
Discrete Applied Mathematics 141 (2004) 243–253
www.elsevier.com/locate/dam

A distributed algorithm to !nd k-dominating sets

Lucia D. Pensoa ;1 , Valmir C. Barbosaa ;∗
aPrograma de Engenharia de Sistemas e Computac�ão, COPPE, Universidade Federal do Rio de Janeiro,

Caixa Postal 68511, 21941-972, Rio de Janeiro, RJ, Brazil

Received 30 July 2001; received in revised form 16 May 2002; accepted 22 March 2003

Abstract

We consider a connected undirected graph G(n; m) with n nodes and m edges. A k-dominating
set D in G is a set of nodes having the property that every node in G is at most k edges away
from at least one node in D. Finding a k-dominating set of minimum size is NP-hard. We give
a new synchronous distributed algorithm to !nd a k-dominating set in G of size no greater than
�n=(k + 1)�. Our algorithm requires O(k log∗ n) time and O(m log k + n log k log∗ n) messages
to run. It has the same time complexity as the best currently known algorithm, but improves on
that algorithm’s message complexity and is, in addition, conceptually simpler.
? 2003 Elsevier B.V. All rights reserved.

Keywords: k-Dominating sets; Distributed algorithms; Graph algorithms

1. Introduction

Let G(n; m) be a connected undirected graph with n nodes and m edges. For k6
n− 1, a k-dominating set D in G is a set of nodes with the property that every node
in G is at most k edges away from at least one of the nodes of D. The problem of
!nding k-dominating sets of relatively small sizes is important in a variety of contexts,
including multicast systems [11], the placement of servers in a computer network [2],
the caching of replicas in database and operating systems [8], and message routing
with sparse tables [9].
Finding a k-dominating set in G with the least possible number of nodes is an

NP-hard problem [4], so one normally settles for a set of small size that is not

∗ Corresponding author.
E-mail addresses: lucia@cs.brown.edu (L.D. Penso), valmir@cos.ufrj.br (V.C. Barbosa).

1 Currently at the Computer Science Department, Brown University, Providence, RI 02912, USA.

0166-218X/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-218X(03)00368-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82101344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lucia@cs.brown.edu
mailto:valmir@cos.ufrj.br

244 L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253

necessarily optimal. In general, the small size to be sought is at most �n=(k + 1)�,
since it can be argued that a k-dominating set with no more than this number of nodes
always exists [6], and likewise that a connected graph on n nodes necessarily exists
for which every k-dominating set has at least �n=(k + 1)� nodes [10].
The argument for �n=(k+1)� as an upper bound is instructive in the present context,

and goes as follows [6]. Let T be a rooted spanning tree of G and D1; : : : ; Dk+1 a
partition of its nodes such that, for 06 ‘6 k, every node in D‘+1 is away from the
root a number x‘ of tree edges such that x‘mod (k + 1) = ‘. This partition can be
constructed easily by traversing T breadth-!rst from the root and assigning every new
layer of nodes circularly to the sets D1; : : : ; Dk+1. Clearly, every one of these sets
is a k-dominating set in G. Also, because they partition the graph’s node set, and
considering that n¿ k + 1, it must be that at least one of them has no more than
�n=(k + 1)� nodes.
Our topic in this paper is !nding a k-dominating set in G having no more than

�n=(k+1)� nodes by means of a synchronous distributed computation on G. The model
of distributed computation that we adopt is the standard fully synchronous model [1]. In
this model, the nodes of G are processors that function in lockstep at the occurrence
of clock pulses, and its edges are bidirectional communication channels that deliver
messages between their end nodes before the clock pulse that follows the sending of
the message occurs. Time is measured by counting clock pulses.
The current best synchronous algorithm to !nd a k-dominating set in G is from

[6], and is henceforth referred to as Algorithm KP. It proceeds in two stages: the !rst
stage partitions G into the trees of a rooted spanning forest F , each having at least
k+1 nodes and height O(k); the second stage approaches each tree U ∈F as described
earlier for the spanning tree T and partitions its nodes into the sets DU1 ; : : : ; D

U
k+1. If

f is the number of trees in F , then the k-dominating set output by the algorithm is
D = DU1

‘1 ∪ · · · ∪ DUf‘f , where U1; : : : ; Uf are the trees of F and DUi‘i is the smallest set

of DUi1 ; : : : ; D
Ui
k+1 for 16 i6f. If nU is the number of nodes of U ∈F , then

|D| = |DU1
‘1 | + · · · + |DUf‘f |

6
∑
U∈F

⌊
nU
k + 1

⌋

6
⌊∑

U∈F nU
k + 1

⌋

=
⌊

n
k + 1

⌋
;

since nU ¿ k + 1 for all U ∈F .
While the second stage of Algorithm KP can be easily implemented within the

bounds of O(k) time and O(n) messages, its !rst stage is based on an arcane com-
bination of previously developed algorithms for related problems [3,5,7], resulting in
a time complexity of O(k log∗ n) and a message complexity of O(m log k + n2 log∗ n).

L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253 245

The latter, incidentally, is our best estimate of what is really involved, in terms of
communication needs, in Algorithm KP—such needs are thoroughly ignored in [6],
but this message complexity seems to follow from the message complexities of the
algorithm’s building blocks.
In this paper, we introduce a new synchronous distributed algorithm for !nding

a k-dominating set of no more than �n=(k + 1)� nodes in G. Like Algorithm KP,
our algorithm too comprises two subsequent stages, each having the same goal as its
counterpart in Algorithm KP. The second stage, in particular, is exactly the same as
Algorithm KP’s.
Our contribution is the introduction of a new algorithm for the partition of G into the

trees of F . When compared to Algorithm KP, our algorithm has the same complexity of
O(k log∗ n) time while improving on the message complexity, which in our case is of
O(m log k + n log k log∗ n). We also !nd our algorithm to be conceptually simpler than
Algorithm KP, which can probably be attributed to the fact that it was designed from
scratch with the partitioning problem in mind. While our algorithm simply generates
a sequence of “meta-graphs,” the last of which has nodes that directly give the rooted
trees of F , Algorithm KP reduces the partition problem to other related problems and
then combines algorithms for those problems into building a solution to the partition
problem. Henceforth, we let the algorithm we introduce be called Algorithm PB.
The following is how the remainder of the paper is organized. The !rst stage of

Algorithm PB is introduced in Section 2 and analyzed for correctness and complexity
in Section 3. Concluding remarks are given in Section 4.

2. The algorithm

In this section we introduce the !rst stage of Algorithm PB. This stage !nds a rooted
spanning forest F in G, each of whose trees has at least k +1 nodes and O(k) height,
and is referred to in the sequel as Partition G.

Partition G starts by letting the node set of G be the node set of a directed graph
G̃0, and proceeds from there in �log(k + 1)	 phases. For 06 i6 �log(k + 1)	 − 1,
phase i !rst builds the edge set of G̃i and then begins the transformation of G̃i into
another directed graph, G̃i+1, by clustering the nodes of G̃i together to form the nodes
of G̃i+1. Each node of G̃i stands for a rooted tree in G, and this clustering is performed
in such a way that not only is each resulting node of G̃i+1 also a rooted tree in G,
but one that has at least 2i+1 nodes and O(2i+1) height. After completion of phase
�log(k + 1)	 − 1, the node set of G̃�log(k+1)� represents the desired rooted spanning
forest F (earlier termination is also possible, as we discuss shortly).
If x and y are nodes of G̃i, then we say that x and y are potential neighbors in G̃i

if an edge exists in G joining some node in the rooted tree represented by x to some
node in the rooted tree represented by y. We say that they are neighbors in G̃i if a
directed edge exists between them. A node that has no neighbors is isolated. If x and
y are neighbors in G̃i, then we use x → y to indicate that the edge between x and
y is directed from x to y. In this case, we say that x is an upstream neighbor of y,
which in turn is a downstream neighbor of x.

246 L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253

Partition G is based on manipulations of node identi;ers, which we assume to be
a distinct nonnegative integer for every node in G. The identi!er of node x in G̃i,
denoted by id(x), is the identi!er of the root of its tree. If a node’s identi!er is less
than those of all its neighbors, then we call the node a local minimum. If it is greater,
then we call it a local maximum. The following is how Partition G works during phase
i. We use log(t) n to denote log · · · log n, where log is repeated t times.

Step 1 (Find the edges of G̃i):

(a) Let each node of G̃i be inactive, if the height of the corresponding rooted tree is
at least 2i+1, or active, otherwise.

(b) For every active node x of G̃i, !nd the potential neighbors of x in G̃i. If no
potential neighbors are found for any node, then halt and exit Partition G.

(c) For each active node x of G̃i, let y be the active potential neighbor of x with the
least identi!er. If x has no active potential neighbors, then let y be the (inactive)
potential neighbor of x having the least identi!er. Add x → y to the edge set of
G̃i, thus making x and y neighbors in G̃i.

Remark. If no neighbors are found for any node in Step 1(b), then in reality G̃i has
one single node that encompasses all the nodes of G and therefore corresponds to a
rooted spanning tree of G. In this case, Partition G terminates prematurely, that is,
before completing all �log(k + 1)	 phases.

Remark. At the end of Step 1(c), every active node of G̃i has exactly one downstream
neighbor, while every inactive node has none. Similarly, both active nodes whose
downstream neighbor is active and inactive nodes may have between zero and some
positive number of upstream neighbors. An active node whose downstream neighbor
is inactive has no upstream neighbors.

Step 2 (Find the nodes of G̃i+1):

(a) If x → y is an edge of G̃i such that x is an active node and y an inactive node,
then combine x into y by creating a single node whose identi!er remains id(y).
Let X be the set of active nodes of G̃i that are not isolated.

(b) For x∈X , let Z(x) ⊆ X be the set of upstream neighbors of x. If Z(x) �= ∅,
then let z be the member of Z(x) having the least identi!er. For y∈Z(x) such
that y �= z, check whether Z(y) = ∅. In the aPrmative case, combine y into x.
Otherwise (i.e., Z(y) �= ∅), eliminate edge y → x. Let X be the set of active
nodes of G̃i that are not isolated.

(c) For x∈X , if x is a local minimum, then combine its (at most two) neighbors into
it and make it isolated by eliminating edges from G̃i appropriately. Also, combine
into the newly formed node any node in X that may have become isolated. Let X
be the set of active nodes of G̃i that are not isolated.

(d) Repeat Step 2(c) for local maxima, then let X be the set of active nodes of G̃i
that are not isolated. For x∈X , let lx = id(x).

L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253 247

(e) For x∈X , let

l−x =




ly if y → x is an edge of G̃i;

lx − 1 if y → x is not an edge of G̃i and lz ¿ lx;

lx + 1 if y → x is not an edge of G̃i and lz ¡ lx;

where z is the downstream neighbor of x, and

l+x =




ly if x → y is an edge of G̃i;

lx + 1 if x → y is not an edge of G̃i and lz ¡ lx;

lx − 1 if x → y is not an edge of G̃i and lz ¿ lx;

where z is the upstream neighbor of x. Now consider the binary representations
of l−x , lx, and l+x , and let A(x) be the set of positive integers p such that l−x
and lx have the same bit at the pth position while lx and l+x do not. Likewise,
let B(x) be the set of numbers p such that l−x and lx have diQerent bits at the
pth position while lx and l+x have the same bit. Assuming that position numbers
increase from right to left in a binary representation, let p∗(x) be the greatest
member of A(x) ∪ B(x). If x → y is an edge of G̃i such that p∗(x) = p∗(y),
then combine x into y and make the resulting node isolated by eliminating edges
appropriately (if any node in X becomes isolated because of this, then combine
that node into the newly formed node as well). Now let X be the set of active
nodes of G̃i that are not isolated, then repeat Steps 2(c) and (d) with p∗’s in
place of id’s, and once again let X be the set of active nodes of G̃i that are not
isolated. If X �= ∅, then let lx=p∗(x) for all x∈X and repeat Step 2(e). If X =∅,
then let the set of isolated nodes of G̃i be the node set of G̃i+1.

Remark. In Step 2(a), it is possible for more than one x to exist for the same y. In
this case, every such x is combined into the single resulting node of identi!er id(y).
Note that for no such x may there exist a node z such that z → x or y → z is an edge
of G̃i. This is so, respectively, because x has an inactive downstream neighbor and by
Step 1(c) has no active neighbors, and because y, being inactive, has no downstream
neighbors. As a consequence, the newly formed node is isolated in G̃i. At the end
of Step 2(a), the single downstream neighbor of every member of X is active, and
therefore also a member of X .

Remark. In Step 2(b), there may exist more than one y∈Z(x) such that y �= z
and Z(y) = ∅. Every such y gets combined into node x. At the end of Step 2(b),
every member of X has exactly one downstream neighbor and at most one upstream
neighbor. That is, the members of X are arranged into groups of nodes, each group
having at most one node with no upstream neighbor and exactly one node that has the
same neighbor for both upstream and downstream neighbor. Except for these two-node
directed cycles, such groups of nodes may be regarded as directed chains.

Remark. At the end of Step 2(d), the members of X are arranged into directed chains
of nodes whose identi!ers are strictly increasing or decreasing along the chains. Each

248 L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253

such chain has at least two nodes, of which exactly one has no upstream neighbor and
exactly one has no downstream neighbor.

Remark. Step 2(e) repeatedly manipulates the node labels lx so that the !nding of
minima and maxima, respectively as in Steps 2(c) and (d), can once again be used to
combine nodes in X into isolated nodes. Initially, node identi!ers are used for labels,
but subsequently they get replaced by integers that point into the binary representations
of the labels used in the previous iteration. As the iterations progress, these integers
have an ever-dwindling range: if j¿ 1 identi!es an iteration within Step 2(e), then
the range of labels during iteration j is 0; : : : ; log(j) n. Eventually, during a certain
iteration j6 log∗ n, this range becomes {0; 1} and consequently the taking of minima
and maxima as in Steps 2(c) and (d) is guaranteed to produce an empty X . At the
beginning of each iteration, the members of X are arranged into directed chains whose
labels are strictly increasing or decreasing along the chains. Each such chain has at
least two nodes, of which exactly one has no upstream neighbor and exactly one has
no downstream neighbor.

Steps 1 and 2 specify the ith phase of Partition G as the manipulation of directed
graphs, !rst to !nd the edges of G̃i in Step 1, then in Step 2 to !nd the nodes of G̃i+1.
Of course, the realization of such operations on graphs requires communication among
the nodes of G̃i, which ultimately translates into communication among the nodes of
G. However, the assumption of a synchronous model of distributed computation makes
the communication needs of Partition G rather straightforward to realize [10].

Because each node in G̃i stands for a rooted tree in G, Steps 1 and 2 can be regarded
as being executed by the trees’ roots, which in turn coordinate the remaining nodes in
their trees in carrying out the various tasks prescribed by the algorithm. For example,
Step 1(a) is a broadcast with feedback on tree edges started by the root, which sends
out the upper bound of 2i+1 −1 on the tree height for the ith phase. This is propagated
by the other nodes in the tree, which send on what they receive, if nonzero, after
decrementing it by one. The feedback is started by the leaves, which clearly never
happens if at least one leaf is not reached by the broadcast, thus signaling to the root
that the tree is oversized.
In the same vein, by simply letting every node in G that belongs to the same node

x in G̃i have a record of id(x), !nding the potential neighbors of x in Step 1(b) and
the directed edges incident to it in G̃i in Step 1(c) are also simple procedures that
function by probing the connections of x in G. Whenever an edge is deployed between
two nodes in G̃i, a corresponding edge in G, referred to as the preferred edge between
those two nodes, can also be easily identi!ed and recorded for later use.
All the remaining actions in Partition G can be realized via communication between

the roots of two trees whose nodes in G̃i are connected by an edge. Whenever a
message needs to be sent, it can be routed on tree edges only, except to move from
one tree to the other, at which time it must go through the preferred edge between the
two trees. This is, for example, the basis for realizing the combination of a node into
another: combining a node x into a node y that is connected to it by an edge in G̃i
involves making the preferred edge between them an edge of the new tree and then

L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253 249

propagating through x’s tree the information that a new root exists and has identi!er
id(y).

3. Correctness and complexity

Most of our correctness and complexity arguments hinge on how well Step 2(e)
succeeds in breaking directed chains of nodes in G̃i as needed. It is to the properties
of Step 2(e) that we turn !rst.

Lemma 1. Let x → y be an edge at the beginning of an iteration of Step 2(e) of
Partition G. The following holds:

(i) If p∗(x)∈A(x) and p∗(y)∈A(y), then p∗(x) �= p∗(y);
(ii) If p∗(x)∈B(x) and p∗(y)∈B(y), then p∗(x) �= p∗(y);
(iii) If p∗(x)∈B(x) and p∗(y)∈A(y), then p∗(x) �= p∗(y).

Proof. By Steps 2(a) through (e), edge x → y is in a chain of nodes whose labels
are either strictly increasing or strictly decreasing along the chain. Suppose the former
case !rst. Then l−x ¡ lx ¡ ly ¡l+y .
If p∗(x)∈A(x), then l−x and lx have the same bit at position p∗(x) while lx and

ly have diQerent bits at that same position. If p∗(y)∈A(y), then lx and ly have the
same bit at position p∗(y) while ly and l+y have diQerent bits at that same position.
So p∗(x) and p∗(y) cannot be the same position, thus proving (i).
If p∗(x)∈B(x), then l−x and lx have diQerent bits at position p∗(x) while lx and ly

have the same bit at that same position. If p∗(y)∈B(y), then lx and ly have diQerent
bits at position p∗(y) while ly and l+y have the same bit at that same position. So
p∗(x) and p∗(y) cannot be the same position, which proves (ii).
We now prove (iii). If p∗(x)∈B(x), then l−x and lx have diQerent bits at position

p∗(x) while lx and ly have the same bit at that same position. Suppose these bits are
100, respectively, for l−x , lx, and ly. By de!nition of p∗(x), at all other positions to the
left of p∗(x) in the binary representations of l−x , lx, ly (that is, positions corresponding
to higher powers of two) we must have the same bit for all three labels or bits that
diQer from l−x to lx and also from lx to ly. In other words, the only possibilities are
000, 111, 010, and 101. But these possibilities have all the same bit for l−x and ly,
which contradicts the fact that l−x ¡ ly. Then the bits for l−x , lx, and ly at position
p∗(x) must be 011.
If p∗(x) = p∗(y), then the bits of lx and ly are both 1 at position p∗(y), which is

in agreement with the de!nition of A(y). By this same de!nition, at position p∗(y)
the bit of l+y must be 0. To the left of p∗(y), the possibilities for lx, ly, l+y are 000,
111, 010, and 101, again following the de!nition of p∗(y). This implies the same bit
for lx and l+y at all those positions, which like before contradicts the fact that lx ¡ l+y .
So p∗(x) �= p∗(y).
If x → y is in a chain of nodes whose labels are strictly decreasing along the chain,

then l−x ¿ lx ¿ ly ¿l+y . In this case, the arguments that prove (i) and (ii) remain
unchanged, while in the proof of (iii) it suPces to complement every bit in the triples
we displayed (this leads to contradictions of l−x ¿ ly and lx ¿ l+y).

250 L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253

Lemma 2. Let x → y be an edge at the beginning of an iteration of Step 2(e) of
Partition G. If p∗(x) = p∗(y), then p∗(x)∈A(x) and p∗(y)∈B(y).

Proof. If p∗(x)∈B(x) with either p∗(y)∈B(y) or p∗(y)∈A(y), then by Lemma 1,
parts (ii) and (iii), p∗(x) �= p∗(y). If p∗(x)∈A(x) and p∗(y)∈A(y), then by Lemma
1, part (i), p∗(x) �= p∗(y). Thence the lemma.

Lemma 3. Let x → y → z be part of a chain at the beginning of an iteration of Step
2(e) of Partition G. If p∗(x) = p∗(y), then p∗(y) �= p∗(z).

Proof. By Lemma 2, p∗(x)∈A(x) and p∗(y)∈B(y). By Lemma 1, parts (ii) and (iii),
p∗(y) �= p∗(z).

Now let I be the last phase of Partition G in which premature termination in Step
1(b) does not occur. Then 16 I6 �log(k + 1)	 − 1 and we have the following.

Lemma 4. For i = 0; : : : ; I , every node of G̃i+1 that is not an inactive node of G̃i is
formed by the combination of at least two nodes of G̃i.

Proof. By Step 2(e), the node set of G̃i+1 is the set of isolated nodes in G̃i at the end
of Step 2. The lemma follows easily from the fact that every isolated node produced
during Step 2 (that is, isolated nodes that are not inactive during phase i) result from
the combination of at least two nodes of G̃i.

We are now in position to demonstrate that Partition G does indeed achieve its
goals.

Theorem 5. For i=0; : : : ; I +1, the nodes of G̃i form a rooted spanning forest of G.
Each tree in this forest has at least 2i nodes and O(2i) height.

Proof. The theorem holds trivially for i = 0, and we prove it inductively for i +
1 with 06 i6 I . The induction hypothesis is that the nodes of G̃i form a rooted
spanning forest of G, each of whose trees having at least 2i nodes and O(2i)
height.
In order to show that the nodes of G̃i+1 do indeed form a rooted spanning forest of

G, by the induction hypothesis it suPces to argue that the set X is empty at the end
of phase i. The reason for this is that it is the set of isolated nodes at the end of phase
i that we take to be the node set of G̃i+1, and that X = ∅ indicates that every node in
G is part of the tree represented by some isolated node. But this follows directly from
the fact that the range of labels during Step 2(e) decreases steadily as the iterations
progress. Eventually, this range becomes such that every label is either 0 or 1, at which
time the !nding of minima and maxima makes X empty.
Having shown this, we consider the number of nodes and height of each of the trees

in the node set of G̃i+1. A node of G̃i+1 is either an inactive node of G̃i or results,
by Lemma 4, from the combination of at least two nodes of G̃i. In the former case,
by Step 1(a) the node corresponds to a rooted tree in G with at least 2i+1 nodes. In

L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253 251

the latter case, by the induction hypothesis, it corresponds to a rooted tree in G with
at least q2i nodes for q¿ 2, that is, at least 2i+1 nodes.

As for the height, we reason similarly. If a node in G̃i+1 is an inactive node of G̃i,
then its height is, by the induction hypothesis, O(2i), which in turn is O(2i+1). If it
is a combination of at least two nodes of G̃i, then either this combination takes place
in one of Steps 2(a) through (d) or in Step 2(e). In the former case, the combination
is either performed over a single edge (Steps 2(a) and (b)), or it is performed over
a chain of at most six edges (!rst in Step 2(c), then in Step 2(d)). In either case,
the induction hypothesis leads to a height of q2i for q a constant, which is O(2i+1).
The case of Step 2(e) is entirely analogous, since by Lemma 3 it is either performed
over a single edge, or else by the taking of minima and maxima, as in Steps 2(c)
and (d).

Corollary 6. The nodes of G̃I+1 form a rooted spanning forest of G, and in this forest
each tree has at least k + 1 nodes and O(k) height.

Proof. If Partition G terminates in Step 1(b) of some phase, then I ¡ �log(k+1)	−1
and the corollary holds, because G̃ has in this case one single node encompassing all
the n¿ k + 1 nodes of G, and furthermore the height of the tree that corresponds to
this single node is by Theorem 5 O(2I+1), which is O(k). If Partition G runs through
all the phases, then I=�log(k+1)	−1 and the corollary follows directly from Theorem
5 with i = I + 1 = �log(k + 1)	.

We now !nalize the section by discussing the time and number of messages needed
by Partition G and by Algorithm PB as a whole.

Theorem 7. Partition G requires O(k log∗ n) time and O(m log k+n log k log∗ n) mes-
sages to complete.

Proof. During the ith phase, i = 0; : : : ; �log(k + 1)	 − 1, each of Steps 1(a) through
2(d) requires a constant number of communication “rounds,” each in turn requiring a
number of time units proportional to the height of a rooted tree in that phase, which
by Theorem 5 is O(2i). The same holds for each of the iterations of Step 2(e), of
which there are at most log∗ n. Then the time required for Partition G to complete
grows with

�log(k+1)�−1∑
i=0

2i log∗ n6
�log(k+1)�−1∑

i=0

2log(k+1)

2i
log∗ n

= (k + 1) log∗ n
�log(k+1)�−1∑

i=0

1
2i

¡ 2(k + 1) log∗ n;

so Partition G requires O(k log∗ n) time.

252 L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253

The number of messages that Partition G requires can be estimated likewise for
phase i, as follows. The number of messages sent during Step 1 is dominated by
Step 1(b) to determine the potential neighbors in G of a node in G̃i, which requires
O(m) messages. Steps 2(a) and (b) require O(n) messages, which is the total number
of tree edges, because several nodes may be combined into the same node during
those steps. However, each of the O(log∗ n) communication “rounds” in Steps 2(c)
through (e) is more economical, because the chain structure of G̃i in those steps allows
communication to take place along single paths from the trees’ roots, and so the number
of messages Rowing in each rooted tree is proportional to its height, which during phase
i is O(2i) by Theorem 5. Also by Theorem 5, each rooted tree in G̃i has at least 2i

nodes, so there are at most n=2i rooted trees in G̃i. It follows that the number of
messages required by Partition G for completion grows with

�log(k+1)�−1∑
i=0

m+
n
2i

2i log∗ n= m�log(k + 1)	 + n log∗ n�log(k + 1)	;

so Partition G requires O(m log k + n log k log∗ n) messages.

Corollary 8. Algorithm PB requires O(k log∗ n) time and O(m log k + n log k log∗ n)
messages to complete.

Proof. Immediate from Theorem 7, considering that the algorithm’s second stage re-
quires O(k) time and O(n) messages.

4. Concluding remarks

We have considered the problem of !nding a k-dominating set with no more than
�n=(k+1)� nodes in G, and given a new synchronous distributed algorithm to solve it
in O(k log∗ n) time while requiring O(m log k+n log k log∗ n) messages. Our algorithm
follows the same overall strategy of [6], according to which !rst a rooted spanning
forest is found in G with certain characteristics, and then the desired k-dominating set
on that forest.
Our algorithm introduces a new approach to !nding the rooted spanning forest, which

we think is conceptually simpler than the one of [6], and shares with the algorithm
of [6] the additional computation that is required to !nd the k-dominating set. In both
algorithms, the overall complexity is dominated by the forest-!nding stage. Both have
the same time complexity, but ours has better message complexity.

Acknowledgements

The authors acknowledge partial support from CNPq, CAPES, the PRONEX initiative
of Brazil’s MCT under contract 41.96.0857.00, and a FAPERJ BBP grant.

L.D. Penso, V.C. Barbosa /Discrete Applied Mathematics 141 (2004) 243–253 253

References

[1] V.C. Barbosa, An Introduction to Distributed Algorithms, The MIT Press, Cambridge, MA, 1996.
[2] J. Bar-Ilan, G. Kortsarz, D. Peleg, How to allocate network centers, J. Algorithms 15 (1993) 385–415.
[3] J.A. Garay, S. Kutten, D. Peleg, A sub-linear time distributed algorithm for minimum-weight spanning

trees, SIAM J. Comput. 27 (1998) 302–316.
[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W.H. Freeman & Co., New York, NY, 1979.
[5] A.V. Goldberg, S.A. Plotkin, G.E. Shannon, Parallel symmetry-breaking in sparse graphs, in:

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, New York, NY,
1987, pp. 315–324.

[6] S. Kutten, D. Peleg, Fast distributed construction of small k-dominating sets and applications,
J. Algorithms 28 (1998) 40–66.

[7] A. Panconesi, A. Srinivasan, Improved distributed algorithms for coloring and network decomposition
problems, in: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
New York, NY, 1992, pp. 581–592.

[8] D. Peleg, Distributed data structures: a complexity-oriented view, in: Proceedings of the Fourth
International Workshop on Distributed Algorithms, 1991, pp. 71–89.

[9] D. Peleg, E. Upfal, A tradeoQ between size and ePciency for routing tables, J. ACM 36 (1989)
510–530.

[10] L.D. Penso, A distributed algorithm to !nd k-dominating sets in graphs, Master’s Thesis, Federal
University of Rio de Janeiro, December 1999 (in Portuguese).

[11] R. Wittmann, M. Zitterbart, Multicast Communication: Protocols and Applications, Morgan Kaufmann,
San Francisco, CA, 2001.

	A distributed algorithm to find k-dominating sets
	Introduction
	The algorithm
	Correctness and complexity
	Concluding remarks
	Acknowledgements
	References

