhibitorily active protein. In all further analy- 
ses, calculations were based on concentrations of active inhibi- 
tor. 

The binding of domain 2 to papain was accompanied by 
fluorescence changes (Fig. 2) highly similar to those observed 
for the binding of human cystatin C to the enzyme [25]. This 
finding indicates that the kininogen domain interacts with 
papain in a similar manner as the homologous inhibitor, 
cystatin C. 

Kininogen domain 2 showed the highest affinity for papain 
and cathepsin L of the six cysteine proteinases investigated 
(Table 1) and a somewhat lower affinity for calpain. The bind- 
ing to cathepsin H was substantially weaker, and no inhibition 
of actinidin and cathepsin B was detected. The affinity of the 
recombinant domain 2 for cathepsin L was comparable to that 
reported previously for the domain isolated by proteolytic 
cleavage of plasma L-kininogen, whereas the affinities of the 
recombinant domain for papain and calpain were about tenfold 
lower [8]. This discrepancy may be partly due to differences in 
the methodology and enzyme preparations used. The fact that 
the recombinant domain is not glycosylated may also have 
affected the binding to certain target proteinases. Association 
rate constants were measured only for the high-affinity 
enzymes, papain and cathepsin L, revealing rapid binding 
(Table 1). 

Comparison of the data in this work with the inhibitory 
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Table 1 
Inhibition constants (K0 and association rate constants (ka~s) for the 
binding of recombinant kininogen domain 2 to target proteinases at 
25°C 

Proteinase K i (nM) 10-6.kass (M J-s -~) 

Papain 1.0 + 0.1 (n = 5) 2.9 + 0.1 (n = 13) 
Actinidin -> 1000 N.D. 
Cathepsin B -> 1000 N.D. 
Cathepsin H 110 + 17 (n = 5) N.D. 
Cathepsin L 0.3 + 0.03 (n = 13) 3.1 + 0.3 (n = 6) 
Calpain 17 + 2 (n = 5) N.D. 

The values are given with their standard errors and with the number 
of measurements in parentheses. The buffers and substrates used in the 
analyses were: for papain and actinidin 0.05 M Tris-HC1, 0.1 M NaCI, 
100gM EDTA, 0.5 mM DTT, 3% (v/v) acetonitrile, pH 7.4, and 20gM 
Z-Phe-Arg-AMC; for cathepsin B 0.05 M MES-NaOH, 0.1 M NaC1, 
100/gM EDTA, 0.5 mM DTT, 0.1% (w/v)poly(ethylene glycol), pH 6.0, 
and 20gM Z-Arg-Arg-AMC; for cathepsin H 0.1 M sodium phosphate, 
1 mM EDTA, 1 mM DTT, pH 6.0, and 10 uM H-Arg-AMC; for 
cathepsin L 0.1 M sodium acetate, 1 mM EDTA, 1 mM DTT, 0.005% 
(w/v) Brij 35, pH 5.5, and 5 gM Z-Phe-Arg-AMC; for calpain 0.05 M 
Tris-HCl, 0.1 M NaC1, 2 mM DTT, 5 mM CaC12, 0.1% (w/v) Triton 
X-100, pH 7.4, and 1 mM Suc-Leu-Tyr-AMC. The K m values used for 
correction of the apparent K, and k,s~values for substrate competition 
have been reported elsewhere [16,17,32,33]. N.D., not determined. 

properties reported previously for recombinant  kininogen do- 
main 3 and for domain  3 isolated from plasma L-kininogen 
[8,11] indicates that kininogen inhibit ion of the physiological 
papain-like target enzymes, cathepsin B and L, is predomi- 
nantly effected by domain 3. In particular, cathepsin B is inhib- 
ited only by the latter domain,  although with moderate affinity. 
The inhibition of cathepsin H by domain 2 presumably is too 
weak to be of appreciable physiological importance; like 
cathepsins B and L, this enzyme may be inhibited more strongly 
by domain  3, but such data are lacking. Although domain 2 
may contribute to kininogen inhibit ion of cathepsin L, the 
predominant  role of this domain in kininogen function instead 
appears to be to inhibit  calpain [8,29-31]. 
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