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The present investigation consists of an analytical treatment of a steady boundary layer
flow of a Walter’s B fluid due to a stretching cylinder with temperature dependent variable viscosity.
The heat transfer analysis is also considered. With the help of usual similarity transformations the
governing equations have been transformed into nonlinear ordinary differential equations and are
solved by a powerful technique homotopy analysis method. Two models of variable viscosity,

namely, Reynolds and Vogel’s models are taken into account. The convergence is checked by plot-
ting h-curves. The emerging parameters are discussed through graphs.

© 2016 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

The ratio of shear stress to the shear strain is known as viscos-
ity. As far as literature survey is concerned a large number of
investigations consist of works in which fluid viscosity is con-
sidered to be constant. In certain situations, the fluid viscosity
does not remain constant. It may vary with distance, tempera-
ture or pressure. For example in coal slurries the viscosity of
the fluid changes with temperature. In several thermal trans-
port processes, the temperature distribution within the flow
field does not remain uniform, i.e., the fluid viscosity may be
changed noticeably if large temperature differences exist in
the system. Therefore, it is highly desirable to take into
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account variable viscosity. Fluids that do not obey Newton’s
law of viscosity are called non-Newtonian fluids. Examples
of non-Newtonian fluids are tomato sauce, mustard, mayon-
naise, toothpaste, asphalt, lava and ice, mud slides, snow ava-
lanches, etc. Massoudi and Christie [1] have investigated the
effects of variable viscosity and viscous dissipation on the flow
of a third grade fluid in a uniform pipe. They studied the
numerical solutions with the help of straightforward finite dif-
ference method. They also discussed that the flow of a fluid-
solid mixture is very complicated and may depend on several
variables such as physical properties of each phase, size and
shape of solid particles. The influence of constant and space
dependent viscosity on the flow of a third grade fluid in a pipe
has been studied analytically by Hayat et al. [2]. Later on, the
approximate and analytical solution of non-Newtonian fluid
with variable viscosity has been analyzed by Yursoy and
Pakdemirili [3] and Pakdemirili and Yilbas [4]. The pipe flow
of non-Newtonian fluid with variable viscosity keeping no slip

1110-0168 © 2016 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



https://core.ac.uk/display/82101361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2016.07.037&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:azadhussainsamote@yahoo.com
http://dx.doi.org/10.1016/j.aej.2016.07.037
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2016.07.037
http://creativecommons.org/licenses/by-nc-nd/4.0/

3074

A. Hussain, A. Ullah

Table 1 Nusselt number for Re against Pr.

Re/Pr 0.1 0.2 0.3 0.4 0.5

0.1 1.24561 1.25054 1.85790 1.85803 1.85814
0.2 1.25071 1.26060 1.86839 1.86865 1.86887
0.3 1.25581 1.27067 1.87888 1.87927 1.87961
0.4 1.26092 1.28076 1.88938 1.88989 1.89035
Table 2 Nusselt number for A against Pr.

Al Pr 0.1 0.2 0.3 0.4 0.5

0.1 1.22637 1.22732 1.2282 1.22901 1.22976
0.2 1.27446 1.27637 1.27812 1.27974 1.28123
0.3 1.32287 1.32574 1.32836 1.33079 1.33303
0.4 1.37157 1.37539 1.37889 1.38212 1.38510
Table 3 Nusselt number for 4 against Re.

AJRe 0.1 0.2 0.3 0.4 0.5

0.1 1.2345 1.28843 1.34062 1.39122 1.44035
0.2 1.23523 1.28997 1.34303 1.39455 1.44464
0.3 1.23591 1.29140 1.34526 1.39762 1.44859
0.4 1.23654 1.29272 1.34732 1.40046 1.45225
Table 4 Skin friction for 4 against Re.

A/Re 0.1 0.2 0.3 0.4 0.5

0.1 —6.87921 —6.55554 —6.26807 —6.00921 —5.77344
0.2 —3.74707 —3.56905 —3.41075 —3.2682 —3.13845
0.3 —2.69331 —2.56441 —2.44969 —2.34641 —2.25246
0.4 —2.1597 —2.05575 —1.96321 —1.87991 —1.80419

and partial slip has been investigated analytically by Nadeem
and Ali [5] and Nadeem et al. [6]. Recently, Nadeem and
Akbar [7] studied the effects of temperature dependent viscos-
ity on peristaltic flow of a Jeffrey-six constant fluid in a uni-
form vertical tube. Keeping this in mind, we are taking into
account temperature dependent viscosity in our study. Stretch-
ing is another area of active research. A Newtonian fluid flow
over a linear stretching surface was first time considered by
Crane [8]. Various aspects of the flow for stretching surfaces
have been focused in many investigations [9-17]. Wang [18]
studied the steady flow of a viscous and incompressible fluid
outside of a stretching hollow cylinder in an ambient fluid at
rest. Motivation from abovementioned investigations leads
us to consider a steady boundary layer flow of a Walter’s B
fluid due to a stretching cylinder with temperature dependent
variable viscosity. The highly nonlinear problem is trans-
formed into ordinary differential equations with the help of
similarity transformations. Renolds and Vogel’s models of
temperature dependent variable viscosity are considered. The
analytical solution is attained using powerful technique homo-
topy analysis method [6,19-26]. The physical behavior of var-
ious parameters is depicted through graphs (see Tables 1-4).

1.1. Description of the problem

Consider steady flow of an incompressible Walter’s B fluid
flow caused by a stretching tube of radius “a” in the axial
direction, where z is the axis along the tube length and r is
the axis in the radial direction. The surface of the tube is at
temperature T, and the ambient fluid temperature is T, where

T, > T;. The governing equations are
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where u# and w are the velocity components along the r and z
directions respectively, and w,, = 2¢z where ¢ is a constant with
positive value. Further o, v, p, T,k and p are thermal diffusiv-
ity, the kinematic viscosity, fluid density, fluid temperature,
thermal conductivity and viscosity of the fluid. The dimension-
less problem which can describe the boundary flow is given by

moRe 121" — 1) + 2non(F" + £") + 24nf" " + 24"’
FAAnff" + A4 — Anff” — 24nf'f" =0, (6)
n0" + (14 Re Pr/)0' =0, (7)

where we have used the similarity transformations

=) v

T— T,
T’w - Too '
(3)

Here prime denotes differentiation with respect to 5. The
dimensionless parameters used are

w=2czf"(n), 0(n) =

2

Rezﬂ7 Pr:K,
v o
9)
k (
a="2c
Mo

where Re is Reynolds number, Pr is Prandtl number and 4 is
Walter’s B fluid parameter. The boundary conditions in
dimensionless form are

f)y=0, f(1)= 0(1)=1, f'(0) =0, 0(cc)— 0.

(10)
2. Series solutions for Reynolds model

Here, the temperature dependent viscosity is expressed in the
form

Ny = 67[’07 (1 1)
which by Maclaurin series can be written as
ny=1— PO+ 0(6%). (12)

It is worth mentioning that M = 0 corresponds to the case
of constant viscosity. Invoking above equation into Egs. (6)
and (7) one has

(] _ P0)Re Vlz(ff” _f/2) +2(1 _ Pe)n(f” +f///) +2Anf-//f///

F2A(") +Adnff" + AA7S " — Anff” 240/ =0,
(13)
70" + (1 + Re Pr)0' =0, (14)
For HAM solution, we choose the following initial guesses:
f0)=1—¢'" (14a)
0(0) = ', (14b)
and linear operators
L) =1"+1", (14c)
LO)=0"+10" (15)
Zeroth order deformation problem is defined as
(1 = a)Lrlf(n, q) = 1,(m)] = alyN¢[f(n,9).0(n, )], (16)
(1= q)Lo[0(n,9) — 0.(n)] = ahoNo[f(n.4),0(n,q)], (17)
fin,9) =0, 0mq)=1, fng)=1, n=1, (18)
ofng) o G L _
Ni[f(n,9).0(n.9)] = (1 — PO Ren*(ff" — 1)
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+2A(f")2 “'4/4'177'”’ +4A’121f_mr
— Anff” = 24nf'f", (20)
Nolf(n.q),  0(n,q)] =n0" + (1 + Re Prf)0, (21)

where ¢e[0, 1] is the embedding parameter and 7, and 7y are
auxiliary non-zero operators.
The mth order deformation equations are defined as

Lylfon(n) = Y1 ()] = BeRe(m), (22)
Lo[0m (1) = £ Om-1(1)] = o Ro (1), (23)
where

0, m<1,
X’":{L m> 1. (24)
and
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Figure 1  /-curve for velocity profile for Reynolds model.
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Figure 2 /i-curve for temperature profile for Reynolds model.
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Figure 3  Velocity profile for different values of 4 for Reynolds
model.
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Figure 4 f(y) profile for different values of A4 for Reynolds
model.
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Figure 5 f(n) profile for different values of P for Reynolds
model.
m—1
Ro(n) =n0,_, +0,_, + Re PrE \Jmflfkoﬁf- (26)
k=0

We now use the symbolic software MATHEMATICA and
solve the set of linear differential Egs. (25) and (26) subject to
relevant boundary conditions up to first few order of approx-
imations. It is found that f,,(n) and 0,,() can be written as

2m  m

fm (71) = Zzbm.n 7/”6[7”)77

n=0 /=0 (27)

m m

9,,7(7]) — Zde7,7}’]2(”7|)€[7<2”HM, m > 0.

n=1 1=0

The solution thus can be defined as

[ 2m m
fln) = lim [Z <ZZb,m”neMn>} (28)

m=0 \ n=0 /=0
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Figure 6  Velocity profile for different values of Re for Reynolds
model.
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Figure 7 Velocity profile for different values of A for Vogel’s model.
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Figure 8 f(n) profile for different values of A for Vogel’s model.
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Figure 9  Velocity profile for different values of L for Vogel’s
model.
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Figure 10  f(n) profile for different values of L for Vogel’s model.

o m m
0(n) = ngl;lc {Z (Zdewz(n1)(,/(2n+1)ﬂ)] . (29)
m=0 \ n=1 /=0

3. Series solutions for Vogel’s model

Here

n
o = Mg EXP {m - 00} s (30)

which by Maclaurin series reduces to

0
noz—(l—q—lg where S:ngexpE—Ho}. (31)
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Figure 11 f(n)) profile for different values of n for Vogel’s
model.
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Figure 12 f(n) profile for different values of ¢ for Vogel’s model.

Invoking above expression, Egs. (6) and (7) become

L On " ”n " "

5 (15 ) rorr =1+ 25 (1= S ) 17)
+24nf"f" +2A(f") + ddnf" + 44y — Anfy”
—24nf'f" =0 (32)

n0" + (1 + Re Pr/)0' =0, (33)

Using the similar procedure as discussed in previous sec-
tion, the solution of this case is straightforward written as

2m  m

nl— m]
m E § amnn €
n=0 =0
m. - m (34)
m ;7 E § bmn (n— l 2V1+l) m > 07
n=1 =0

$-3,L-5,q--2, n-0.1, Pr-0.3, A-0.1, Re=0.1

M
1
0.8 k
b
0.6 ‘\\‘
g W
. \\
0.4 \ S Re-0.1
\
\\‘\ ---- Re-=05
%
0.2 l{\ - —- Re-=09
N
AN\
0 ~> E A e g e
2 4 6 8 10

Figure 13 Velocity profile for different values of Re for Vogel’s
model.
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Figure 14  f(n) profile for different values of Re for Vogel’s model.
where @, and b, are constants.

4. Graphical results and discussion

In order to report the convergence of the obtained series
solutions and the effects of sundry parameters in the present
investigation we plotted Figs. 1-19. Figs. 1 and 2 are prepared
to see the convergence region. Fig. 3 shows the velocity varia-
tion for different values of 4 for Renolds model. It can be seen
that velocity decreases as 4 increases. Fig. 4 shows () profile
for different values of 4 for Reynolds model. Fig. 5 is plotted
to see f(n) profile for different values of P for Reynolds model.
Fig. 6 depicts velocity profile for different values of Re for
Renolds model. We see that with increase in Re velocity profile
is decreased. Fig. 7 depicts velocity profile for different values
of A for Vogel’s model. It is to be noted that velocity profile is
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Figure 15  Velocity profile for different values of S for Vogel’s Figure 17 Temperature profile for different values of Re for
model. Vogel’s model.
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Figure 16  f(y) profile for different values of S for Vogel’s model.

decreased with increase in 4. Fig. 8 shows f(1) profile for dif-
ferent values of 4 for Vogel’s model. Fig. 9 shows velocity pro-
file for different values of L for Vogel’s model. Velocity profile
for different values of L for Vogel’s model is increased with
increase in L. Fig. 10 shows f(5) profile for different values
of L for Vogel’s model. Fig. 11 is plotted to see f(y) profile
for different values of n for Vogel’s model. Fig. 12 shows the
f(n) profile for different values of ¢ for Vogel’s model.
Fig. 13 depicts velocity profile for different values of Re for
Vogel’s model. It is observed that velocity profile decreases
with increase in Re. Fig. 14 shows f(#) profile for different val-
ues of Re for Vogel’s model. Fig. 15 depicts velocity profile for
different values of S for Vogel’s model. It is depicted that
velocity increases as S increases. Fig. 16 is plotted to see the
f(n) profile for different values of S for Vogel’s model.
Fig. 17 reveals temperature profile for different values of Re
for Vogel’s model. It is seen that temperature decreases as

Figure 18 Temperature profile for different values of A4 for
Vogel’s model.
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Figure 19 Temperature profile for different values of Pr for
Vogel’s model.
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Re increases. Fig. 18 presents temperature profile for different
values of A4 for Vogel’s model. It is observed that temperature
decreases as A increases. Fig. 19 depicts temperature profile for
different values of Pr for Vogel’s model. It is seen that temper-
ature decreases as Pr increases.

4.1. Conclusions

In this paper, we have investigated analytically the heat
transfer flow of a Walter’s B fluid due to a stretching cylinder.
Using usual similarity transformations the governing equa-
tions have been transformed into nonlinear ordinary differen-
tial equations. The highly nonlinear problem is then solved by
homotopy analysis method. Effects of the various parameters
are examined. The following conclusions can be drawn as a
result of the analytical solution:

1. The velocity profile decreases with increase in Re in case of
Renolds model.

2. In case of Renolds model the velocity profile decreases with
increase in 4.

3. In Vogel’s model the temperature profile decreases with
increase in Re.

4. Reynolds number Re and A4 lead to decrease the velocity
profile in Vogel’s model.

5. The velocity profile in Vogel’s model increases with increase
in S.

6. In case of Vogel’s model the velocity profile increases with
increase in g.

7. L leads to increase the velocity profile in Vogel’s model.
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