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Abstract

We analyze non-supersymmetric four-dimensional open string models of type 1IB string theory compactm%daﬁﬁ
with Scherk—Schwarz deformation acting on$inof the 72 torus. We find that there are always two solutions to the tadpole
conditions that are shown to be connected via Wilson lines in an non-trivial way. These models although non-supersymmetric,
are free of R—R and NS—NS tadpoles.
0 2003 Published by Elsevier B.W@pen access under CC BY license.

1. Introduction supersymmetry and consequently if the R—R tadpoles
cancel, so do the NS—-NS tadpoles. In models where
supersymmetry is broken in the open string sector,
one can argue that NS-NS tadpole cancellation im-
plies that supersymmetry should also be broken in
the closed string sector [1,2]. However, when super-
symmetry is broken already at tree level in the closed
string sector, the situation is more involved and one
(A) and Mébius strip 1) world-sheets, correspond- has in general non-zero NS—NS tadpoles even if R—R

tadpoles cancel. Recently, many non-supersymmetric

ing to the exchange of a closed string between two . .
. open string vacua have been constructed without R—R
crosscaps, two boundaries and a crosscap and a bound:

. . T tadpoles [3—7]. Less is known about vacua which, in
ary, respectively. This cancellation is a necessary con-

dition for the consistency and the stability of the vac- addition, have zero NS—NS tadpoles. .
uum The massless spectrum of open string models can

In supersymmetric unoriented closed and open be computed either by looking directly at the action of

string models NS—NS and R—R tadpoles are equal b the orientifold group on the massless excitations in the
g P g Y closed and open string sectors [8,9] or by performing

appropriate modular transformations kh.4 and M
T E-mail addresses: panasta@physics.uoc.gr to obtain the corresponding direct (or loop) channel
(P. Anastasopoulos), amine@physics.uoc.gr (A.B. Hammou), amplitudesiC, A, M and taking their massless limit
irges@physics.uoc.gr (N. Irges). [10]. In the former approach the action of thith

One of the outstanding problems in string theory
is the construction of realistic non-supersymmetric
string vacua. In particular, for open strings, an impor-
tant program is the cancellation of tadpoles that appear
in the massless limit of the transverse (or tree) chan-
nel amplitudes associated to Klein-bottie)( Annulus
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element of the orientifold group; on a Dp-brane is Ref. [11]):

encoded in matrices acting on its Chan—Paton factors,

which we callyg, . In the latter approach, the Toriis K~ =(Vg— 88) Poy,. (D)
andC contain the information about the closed string

spectrum andd with M contain the information about Here Vg andSg are the standard bosonic and fermionic
the open string spectrum [10,11]. SO(8) characters respectively amiy,, is the momen-

The Scherk—Schwarz (SS) deformation [12] is so tum lattice with even momenta. By a modular transfor-
far the most interesting mechanism for supersymmetry mation one obtains the tree channel Klein-bottle am-
breaking in which supersymmetry is broken by twist- Pplitude
ing the boundary condition of the fermions along some 5
compact direction. In a recent paper [4] the quan- K ~ = R(Vg — Sg)W,, 2
tum stability of models with SS supersymmetry break- 4
ing have been considered. It has been argued that thevhereW, is the winding lattice. The above amplitude
one loop cosmological constant has a term power- contains massless R-R tadpoles and corresponds to an
like in the compactification radii proportional to the ©O9-plane with positive tension and charge, i.e., to an
difference between fermionic and bosonic degrees of O'-plane. To cancel this tadpole, a stack of 32 DO-
freedom and an exponentially suppressed term. In [2] branes has to be introduced. The most general Annulus
examples of non-supersymmetric but fermion—boson amplitude associated with these D9-branes including
degenerate models has been presented for the case dfVilson lines is
M-theory breaking. In the class of models we consider 1., , 5 _
in this Letter the massless spectrum we find is non- A~ 4_1[( P20 + N*Py26 + 2NN Pyy) (Vg — Sg)
degenerate which would imply that we will have a ra- 2 -5 -
diugs dependent one-loop cr:)zmological constant. We + (N*Pu—2 + N P29 + 2NN Pry)
think that this question deserves more investigation. x (=1)™ (Vg + Sg)]. (3

In this Letter we present a class of models in
which supersymmetry is broken by a Scherk—Schwarz
deformation [12] and have zero tadpoles. In Section 2,
we discuss a nine-dimensional model, the simplest . 2-° oming - = —2ring\2
possible example in which the main points can be A~ TR[(Ne + Ne )" (Ve — Se) W,
illustrated. In Section 3 we present a novel class of
five-dimensional models and in Section 4 we state our
conclusions. x (Og — CB)WH+%]- (4)

The transverse channel amplitude is obtained by a
modular transformation, yielding

+ (Nezm'na + A‘,e—ZninQ)Z

The tree channel Mdbius strip amplitude is then ob-
tained as a state by state geometric mean of the Klein-
bottle amplitude and the tree channel Annulus am-
plitude A:

2. Symmetry breakingin nine dimensions

Consider the orientifold of thél/Z’2 compactifi-
cation of type IIB string theory [3], whergy is the ~ 2 oming . = —2ming
freely-acting orbifold generated by an eleménact- M~ _ZR(Ne T+ Nem )
ing as a translation of length R along S, together Ve — (—1)"Sa) W, 5
with (—=1)%, whereF is the space—time fermion num- X( 5= (1) 8) " ©)
ber [11]. This orbifold, known as Scherk—Schwarz The (—1)" is introduced due to a sign ambiguity
deformation [12,13], breaks spontaneously supersym-in taking the mean valde Performing a modular
metry by assigning different boundary conditions to

bosons and fermions. I
The | h | Klein-bottl litude i b 1 Thisis actually the most general Wilson line that in the T-dual
€ loop channe ein-bottle amplitude Is ob- model moves the stack around the T-dual circle as a whole.

taineq by projecting th? tOFUS. amp"tUde sy (the . 2 Ignoring this sign will generate a supersymmetric Mébius strip
notation we follow in this section is the one used in amplitude. Note also that it seems to be possible to put the sign
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transformation, one finds the direct channel amplitude

1 _ A
M~ —E[(Nszfze + N Pan+29) Vs

— (NP2y—2041+ N Pont2041)S8].  (6)

The Wilson line takes values {0, 1] modZ. We will
distinguish two cases correspondingpte= 0, % The
first case § = 0) givesSO(N + N) gauge group with

N = N = 16 and no massless fermions. The second
casef = %) gives al (16) gauge group with fermions

in the symmetric representation. This is because the

Z, projection gives antiperiodic boundary conditions
to the fermions but its effect is cancelled by the- %
Wilson line3 Note that in the supersymmetric case
6 = 1 leads toSO(32). This mismatch in the values
of 6 is due to the shift, since putting a shift results in
an effective rescaling of the radius by a factor of 2. It
is easy to see that for both cases tadpoles cancel.

Before ending this section, let us make connection
with the Chan—Paton algebra formalism [8]. With
vanishing Wilson lines, besides the usual untwisted
tadpole condition that fixes the number of D9-branes
to Trly19] = 32, one finds from the Mobius strip
amplitude the constraints

V_(g’g = )/Q,g,
(@)

which imply thaty? g = 41 [4], thus giving two possi-
ble choices for thes, o matrix. Note that tadpole can-
cellation does not impose any constraint offyfio].
A solution to Egs. (7) is

T
YQh,9 = TV2h,9

®)
©)

where 1, the n x n identity matrix withn an even
integer. Solution (8) fom = 0 and solution (9) lead

)/112,9 =4+132.  ypo=diag(—1,, 132-4),

2 _ . in _ir
Viio=—1320 yno=diag(e 2 116 ¢~ 2 1),
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For generak,* the two solutions are just particular
realizations of the two possible breaking patterns of
an even-dimensional orthogonal group projected out
by a Z, inner automorphism [14]. We could have
easily found all these solutions in the simple model
as well by choosing an appropriately more general
Wilson line in (3). The conclusion therefore is that the
seemingly two independent solutions (8) and (9) are in
fact related via Wilson lines. Nevertheless, they define
two classes of physically inequivalent massless spectra
and thus they are both interesting in their own right.

3. Non-supersymmetric T2 x K3

Consider theN = 4 orbifold of type IIB string
theory in four dimensionsR* x T2 x (T*/Zy).
The Zy orbifold acts on the complex coordinates
2= x84 ix7 and z2 = x8 + ix? of the T* torus
asok 1zl — e kgl wherev = £(1, -1) andk =
1,..., N — 1 labels the differenZy orbifold sectors.
We will concentrate on orbifolds wittv = 2, 3, 4, 6.

In addition, we act with a freely-acting’, orbifold
generated by the SS eleménacting as a translation
of length R along the direction:® of $t in the 72
torus together with &—1). We shall consider in the
following an orientifold of the typ& + 2 G, whereG

is Zy x Z5 which breaks supersymmetry completely.

Upon projecting this orbifold by the world sheet
parity £2, the massless limit of the tree channel Klein
bottle amplitude has non-vanishing R—R tadpoles and
thus reveals the presence of orientifold planes in
the background. Besides the O9-plane that extends
in the non-compact directions, wraps th& x 74
and it is present for any, for even N the model
contains also O5-planes that extend along the non-
compact directions, wrap around t&® and sit at
the 6*-fixed points of the transversg®. In order to

to the two distinct gauge groups and spectra we found cancel the associated to the orientifold planes massless

earlier in our simple model corresponding to integer
and half integed, respectively.

in front of Vg instead. However, it turns out that this choice is not
consistent with the parametrization we have chosen in the Annulus
amplitude.

3 We would like to thank Carlo Angelantonj for very helpful
discussion on this point.

tadpoles one has to introduce D9- and D5-branes. The
contribution of the D-branes to the tadpoles is encoded
in the massless limit of the transverse channel Annulus
and Mobius strip amplitudes.

4n # 0 amounts to splitting the stack of D9-branes into two
smaller stacks.
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For sake of brevity we will skip the details of
the calculation and present directly the result for the
massless tadpole conditions. The action of Zhe x
Z/, orbifold g; = (1, 6%, h,6%h) on the Chan—Paton
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projects out the fermions altogether from the closed
string sector. The bosons remain multiplied by a
factor of two which is cancelled by the/2 of
the h-projector (1 + h)/2 in the trace. The Klein-

matrices carried by the D9- and D5-branes is described bottle on the other hand remains the same as in the

by 32x 32 matrices/,, 9 andyg, 5. The matriceg/ g

and y1 5 that correspond to the identity element of
Zy x Z4 can be chosen to be the 3232 identity
matrices, so that Ty1,9] = Tr[y15] = 32. This is a
constraint on the number of D-branes that originates
from tadpole cancellation in the untwisted sector. The
twisted tadpole conditions on the other hand indke
twisted sector, foiV even are given by [9]

2 (2=

Tr[)/QZk—l’g] —4sj Tr[y92k71,5] =0, (10)

.o 21k 2k
Triyyz ol — 4sir? % Triygz 5] — 32 cos% =0,
(11)
whereas fov odd they read
k
Trlyse o] — 32 02 % —0. (12)
From thep*h andh twisted sectors we do not get fur-
ther constraints on Trj, ol, Trlyy«, 51, Trlya,el @and

Tr{yn 5]. Notice that forN even, the tadpole conditions
are consistent with T-duality transformations along the

T4 torus that exchanges the D9- and D5-branes. On SO(2N) — U(N).

the other hand, for the circle along which the shift is
performed, we have a freedomin takingg =+1and

also y,ﬁS = 41, however T-duality constrains them to
have the same sign. In summary, we will obtain two
open string spectra for eadh, related by Wilson lines,
as we have explained in the previous section.

corresponding supersymmetric model. The exifa 1
from the h-projector is now cancelled by a factor of
two coming from the doubling of the surviving the
£2 projection states, since any sector and its projected
by h counterpart give the same contribution to the
Klein-bottle. The closed string spectrum therefore for
any N is just the bosonic part of the corresponding
supersymmetric model compactified off atorus.

The full open string spectrum will be presented in
Tables 1 and 2 for each value of considered here.
As we mentioned before we have two inequivalent
spectra for eachiv corresponding tQ/h2 = +1. The
effect of the SS deformation on the open strings in
a given supersymmetric model is to break the gauge
group fory? = +1 as

U(N)— U@n) x UN —n),

SO(N) — SO(n) x SON — n), (13)
whereas foy? = —1 as
U(N) = Un) x UN —n),

(14)

For example, forV = 2 andy? = +1 the 99 and 55
sectors contain gauge bosons and scalars (correspond-
ing to theT2 torus) in the adjoint ot (a) x U (b) with
a + b =16 and the remaining scalars (corresponding
to the 74 torus) in the(d, 1) and (1,B) wherel is
the antisymmetric representation of the corresponding

Letus desc.ribe the massless spectrum starting fromgauge group, together with their complex conjugates.
the closed string sector. The closed string spectra of The fermions are in the bifundamental representa-

the supersymmetrid@4/Zy orientifolds have been
computed in [8,9]. Sectors twisted by do not

tion (a,b) and 2x (a, b) plus their complex conju-
gates. The 95 sector contains bosongirt; a, 1) and

contribute to the massless part of the torus and the (1, »; 1, ) and fermions ina, 1; 1, b) and (1, b: a, 1)

Klein-bottle since they correspond to half integer
winding [11]. Every other massless sector in the torus

plus their complex conjugates. On the other hand, for
y? = —1 the gauge group is agali(a) x U (b) with

is the same as in the corresponding supersymmetric, 4 p = 16. All the scalars are in thaz, b) and the

modeP plus an identical sector where the sign of
the fermions is reversed. This simply means that

5 By corresponding supersymmetric model we simply mean the
model obtained by eliminating the SS part, which is supersymmetric
for all values ofN discussed here.

fermions are in thef, 1), (1,8) and 2x (a, b) repre-
sentations plus their complex conjugates. The 95 sec-
tor is identical to the previous case. It is easy to check
that the above spectrum as well as the spectra/fer

3,4, 6 do not suffer from irreducible gauge anomalies.
This is due to the fact that all fermions are in vector
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Table 1

Theh action on the Chan—Paton charges breaks the gauge group of the six-dimensional supersymmetric orientifolds compactified on K3. For

ZzandZga+b=c+d=8

P. Anastasopoulos et al. / Physics Letters B 581 (2004) 248-254

Z3
yZ=-1 (99)/(55) matter
Ua) x U(b) x U(8)
Scalars adjoint+ (a,b,1) + (@,1,8) + (1,b,8) +c.c.
Fermions 2(a,b, 0+ @ 1.B)+H1
+@HD+@ 18+ @158 +cc
yE=+1 (99) matter

U(a) x U(b) x SO(c) x SO(d)

Scalars adjoint- (E, 1,1,D)+(a, 1,1
+aH1y+@b 1d) +cc
Fermions 2a.b.1, D)+ 1 c.d)+ @b 11
+(a,1,1,d)+ (1,b,c,1) +c.c.
Z4
yp=-1 (99)/(55) matter (59) matter

{U@) x Ub) x U(c) x U(d)}o,5

Scalars adjoint+ (a,5,1,1) + (a,1,¢,1) (a,13:a,13) + (1.5, 1: 1,5, 1)
+(Lb,1,d) + (L 1ecd) +cc. + (12, ¢, 1 15,,1) + (13,d; 13,d) +c.C.

Fermions 2x ((a,b,1, )+ (1, 1,¢c,d)) (a,13;1,b,1p) + (1, b, 1p; a, 13)
+Hiiv+@1rid+@lyy + (12, ¢, L 13,d) + (13,d; 1,6, 1) + c.cC.
+@Lb e )+ @LH D+ @1 1B +cc

yE=+1 (99)/(55) matter (59) matter

{U@) x Ub) x U(c) x U(d)}o,5

Scalars adjoint+ H, 13) + @. 1. .1 + 1.5 15 (a,13;d,13) + (L b, 19; 1, b, 1)
+ b, 1d) + 1,8 1)+ 3B +cc + 1y, ¢, 11,6 1) + (13, d; 13,d) + C.C.
Fermions 2((a,b, 1, )+ L Lc,d)+@b,1,1 (a,13; 1,5, 1) + (1, b, 1p; @, 13)

+@1,1L,d)+ @b+ @A 1,cd +cc

+(12.¢,1;13,d) + (13.d; 12,¢. 1) + ..

like representations. Alternatively, the models we have or NS—NS states which are the ones that contribute
considered are effectively five-dimensional and there- to the tadpoles. In the open string sector there are
fore do not have anomalies. no D-branes necessary to cancel the orientifold plane
charge which means that the tree channel Annulus
amplitude does not contain sectors projectediby
These sectors contain massless states and if they
were present, could alter the supersymmetric tadpole

We have presented a class of non-supersymmetriccancellation conditions. On the other hand, the tree
open string vacua without tadpoles. In particular, channel Annulus amplitude does have sectors twisted
satisfying conditions (10)—(12) implies the vanishing by %, which however do not contain massless states
of the twisted R—R and NS-NS tadpoles, even though and so do not contribute to tadpoles. In fact, the
supersymmetry is broken both in the closed and the SS deformation does not seem to alter the tadpole
open string sectors. This should not come as a surprise.cancellation conditions for any model in which the SS
In the closed string sector the SS deformation just lifts acts along a direction orthogonal to the space where
the fermions and therefore it does not affect the R—-R Zy acts.

4. Conclusion
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ForZg2a +2b=c+d=2¢+2f=8

y2=-1

{U(a) xU(b) xU(c) x U(d)

x U(e) x U(f)lg5
Scalars

Fermions

yZ=+1
{U(a) x U(b)
x U(c) x U(d)
x U(e) x U(f)}o,5

Scalars

Fermions

(99)/(55) matter

adjoint+ (@, b, 14) + (a, 1, ¢, 13)
+(1,b,1,d,1p) + (1,¢,1,2,1)
+(13,d,1, f) + (g, e, f) +CC.

2((a,b,14) + (12, ¢,d, 1) + (L, €, )
+(@ 1p.d, 1) + (L b, . 13) + (12.¢. 12, f)
+(Lb.1s1a.15) + (13.d.e. 1) + H 15)

+aBw+aBy+as e

(99)/(55) matter

adjoint+ (@, 1,¢,13) + (1, b, 1,d, 15)
+ (1.6 L e D)+ (13.d. 1, f) + H 15)
+ @B 1+ B+ ash

2% ((a,b,14), (12, ¢,d, 1), (14, €, f))
+ (@b, 1g) + (a,13.d,15) + (1,b, ¢, 13)
+ (12,0, 15, )+ (13.d.e, D+ (Lg,e, /)

(59) matter

(a,15;d,15) + (1,5, 14: 1,5, 1)
+(12,¢,13;12,¢,13) + (14, ¢, 15 1y, €, 1)
+(13.d,12: 13.d. 1) + (Is. f: 15, f) + c.C.

(a,15; 1,5, 14) + (1, b, 14; @, 15)
+(12.¢,13;13.d., 1) + (14, €, 1: 15, f)
+(13,d,12;13,¢, 13) + (15, f5 14,2, 1)

+cC.C.

(59) matter

(a,15;a,15) + (1, b,14; 1, b, 1)
+(12.¢,13:12,¢,13) + (14, ¢, 1 14,2, 1)
+(13,d,12;13,d, 1) + (15, f3 15, /)

(a,15;1,b,19) + (1,0, 143 @, 15)

+ (12,0, 13:13.d, 1) + (1. ¢, 1; 13,d)
+(13,d,1p; 1, ¢, 13) + (13,d; 12, ¢, 1)

We showed that the spectrum for ea¢lsplits into

by RTN contracts HPRN-CT-2000-0131. This work

two inequivalent branches. The existence of the two was partially supported by RTN contracts HPRN-CT-
branches was understood to have a group theoretic2000-00122 and INTAS contract 99-1-590.
origin associated to the different ways one can embed
a Z» inner automorphism into th80(2n) and U (2n)
Lie algebras and it was shown that the associated
vacua are related by Wilson lines.

It would be interesting to extend this analysis to
76/Zy and T8/Zxy x Zy. In these cases the SS intst
deformation will act in the same direction as the E. Kiritsis, hep-th/0310001.

. ) [2] C. Angelanton;j, I. Antoniadis, hep-th/0307254.
orbifold group. The allowed orbifolds are the ones that [3] 1. Antoniadis, E. Dudas, A. Sagnotti, Nucl. Phys. B 544 (1999)
commute with the SS deformation [15]. Models where 469, hep-th/9807011;

the SS deformation acts alongadirection have been . Antoniadis, G. D'Appollonio, E. Dudas, A. Sagnotti, Nucl.
constructed in [3,5]_ Phys. B 553 (1999) 133, hep-th/9812118;

1. Antoniadis, G. D’Appollonio, E. Dudas, A. Sagnotti, Nucl.
Phys. B 565 (2000) 123, hep-th/9907184;
I. Antoniadis, E. Dudas, A. Sagnotti, Phys. Lett. B 464 (1999)
38, hep-th/9908023,;
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