
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
ScienceDirect

Nuclear Physics B 910 (2016) 910–928

www.elsevier.com/locate/nuclphysb

ce:document-thread

Universal Bethe ansatz solution for the Temperley–Lieb 

spin chain

Rafael I. Nepomechie a,∗, Rodrigo A. Pimenta a,b

a Physics Department, P.O. Box 248046, University of Miami, Coral Gables, FL 33124, USA
b Departamento de Física, Universidade Federal de São Carlos, Caixa Postal 676, CEP 13565-905, São Carlos, Brazil

Received 25 January 2016; received in revised form 27 April 2016; accepted 29 April 2016

Available online 4 May 2016

Editor: Hubert Saleur

Abstract

We consider the Temperley–Lieb (TL) open quantum spin chain with “free” boundary conditions as-
sociated with the spin-s representation of quantum-deformed sl(2). We construct the transfer matrix, and 
determine its eigenvalues and the corresponding Bethe equations using analytical Bethe ansatz. We show 
that the transfer matrix has quantum group symmetry, and we propose explicit formulas for the number of 
solutions of the Bethe equations and the degeneracies of the transfer-matrix eigenvalues. We propose an 
algebraic Bethe ansatz construction of the off-shell Bethe states, and we conjecture that the on-shell Bethe 
states are highest-weight states of the quantum group. We also propose a determinant formula for the scalar 
product between an off-shell Bethe state and its on-shell dual, as well as for the square of the norm. We find 
that all of these results, except for the degeneracies and a constant factor in the scalar product, are universal 
in the sense that they do not depend on the value of the spin. In an appendix, we briefly consider the closed 
TL spin chain with periodic boundary conditions, and show how a previously-proposed solution can be 
improved so as to obtain the complete (albeit non-universal) spectrum.
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1. Introduction

The generators {X(1), . . . , X(N−1)} of the unital Temperley–Lieb (TL) algebra T LN [1],

X2
(i) = cX(i) ,

X(i)X(i±1)X(i) = X(i) ,

X(i)X(j) = X(i)X(j) , |i − j | > 1 , (1.1)

can be used to define the Hamiltonian of an open quantum spin chain of length N with “free” 
boundary conditions

H =
N−1∑
i=1

X(i) . (1.2)

This type of model has been the subject of many investigations. For simplicity, we focus here on 
the models associated with UQ(A1) = UQsl(2). The generators X(i) have been constructed for 
any value of spin s [2,3]. The s = 1/2 case is the well-known quantum-group-invariant spin-1/2
XXZ chain [4]. The s = 1 case is the quantum deformation [2] of the pure biquadratic spin-1
chain [5–7]. These models are integrable; and closed-chain versions with periodic boundary con-
ditions have been investigated for s > 1/2 using inversion relations [8,9], numerically [10], by 
coordinate Bethe ansatz [5,6,11], and by analytical Bethe ansatz [12]. Additional results can be 
found in [13–17] for the open chain, and in [18–20] for the closed chain. TL models associated 
with higher-rank algebras have also been investigated [21–23].

Despite these and further efforts, a number of fundamental problems related to these models, 
such as the formulation of an algebraic Bethe ansatz solution, have remained unsolved. Moreover, 
the analytical Bethe ansatz solution proposed in [12] does not give the complete spectrum.

The goal of this paper is to address some of these problems. We construct the transfer matrix 
corresponding to the Hamiltonian (1.2), and we determine its eigenvalues using analytical Bethe 
ansatz. We prove that the transfer matrix has quantum group symmetry, which accounts for the 
degeneracies of the spectrum. We propose an algebraic Bethe ansatz construction of the Bethe 
states, which (when on-shell) we conjecture are highest-weight states of the quantum group. The 
scalar product between an off-shell Bethe state and an on-shell Bethe state is also considered, 
and we conjecture that it can be given in terms of a determinant formula; the square of the norm, 
i.e., the scalar product between on-shell Bethe states, follows as a limit.1 We find that all of these 
results, except for the degeneracies and a constant factor in the scalar product, are universal in 
the sense that they do not depend on the value of the spin.

Although most of this paper concerns the open TL chain, we briefly consider the closed TL 
chain with periodic boundary conditions in an appendix. There we revisit the analytical Bethe 
ansatz computation in [12], and show how the proposed solution can be improved so as to obtain 
the complete spectrum. In contrast with the case of the open chain, the solutions of the closed-
chain Bethe equations are not universal, as the Bethe roots depend on the value of the spin.

The outline of this paper is as follows. In section 2 we describe the construction of the Hamil-
tonian (1.2) and the corresponding transfer matrix. In section 3 we use analytical Bethe ansatz 
to determine the eigenvalues of the transfer matrix and the corresponding Bethe equations. In 
section 4 we show that the transfer matrix has quantum group symmetry, and we propose explicit 

1 Such formulas are generally known as Slavnov [24] and Gaudin–Korepin [25–27] formulas, respectively.
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formulas for the number of solutions of the Bethe equations and the degeneracies of the transfer-
matrix eigenvalues. In section 5 we present our proposals for the algebraic Bethe ansatz solution 
and scalar products. We briefly discuss these results and remaining problems in section 6. We 
treat the closed TL chain in Appendix A.

2. Transfer matrix

We begin this section by describing in more detail the construction of the Hamiltonian (1.2). 
We then construct the corresponding transfer matrix, which is the generating function of the 
Hamiltonian and the higher local conserved commuting quantities, and we review some of its 
important properties.

We consider the TL open quantum spin chain corresponding to the spin-s representation of 
UQsl(2). The X(i) appearing in the Hamiltonian (1.2) are operators on 

(
C

2s+1
)⊗N

defined by

X(i) = Xi,i+1 , (2.1)

where X is a (2s + 1)2 by (2s + 1)2 matrix (an endomorphism of C2s+1 ⊗ C
2s+1) with the 

following matrix elements [2]

〈m1,m2|X|m′
1,m

′
2〉 = (−1)m1−m′

1Qm1+m′
1δm1+m2,0δm′

1+m′
2,0

, (2.2)

where m1, m2, m′
1, m

′
2 = −s, −s + 1, . . . , s, and s = 1

2 , 1, 32 , . . . . In other words, X(i) is an oper-
ator on N copies of C2s+1, which acts as X on copies i and i + 1, and otherwise as the identity 
operator,

X(i) = I
⊗(i−1) ⊗ X ⊗ I

⊗(N−i−1) , (2.3)

where I is the identity operator on C2s+1. These operators satisfy the TL algebra (1.1), where c
is given by

c = [2s + 1]Q = Q2s+1 − Q−2s−1

Q − Q−1
=

s∑
k=−s

Q2k ≡ −
(

q + 1

q

)
. (2.4)

We assume throughout this paper that Q has a generic value.
The Hamiltonian (1.2) is integrable for any value of spin s. In the notation of [12], the corre-

sponding R-matrix is given by [28]

R(u) =
(

uq − 1

uq

)
P +

(
u − 1

u

)
PX , (2.5)

where P is the permutation matrix on C2s+1 ⊗C
2s+1. Indeed, the Yang–Baxter equation

R12(u1/u2)R13(u1/u3)R23(u2/u3) = R23(u2/u3)R13(u1/u3)R12(u1/u2) (2.6)

is satisfied. This R-matrix has the unitarity property

R12(u)R21(u
−1) = ζ(u) I⊗2 , ζ(u) = ω(uq−1)ω(u−1q−1) , (2.7)

where R21 =P12 R12 P12 = R
t1t2
12 , and ω(u) is defined as

ω(u) = u − 1
. (2.8)
u
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This R-matrix also has crossing symmetry

R12(u) = V1R
t2
12(−u−1q−1)V1 , (2.9)

where V is an anti-diagonal matrix with elements

Vjk = (−1)jQs+1−j δj+k,2s+2 . (2.10)

The model (1.2) is an open spin chain. For an integrable open spin chain, the transfer matrix 
is given by [29]

t (u) = tr0 K+
0 (u)T0(u)K−

0 (u) T̂0(u) , (2.11)

where T0(u) and T̂0(u) are the monodromy matrices

T0(u) = R0N(u) · · ·R01(u) , T̂0(u) = R10(u) · · ·RN0(u) . (2.12)

Moreover, the K-matrices (endomorphisms of C2s+1) satisfy the boundary Yang–Baxter equa-
tions

R12(u/v)K−
1 (u)R21(uv)K−

2 (v) = K−
2 (v)R12(uv)K−

1 (u)R21(u/v) (2.13)

and [30]

R12(v/u)K
+ t1
1 (u)M−1

1 R21(u
−1v−1q−2)M1 K

+ t2
2 (v)

= K
+ t2
2 (v)M1 R12(u

−1v−1q−2)M−1
1 K

+ t1
1 (u)R21(v/u) , (2.14)

where M is the diagonal matrix given by

M = V t V = diag(Q−2s ,Q−2(s−1) , . . . ,Q2s) . (2.15)

The Hamiltonian (1.2) corresponds to the special case with quantum-group invariance [30]

K− = I , K+ = M , (2.16)

and therefore the transfer matrix (2.11) takes the simpler form

t (u) = tr0 M0 T0(u) T̂0(u) . (2.17)

Indeed, the Hamiltonian is related to the transfer matrix as follows

H = α
d

du
t (u)

∣∣∣
u=1

+ β I
⊗N , (2.18)

where

α = −
[
4ω(q2)ω(q)2N−2

]−1
, β = ω(q)

ω(q2)
− N

2

ω(q2)

ω(q)
. (2.19)

The higher conserved quantities can be obtained by taking higher derivatives of the transfer 
matrix. These quantities commute with each other by virtue of the commutativity property [29]

[t (u) , t (v)] = 0 . (2.20)

The transfer matrix also has crossing symmetry [31]

t (u) = t (−u−1q−1) . (2.21)
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3. Analytical Bethe ansatz

We now proceed to determine the eigenvalues of the transfer matrix (2.17) by analytical Bethe 
ansatz [31–34]. To this end, it is convenient to introduce inhomogeneities {θj }, i.e. to consider 
instead the inhomogeneous transfer matrix

t (u; {θj }) = tr0 M0 T0(u; {θj }) T̂0(u; {θj }) , (3.1)

where

T0(u; {θj }) = R0N(u/θN) · · ·R01(u/θ1) , T̂0(u; {θj }) = R10(uθ1) · · ·RN0(uθN) .

(3.2)

As noted in [12], the R-matrix (2.5) degenerates into a one-dimensional projector at u = q−1,

R(q−1) = (q−1 − q)(2s + 1)(−1)2sP − , P − = (−1)2s

2s + 1
PX , (P −)2 = P − .

(3.3)

Hence, we can use the fusion procedure [35,36], as generalized to the case of boundaries in [37], 
to obtain the fusion formula

t (u; {θj }) t (uq; {θj }) = 1

ζ(u2q2)

[
t̃ (u; {θj }) + f (u) I⊗N

]
, (3.4)

where t̃ (u; {θj }) is a fused transfer matrix, and the scalar function f (u) is given by a product of 
quantum determinants

f (u) = �(K+)�(K−) δ(T (u)) δ(T̂ (u))

= g(u−2q−3) g(u2q)

N∏
i=1

[
ζ(uq/θi) ζ(uqθi)

]
, (3.5)

where g(u) is given by

g(u) = tr12 R12(u)V1V2P
−
12 = (−1)2s+1ω(uq−1) . (3.6)

Using the fact that the fused transfer matrix vanishes when evaluated at q−1θi , i.e.

t̃ (q−1θi; {θj }) = 0 , i = 1, . . . ,N , (3.7)

it follows from (3.4) that the fundamental transfer matrix (3.1) satisfies a set of exact functional 
relations

t (q−1θi; {θj }) t (θi; {θj }) = F(q−1θi) I
⊗N , i = 1, . . . ,N , (3.8)

where

F(u) = f (u)

ζ(u2q2)
= − ω(u2)ω(u2q4)

ω(u2q)ω(u−2q−3)

N∏
i=1

[
ω(u/θi)ω(uq2/θi)ω(uθi)ω(uq2θi)

]
.

(3.9)

Let us denote the eigenvalues of t (u; {θj }) by 	(u; {θj }). From (2.21) it follows that the 
eigenvalues have crossing symmetry
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	(u; {θj }) = 	(−u−1q−1; {θj }) ; (3.10)

and from (3.8) it follows that the eigenvalues obey the functional relations

	(q−1θi; {θj })	(θi; {θj }) = F(q−1θi) , i = 1, . . . ,N . (3.11)

To solve these equations, we introduce the functions

a(u; {θj }) = −ω(u2q2)

ω(u2q)

N∏
i=1

[
ω(uq/θi)ω(uqθi)

]
,

d(u; {θj }) = − ω(u2)

ω(u2q)

N∏
i=1

[
ω(u/θi)ω(uθi)

]= a(−u−1q−1; {θj }) , (3.12)

which have the properties

a(q−1θi; {θj }) = 0 = d(θi; {θj }) , a(θi; {θj }) d(q−1θi; {θj }) = F(q−1θi) . (3.13)

It is easy to see that equations (3.10) and (3.11) are satisfied by

	(u; {θj }) = a(u; {θj }) Q(uq−1)

Q(u)
+ d(u; {θj }) Q(uq)

Q(u)
, (3.14)

where Q(u) is any crossing-invariant function

Q(u) =Q(−u−1q−1) . (3.15)

From the form (2.5) of the R-matrix and the commutativity property (2.20), it follows that 
	(u; {θj }) must be a Laurent polynomial in u (with a finite number of terms). We assume that 
Q(u) is also a Laurent polynomial, and is given by

Q(u) =
M∏

k=1

ω(u/uk)ω(uquk) , (3.16)

where the so-called Bethe roots {u1, . . . , uM } are still to be determined, which is consistent with 
(3.15). Obviously Q(uk) = 0, which means that both terms in the expression (3.14) for 	(u; {θj })
have a simple pole at u = uk . (We assume that the Bethe roots are distinct, and are not equal to 0 
or ∞.) The corresponding residues must cancel (since 	(u; {θj }) must be finite for u not equal 
to 0 or ∞), which implies the so-called Bethe equations

a(uk; {θj })
d(uk; {θj }) = − Q(ukq)

Q(ukq−1)
, k = 1, . . . ,M . (3.17)

Since we no longer need the inhomogeneities, we now set them to unity θj = 1.
To summarize, we have argued that the eigenvalues 	(u) of the transfer matrix t (u) (2.17)

are given by

	(u) = − 1

ω(u2q)

[
ω(u2q2)ω(uq)2N

M∏
j=1

ω(uq−1/uj )ω(uuj )

ω(u/uj )ω(uquj )

+ ω(u2)ω(u)2N
M∏ ω(uq/uj )ω(uq2uj )

ω(u/uj )ω(uquj )

]
, (3.18)
j=1
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Table 1
Solutions {uk} of the Bethe equations (3.19) and degeneracies of the corresponding eigenvalues (3.18) for N = 2 and 
s = 1

2 , 1, 32 with q = 0.5.

M {uk} Degeneracies

s = 1
2 s = 1 s = 3

2

0 – 3 8 15
1 1.34164 + 0.447214i 1 1 1

total: 4 9 16

Table 2
Solutions {uk} of the Bethe equations (3.19) and degeneracies of the corresponding eigenvalues (3.18) for N = 3 and 
s = 1

2 , 1, 32 with q = 0.5.

M {uk} Degeneracies

s = 1
2 s = 1 s = 3

2

0 – 4 21 56
1 1.22474 + 0.707107i 2 3 4
1 1.38873 + 0.267261i 2 3 4

total: 8 27 64

and the Bethe roots are given by the Bethe equations

[
ω(ukq)

ω(uk)

]2N

=
M∏

j 	=k
j=1

ω(uku
−1
j q)ω(ukujq

2)

ω(uku
−1
j q−1)ω(ukuj )

. (3.19)

These equations take a more symmetric form in terms of the rescaled Bethe roots ũk ≡ ukq
1/2:

[
ω(ũkq

1/2)

ω(ũkq−1/2)

]2N

=
M∏

j 	=k
j=1

ω(ũkũ
−1
j q)ω(ũkũj q)

ω(ũkũ
−1
j q−1)ω(ũkũj q−1)

. (3.20)

Note that the results (3.18)–(3.20) do not depend on the value of s; in particular, they coincide 
with the well-known results for the case s = 1/2 [4,31]. This is consistent with the TL equiva-
lence (see e.g. [1,7,38–40]), which suggests that the spectrum (but not the degeneracies) of the 
TL Hamiltonian (1.2) is independent of the representation.

We have verified numerically for small values of N and s that every distinct eigenvalue of the 
transfer matrix can be expressed in the form (3.18). See Tables 1–3, and note that all (2s + 1)N

eigenvalues are accounted for.
In closing this section, we note that the eigenvalues of the Hamiltonian (1.2) are given by

E = α
d

du
	(u)

∣∣∣
u=1

+ β = 1

2
ω(q)

M∑
j=1

[
ω(u2

j )

ω(uj )2
− ω(u2

j q
2)

ω(ujq)2

]
, (3.21)

as follows from (2.18), (2.19) and (3.18).
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Table 3
Solutions {uk} of the Bethe equations (3.19) and degeneracies of the corresponding eigenvalues (3.18) for N = 4 and 
s = 1

2 , 1, 32 with q = 0.5.

M {uk} Degeneracies

s = 1
2 s = 1 s = 3

2

0 – 5 55 209
1 1.10176 + 0.886631i 3 8 15
1 1.34164 + 0.447214i 3 8 15
1 1.40092 + 0.193427i 3 8 15
2 1.81555 − 0.854196i, 1.81555 + 0.854196i 1 1 1
2 1.28401 + 0.592723i, 1.3969 + 0.220635i 1 1 1

total: 16 81 256

4. Quantum group symmetry

In this section we demonstrate the quantum-group invariance of the transfer matrix, and we 
discuss the implications of this symmetry for the Bethe ansatz solution.

4.1. Symmetry of the transfer matrix

Let us denote by R± the asymptotic limits of the R-matrix R(u) (2.5)

R+ = lim
u→∞

1

u
R(u) =P(q + X) ,

R− = lim
u→0

−uR(u) =P(q−1 + X) , (4.1)

and let us similarly denote by T ±
0 the asymptotic limits of the monodromy matrix T0(u) (2.12)

T ±
0 = R±

0N · · ·R±
01 . (4.2)

Regarding T ±
0 as a (2s + 1) × (2s + 1) matrix in the auxiliary space, its matrix elements T ±

ij

(which are operators on the quantum space 
(
C

2s+1
)⊗N

) define a quantum group, which has 
been identified in [41] as Uq(2s + 1).2 We shall demonstrate that each of these matrix elements 
commutes with the transfer matrix[

T ±
ij , t (u)

]
= 0 , i, j = 1,2, . . . ,2s + 1 . (4.3)

The proof, which is similar to the one in [42] (see also [43]), requires two lemmas:

Lemma 1.[
R±

12 T ±
1 , T2(u) T̂2(u)

]
= 0 . (4.4)

Proof. We recall the fundamental relation

R12(u1/u2) T1(u1) T2(u2) = T2(u2) T1(u1)R12(u1/u2) . (4.5)

2 For s > 1/2, this symmetry is larger than the UQsl(2) symmetry [2], which is also present.
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Taking asymptotic limits of u1 yields

R±
12 T ±

1 T2(u) = T2(u)T ±
1 R±

12 , (4.6)

which further implies

T −1
2 (u)R±

12 T ±
1 = T ±

1 R±
12 T −1

2 (u) . (4.7)

Therefore,

R±
12 T ±

1 T2(u)T −1
2 (u−1) = T2(u)T ±

1 R±
12 T −1

2 (u−1)

= T2(u)T −1
2 (u−1)R±

12 T ±
1 , (4.8)

where the first equality follows from (4.6), and the second equality follows from (4.7). We have 
therefore shown the commutativity property[

R±
12 T ±

1 , T2(u)T −1
2 (u−1)

]
= 0 . (4.9)

Furthermore,

T −1
0 (u) = R−1

01 (u) · · ·R−1
0N(u)

∝ R10(u
−1) · · ·RN0(u

−1) = T̂0(u
−1) , (4.10)

where the second line follows from unitarity (2.7). Substituting into (4.9) we obtain the desired 
result (4.4). �
Lemma 2.

M−1
1

(
(R±

12)
−1
)t2

M1 R
± t2
12 = I

⊗2 . (4.11)

Proof. We write the unitarity condition (2.7) as

R12(u)R
t1t2
12 (u−1) = ζ(u) I⊗2 , (4.12)

and then use crossing symmetry (2.9) to obtain

V1 R
t2
12(−u−1q−1)V1 V

t1
1 R

t1
12(−uq−1)V

t1
1 = ζ(u) I⊗2 . (4.13)

By taking asymptotic limits and noting that V 2 = (−1)2s
I, we obtain

R
± t2
12 M−1

1 R
∓ t1
12 M1 = I

⊗2 . (4.14)

Moreover, from (4.12) we obtain R±
12 R

∓ t1t2
12 = I, which implies that

R
∓ t1t2
12 = (R±

12)
−1 , or R

∓ t1
12 =

(
(R±

12)
−1
)t2

. (4.15)

Substituting into (4.14), we obtain

R
± t2
12 M−1

1

(
(R±

12)
−1
)t2

M1 = I
⊗2 , (4.16)

which can be rearranged to give the desired result (4.11). �
We are now ready to prove the main result (4.3), which is equivalent to the following



R.I. Nepomechie, R.A. Pimenta / Nuclear Physics B 910 (2016) 910–928 919
Proposition.[
T ±

1 , t (u)
]= 0 . (4.17)

Proof. Recalling the expression (2.17) for the transfer matrix, we obtain

T ±
1 t (u) = tr2

{
T ±

1 M2 T2(u) T̂2(u)
}

= tr2

{
M−1

1 M1 M2 (R±
12)

−1 R±
12 T ±

1 T2(u) T̂2(u)
}

= tr2

{
M−1

1 (R±
12)

−1 M1 M2 T2(u) T̂2(u)R±
12 T ±

1

}
= . . . (4.18)

In passing to the third line, we have used the fact 
[
M1 M2 ,R±

12

]= 0 as well as the first lemma 
(4.4). Then

. . . = tr2

{
M−1

1 (R±
12)

−1 M1 M2 T2(u) T̂2(u)R±
12

}
T ±

1

= tr2
{
A12 Z2 R±

12

}
T ±

1

= tr2

{
A

t2
12 R

± t2
12 Z

t2
2

}
T ±

1 = . . . (4.19)

In passing to the second line we have made the identifications A12 = M−1
1 (R±

12)
−1 M1 and Z2 =

M2 T2(u) T̂2(u). Finally, we obtain

. . . = tr2

{
M−1

1

(
(R±

12)
−1
)t2

M1 R
± t2
12 Z

t2
2

}
T ±

1

= tr2

{
Z

t2
2

}
T ±

1

= t (u)T ±
1 . (4.20)

In passing to the second line we have used the second lemma (4.11). �
4.2. Degeneracies and multiplicities

The Uq(2s + 1) symmetry of the transfer matrix implies that its eigenstates form represen-
tations of this algebra. The space of states has the decomposition (see e.g. [40,12,44,41,15] and 
references therein)

(
C

2s+1
)⊗N =

N⊕
k=0(1)

νk Vk , (4.21)

where the summation is over even (odd) integers for even (odd) N , respectively; Vk are repre-
sentations of Uq(2s + 1); and νk are the multiplicities. The dimensions of the representations are 
given by

dimVk = pk(2s + 1) , (4.22)

where pk(x) are Chebyshev polynomials of the second kind, which are defined by the recurrence 
relations

pk+1(x) + pk−1(x) = x pk(x) , p0(x) = 1 , p−1(x) = 0 . (4.23)
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Table 4
Dimensions (4.22) and multiplicities νk (4.24) of representations Vk for 
N = 2 and s = 1

2 , 1, 32 .

k νk dimVk

s = 1
2 s = 1 s = 3

2

0 1 1 1 1
2 1 3 8 15

The multiplicities are given by3

νk =

⎧⎪⎪⎨
⎪⎪⎩

( N
N−k

2

)− ( N
N−k

2 −1

)
k 	= 0 ,N

1
N
2 +1

(N
N
2

)
k = 0

1 k = N

, (4.24)

which are the dimensions of representations Wk of the TL algebra T LN . As a check on 
(4.21)–(4.24), one can verify that the sum rule

N∑
k=0(1)

νk dimVk = (2s + 1)N (4.25)

is satisfied.
For given values of N and s, let N (N, M) denote the number of solutions of the Bethe equa-

tions (3.19) with M roots, and let D(N, s, M) denote the corresponding degeneracy, i.e., the 
number of transfer-matrix eigenvalues (3.18) corresponding to each solution of the Bethe equa-
tions with M roots. We propose that N (N, M) and D(N, s, M) are related to νk and dimVk in 
the following simple way4:

N (N,M) = νk , (4.26)

D(N, s,M) = dimVk , (4.27)

with

M = 1

2
(N − k) . (4.28)

We have verified these relations for small values of N and s. See e.g. Tables 4–6, and compare 
with Tables 1–3, respectively.

5. Algebraic Bethe ansatz

We present here several conjectures related to the algebraic Bethe ansatz solution of the TL 
chain. The conjecture for the off-shell equation has been proved for s = 1 [45], while the other 
conjectures have been checked numerically (up to M = 3, N = 6 and s = 3

2 ).

3 Note that the multiplicities νk are independent of s.
4 We note that [15] does not discuss either the open-chain Bethe equations (3.19) or the open-chain transfer matrix 

(2.17), and therefore does not contain the results (4.26)–(4.28).
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Table 5
Dimensions (4.22) and multiplicities νk (4.24) of representations Vk for 
N = 3 and s = 1

2 , 1, 32 .

k νk dimVk

s = 1
2 s = 1 s = 3

2

1 2 2 3 4
3 1 4 21 56

Table 6
Dimensions (4.22) and multiplicities νk (4.24) of representations Vk for 
N = 4 and s = 1

2 , 1, 32 .

k νk dimVk

s = 1
2 s = 1 s = 3

2

0 2 1 1 1
2 3 3 8 15
4 1 5 55 209

5.1. Off-shell equation

In order to implement the algebraic Bethe ansatz, we need to choose a convenient representa-
tion in the auxiliary space for the double-row monodromy matrix T0(u) T̂0(u). We choose

T0(u) T̂0(u) =

⎛
⎜⎜⎜⎜⎜⎝

A(u) B1,2(u) · · · B1,2s(u) B(u)

C2,1(u) A2(u) · · · B2,2s(u) B2,2s+1(u)
...

...
. . .

...
...

C2s,1(u) C2s,2(u) · · · A2s(u) B2s,2s+1(u)

C(u) C2s+1,2(u) · · · C2s+1,2s (u) D̃(u)

⎞
⎟⎟⎟⎟⎟⎠

(2s+1)×(2s+1)

,

(5.1)

where each entry acts on the quantum space 
(
C

2s+1
)⊗N

. Let us also introduce the (2s + 1)-di-
mensional reference state

|0〉 =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠

⊗N

(5.2)

and its dual

〈0| = ( 1 0 · · · 0
)⊗N (5.3)

such that 〈0|0〉 = 1. We have found that the (dual) Bethe vectors are generated by the action of a 
single double-row operator, namely (C(u)) B(u). Indeed, let us define the Bethe vector as

|u1, . . . , uM 〉 =
M∏

B(uk)|0〉 (5.4)

k=1
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as well as its dual

〈u1, . . . , uM | = 〈0|
M∏

k=1

C(uk) . (5.5)

We conjecture that the action of the transfer matrix (2.17) on (5.4) is given by

t (u)|u1, . . . , uM 〉 = 	(u;u1, . . . , uM)|u1 . . . uM 〉

+
M∑

k=1

λk|u1, . . . , uk−1, u,uk+1, . . . , uM 〉 , (5.6)

while the action on (5.5) is given by,

〈u1, . . . , uM |t (u) = 〈u1, . . . , uM |	(u;u1, . . . , uM)

+
M∑

k=1

〈u1, . . . , uk−1, u,uk+1, . . . , uM |λk , (5.7)

where

λk = − ω(q)ω(u2q2)ω(u2
k)

ω(uu−1
k )ω(uukq)ω(u2

kq)

×

⎡
⎢⎢⎣ω(ukq)2N

M∏
j 	=k
j=1

ω(uku
−1
j q−1)ω(ukuj )

ω(uku
−1
j )ω(ukujq)

− ω(uk)
2N

M∏
j 	=k
j=1

ω(uku
−1
j q)ω(ukujq

2)

ω(uku
−1
j )ω(ukujq)

⎤
⎥⎥⎦ ,

(5.8)

and 	(u; u1, . . . , uM) is given by (3.18). Since the equations (5.6) and (5.7) are valid for ar-
bitrary {uk}, we write explicitly the dependence of 	 on {uk}. Evidently, λk = 0 when the 
Bethe equations (3.19) are satisfied, in which case the Bethe states (5.4) and (5.5) are right 
and left eigenstates of the transfer matrix t (u), respectively, with corresponding eigenvalue 
	(u; u1, . . . , uM). For the s = 1

2 case the results (5.6) and (5.7) are known [29]; for the s = 1
case a proof will be reported in a separate paper [45].

5.2. Highest-weight property

When the Bethe states (5.4) are on shell (i.e., when {u1, . . . , uM} satisfy the Bethe equations 
(3.19)), we conjecture that

T +
ii |u1, . . . , uM 〉 = hi |u1, . . . , uM 〉 , i = 1,2, . . . ,2s + 1 , (5.9)

T +
ij |u1, . . . , uM 〉 = 0 , i > j , (5.10)

where T +
ij are quantum group generators defined in section 4.1. That is, on-shell Bethe states are 

highest-weight states of the quantum group, in the sense that they are eigenstates of the diagonal 
elements of T +, and are annihilated by the lower triangular elements of T +. This would help 
account for the observations in section 4.2 that the degeneracies and multiplicities are given by 
group theory.
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5.3. Scalar products

Let us suppose that {u1, . . . , uM} are Bethe roots. We propose that the scalar product between 
the on-shell state 〈u1, . . . , uM | and an arbitrary off-shell state |v1, . . . , vM 〉 is given by

〈u1, . . . , uM |v1, . . . , vM 〉

=
(

1

2Q2s

)M M∏
i=1

ω(ui)
2Nui ω(u2

i )

ω(u2
i q)ω(v2

i q
2)

M∏
j<i

ω(uiujq
2)

ω(uiuj )

DetM
(

∂
∂ui

	(vj ;u1, . . . , uM)
)

DetM

(
1

ω(viu
−1
j )ω(viuj q)

) .

(5.11)

The formula (5.11) was proved in [46] for the s = 1
2 case with (diagonal) boundary fields (see 

also [47] for the XXX chain). Performing the limit vk → uk , we obtain the square of the norm, 
namely,

〈u1, . . . , uM |u1, . . . , uM 〉

=
(

ω(q)ω(−q2)

Q2s

)M M∏
i=1

ω(ui)
4Nω(u2

i )
2

M∏
j<i

ω(uiuj q
2)

ω(uju
−1
i )ω(uiu

−1
j )ω(uiuj )ω(uiujq)2

× DetM (G) , (5.12)

where G is a M × M matrix with elements

Gij =
∏M

k 	=i,j ω(uju
−1
k q)ω(ujukq

2)

ω(uju
−1
i q−1)ω(uiuj )

[
1 − δi,j + δi,j

ω(q)ω(u2
i )

ω(q2)ω(u2
i q)2

×
(

− 2Nω(q)

ω(ui)ω(uiq)
+ ω(q2)

M∑
k 	=i

1

ω(uiq−1u−1
k )ω(uiqu−1

k )
+ 1

ω(uiuk)ω(uiukq2)

)]
.

(5.13)

6. Discussion

We have considered the TL open quantum spin chain associated with the spin-s representation 
of quantum-deformed sl(2). We have constructed the transfer matrix (2.17), and we have seen 
that its eigenvalues (3.18) and the corresponding Bethe equations (3.19) do not depend on the 
value of the spin. Due to the quantum-group invariance of the transfer matrix (4.3), (4.17), the 
number of solutions of the Bethe equations (4.26) and the degeneracies of the transfer-matrix 
eigenvalues (4.27) can be inferred from group theory.

We have proposed an algebraic Bethe ansatz construction of the Bethe vectors (5.4) and (5.5), 
and the corresponding off-shell equations (5.6) and (5.7), respectively. Remarkably, despite the 
fact that the auxiliary space has dimension greater than 2 for s > 1/2, a single creation oper-
ator suffices to construct all the Bethe states – no nesting is needed. We have also proposed a 
determinant formula for the scalar products between off-shell and on-shell Bethe states (5.11). 
Remarkably, these results are also universal in the sense that they depend on the value of the spin 
only through a constant factor. It is important to find proofs for these conjectures. So far, we have 
been able to prove only the off-shell equations for s = 1 [45].
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We have seen that appropriate boundary conditions are necessary for the TL model to have 
a universal solution. Indeed, for periodic boundary conditions, the solution (A.11) is no longer 
universal. This solution has the unusual feature that it has a twist that is “dynamically” generated 
(i.e., the twist is not a fixed parameter of the model, as is typically the case). An algebraic Bethe 
ansatz solution for this model remains to be found. It may be interesting to consider generaliza-
tions of the open TL chain (1.2) which are still integrable but have boundary terms that break the 
quantum group symmetry [48,49].
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Appendix A. Closed TL chain

Let t (u) now denote the transfer matrix for the closed TL chain with periodic boundary con-
ditions

t (u) = tr0 T0(u) , (A.1)

where the monodromy matrix T0(u) is given by (2.12). To determine the eigenvalues of t (u), we 
follow the same approach used in Section 3 to analyze the open chain. Hence, we consider the 
inhomogeneous transfer matrix

t (u; {θj }) = tr0 T0(u; {θj }) , (A.2)

where T0(u; {θj }) is given by (3.2). Using the fusion procedure, we arrive at the functional rela-
tions

t (q−1θi; {θj }) t (θi; {θj }) = F(q−1θi) I
⊗N , i = 1, . . . ,N , (A.3)

where F(u) is now given by (cf. (3.9))

F(u) =
N∏

i=1

[
(−1)2sω(u/θi)ω(uq2/θi)

]
. (A.4)

The corresponding eigenvalues 	(u; {θj }) therefore obey the same functional relations

	(q−1θi; {θj })	(θi; {θj }) = F(q−1θi) , i = 1, . . . ,N . (A.5)

To solve these equations, we introduce the functions

a(u; {θj }) = κ

N∏
i=1

(−1)sω(uq/θi) , d(u; {θj }) = 1

κ

N∏
i=1

(−1)sω(u/θi) , (A.6)

where the twist parameter κ is still to be determined. We observe that

a(q−1θi; {θj }) = 0 = d(θi; {θj }) , a(θi; {θj }) d(q−1θi; {θj }) = F(q−1θi) . (A.7)
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Hence, the functional relations (A.5) are satisfied by

	(u; {θj }) = a(u; {θj }) Q(uq−1)

Q(u)
+ d(u; {θj }) Q(uq)

Q(u)
, (A.8)

where Q(u) is now given by

Q(u) =
M∏

k=1

ω(u/uk) . (A.9)

Setting the inhomogeneities to unity θj = 1, we conclude that the eigenvalues 	(u) of the closed 
transfer matrix (A.1) are given by

	(u) = κ (−1)sN ω(uq)N
M∏

j=1

ω(uq−1/uj )

ω(u/uj )
+ 1

κ
(−1)sN ω(u)N

M∏
j=1

ω(uq/uj )

ω(u/uj )
, (A.10)

and the Bethe roots are given by the Bethe equations[
ω(ukq)

ω(uk)

]N

= κ−2
M∏

j 	=k
j=1

ω(uku
−1
j q)

ω(uku
−1
j q−1)

. (A.11)

A similar solution was proposed in [12], except with a trivial twist (i.e., with κ = 1). Such a 
twist is not expected, since the transfer matrix (A.1) corresponds to periodic boundary condi-
tions. Nevertheless, from numerical studies (see below), we find that a nontrivial twist (κ 	= 1) is 
necessary in order to obtain the complete set of eigenvalues from the Bethe ansatz solution. The 
presence of an effective twist was already noted in earlier work, see e.g. [10,15,50,51].

We remark that the twist is characterized by an integer in ZN . Indeed, we observe from (2.5)
that R(1) = ω(q) P . Hence, from (A.1) we obtain

t (1) = ω(q)N U , (A.12)

where U = P12 P23 . . .PN−1,N is the one-site shift operator, which satisfies UN = I
⊗N . From 

(A.10) we have

	(1) = κ (−1)sN ω(q)N
M∏

j=1

ω(quj )

ω(uj )
. (A.13)

It follows from (A.12) and (A.13) that the eigenvalue of U (which we also denote by U ) is given 
by

U = κ (−1)sN
M∏

j=1

ω(quj )

ω(uj )
. (A.14)

Since UN = 1, we conclude that the twist κ and the Bethe roots {uj } must satisfy the following 
constraint

κ = ei2πl/N

(−1)sN

M∏
j=1

ω(uj )

ω(quj )
, l = 0,1, . . . ,N − 1 . (A.15)

In particular, the twist is characterized by an integer l ∈ ZN
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Table 7
Solutions {uk} of the Bethe equations (A.11), twist κ , and degeneracies D of the corresponding eigenvalues (A.10) for 
N = 2 and s = 1

2 , 1, 32 with q = 0.5.

s = 1
2 s = 1 s = 3

2

M {uk} κ D M {uk} κ D M {uk} κ D
0 – −1 2 0 – 1 5 0 – −1 9
1 1.41421i 1 1 0 – −1 2 0 – 1 5
1 1.41421 1 1 1 0.540182 0.381966 1 1 0.732051 0.267949 1

1 1.21699 0.381966 1 1 1.1638 0.267949 1

total: 4 9 16

Table 8
Solutions {uk} of the Bethe equations (A.11), twist κ , and degeneracies D of the corresponding eigenvalues (A.10) for 
N = 3 and s = 1

2 , 1, 32 with q = 0.5.

s = 1
2 s = 1 s = 3

2

M {uk} κ D M {uk} κ D M {uk} κ D
0 – i 2 0 – −1 8 0 – −i 20
1 i

√
2e−iπ/3 −i 2 0 – eiπ/3 5 0 – ieiπ/3 16

1 −i
√

2eiπ/3 −i 2 0 – e−iπ/3 5 0 – ie−iπ/3 16
1

√
2 −i 2 1 i

√
2 −1 3 1 −i

√
2eiπ/3 i 4

1 (3
√

3 + i)/
√

14 −1 3 1 i
√

2e−iπ/3 i 4
1 (3

√
3 − i)/

√
14 −1 3 1

√
2 i 4

total: 8 27 64

We have verified numerically for small values of N and s that every distinct eigenvalue of the 
transfer matrix (A.1) can be expressed in the form (A.10). See Tables 7 and 8, and note that all 
(2s + 1)N eigenvalues are accounted for. Note also that, in contrast with the case of the open 
chain, the solutions of the closed-chain Bethe equations (A.11) are not universal: the Bethe roots 
depend on the value of the spin s (cf. Tables 1–3).
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