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In this paper, we define a distance called c-distance on a cone metric space and prove a
new common fixed point theorem by using the distance.
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1. Introduction and preliminaries

Since the concept of cone metric space was introduced by Huang and Zhang [1], many fixed point theorems have been
proved in normal or non-normal cone metric spaces by some authors; see [2–17] and references contained therein.

In this paper, we consider a new concept of c-distance on cone metric spaces, which is a cone version of the ω-distance
of Kada et al. [18], and prove a new common fixed point theorem in a cone metric space by using the c-distance. Note that
Saadati et al. in [19] introduced a distance called r-distance in a Menger probabilistic metric space which may be regarded
as a probabilistic version of the ω-distance of Kada et al. [18].

Let E be a real Banach space and θ denote the zero element in E. A cone P is a subset of E such that

(i) P is nonempty closed and P ≠ {θ};
(ii) if a, b are nonnegative real numbers and x, y ∈ P , then ax + by ∈ P ,
(iii) P ∩ (−P) = {θ}.

For any cone P ⊂ E, the partial ordering ≼ with respect to P is defined by x ≼ y if and only if y − x ∈ P . The notation
x ≺ y stands for x ≼ y, but x ≠ y. Also, we use x ≪ y to indicate that y − x ∈ intP , where int P denotes the interior of P . A
cone P is called normal if there exists a number K > 0 such that

θ ≼ x ≼ y H⇒ ‖x‖ ≤ K‖y‖

for all x, y ∈ E. The least positive number K satisfying the above condition is called the normal constant of P .
Using the notations, we have the following definition of a cone metric space.

Definition 1.1 ([1]). Let X be a nonempty set and E be a real Banach space equippedwith the partial ordering≼with respect
to the cone P ⊂ E. Suppose that the mapping d : X × X → E satisfies the following conditions:

(d1) θ ≺ d(x, y) for all x, y ∈ X with x ≠ y and d(x, y) = θ if and only if x = y;
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(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.2 ([1]). Let (X, d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X .

(1) For all c ∈ E with θ ≪ c , if there exists a positive integer N such that d(xn, x) ≪ c for all n > N , then {xn} is said to be
convergent to x and the point x is the limit of {xn}. We denote this by xn → x.

(2) For all c ∈ E with θ ≪ c , if there exists a positive integer N such that d(xn, xm) ≪ c for all m, n > N , then {xn} is called
a Cauchy sequence in X .

(3) A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Lemma 1.3 ([1]). Let (X, d) be a cone metric space and P be a normal cone with normal constant K . Let {xn} and {yn} be two
sequences in X with xn → x and yn → y. Then d(xn, yn) → d(x, y) as n → ∞.

The following remark is useful for the main results in this paper; see [1,11].

Remark 1.4. (1) If E is a real Banach space with a cone P and a ≼ λa, where a ∈ P and 0 < λ < 1, then a = θ .
(2) If c ∈ int P, θ ≼ an and an → θ , then there exists a positive integer N such that an ≪ c for all n ≥ N .
(3) If a ≼ b and b ≼ c , then a ≼ c; if a ≪ b and b ≪ c , then a ≪ c.

For other basic properties on cone metric spaces, the authors refer to the paper [1].
Now, we introduce the concept of c-distance on a cone metric space (X, d), which is a generalization of the ω-distance

of Kada et al. [18].

Definition 1.5. Let (X, d) be a conemetric space. Then themapping q : X×X → E is called a c-distance on X if the following
are satisfied:

(q1) θ ≼ q(x, y) for all x, y ∈ X;
(q2) q(x, z) ≼ q(x, y) + q(y, z) for all x, y, z ∈ X;
(q3) for all x ∈ X , if q(x, yn) ≼ u for some u = ux ∈ P and all n ≥ 1, then q(x, y) ≼ u whenever {yn} is a sequence in X

converging to a point y ∈ X;
(q4) for all c ∈ E with θ ≪ c , there exists e ∈ E with θ ≪ e such that q(z, x) ≪ e and q(z, y) ≪ e imply d(x, y) ≪ c.

Remark 1.6. If E = R and P = R+ (R denotes the set of all real numbers and R+ denotes the set of all nonnegative real
numbers), then (X, d) is an ordinary metric space. (1) If (q3) is replaced with the following condition:

(q3′) For any x ∈ X, q(x, ·) → R+ is lower semi-continuous,

then the c-distance q is a w-distance on X due to Kada et al. [18]. (2) It is easy to see that, if q(x, ·) is lower semi-continuous,
then (q3) holds. Hence it is obvious that every ω-distance is a c-distance, but the converse does not hold. Therefore, the
c-distance is a generalization of the ω-distance.

Now, we give some examples of the c-distance as follows:

Example 1.7. Let (X, d) be a cone metric space and P be a normal cone. Put q(x, y) = d(x, y) for all x, y ∈ X . Then q is a
c-distance. In fact, (q1) and (q2) are immediate. Lemma 1.3 shows that (q3) holds. Let c ∈ E with θ ≪ c be given and put
e = c/2. Suppose that q(z, x) ≪ e and q(z, y) ≪ e. Then d(x, y) = q(x, y) ≼ q(x, z) + q(z, y) ≪ e + e = c . This shows that
q satisfies (q4) and hence q is a c-distance.

Example 1.8. Let (X, d) be a cone metric space and P be a normal cone. Put q(x, y) = d(u, y) for all x, y ∈ X , where
u ∈ X is a fixed point. Then q is a c-distance. In fact, (q1) and (q3) are immediate. Since d(u, z) ≼ d(u, y) + d(u, z), i.e.,
q(x, z) ≼ q(x, y) + q(y, z), (q2) holds. Let c ∈ E with θ ≪ c and put e = c/2. If q(z, x) ≪ e and q(z, y) ≪ e, then we have

d(x, y) ≼ d(x, u) + d(u, y)
= d(u, x) + d(u, y)
= q(z, x) + q(z, y)
≪ e + e = c.

This shows that (q4) holds. Hence q is a c-distance.
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Example 1.9. Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′

‖∞ and P = {x ∈ E : x(t) ≥ 0 on [0, 1]} (this cone is not normal).
Define an order x ≼ y by x(t) ≤ y(t) for all t ∈ [0, 1]. Let X = [0, ∞) and define a mapping d : X × X → E by
d(x, y) = |x − y|ϕ for all x, y ∈ X , where ϕ : [0, 1] → R such that ϕ(t) = et . Then (X, d) is a cone metric space (see [10]).
Define amapping q : X×X → E by q(x, y) = (x+y)ϕ for all x, y ∈ X . Then q is a c-distance. In fact, (q1)–(q3) are immediate.
Note that

d(x, y) = |x − y|ϕ ≤ (x + z)ϕ + (y + z)ϕ = q(z, x) + q(z, y)

for all x, y, z ∈ X . This implies that (q4) holds. Hence q is a c-distance.

Example 1.10. Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0, ∞) and define a mapping d : X ×X → E by d(x, y) = |x−y|
for all x, y ∈ X . Then (X, d) is a cone metric space. Define a mapping q : X × X → E by q(x, y) = y for all x, y ∈ X . Then q is
a c-distance. In fact, (q1)–(q3) are immediate. Let ε > 0 be given. Set δ = ε/2. If q(z, x) = x < δ and q(z, y) = y < δ, then
d(x, y) = |x + y| ≤ x + y < 2δ = ε. It follows that (q4) holds. Hence q is a c-distance.

On c-distance, we have the following important remark:

Remark 1.11. (1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X .
(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X .

Lemma 1.12. Let (X, d) be a cone metric space and q be a c-distance on X. Let {xn} be a sequence in X. Suppose that {un} is a
sequence in P converging to θ . If q(xn, xm) ≼ un for all m > n, then {xn} is a Cauchy sequence in X.

Proof. Let c ∈ E with θ ≪ c. Then there exists δ > 0 such that c−x ∈ intP for any x ∈ P with ‖x‖ < δ. Since {un} converges
to θ , there exists a positive integer N such that ‖un‖ < δ for all n ≥ N and so c − un ∈ intP , i.e., un ≪ c for all n ≥ N . By the
hypothesis, q(xn, xm) ≼ un ≪ c for allm > nwith n ≥ N . This implies that q(xn, xn+1) ≼ un ≪ c and q(xn, xm+1) ≼ un ≪ c
for allm > nwith n > N . From (q4) with e = c it follows that d(xn+1, xm+1) ≪ c for allm > nwith n > N . By the definition
of Cauchy sequence, we conclude that {xn} is a Cauchy sequence. This completes the proof. �

2. Main result

In [2], Abbas and Jungck proved some common fixed point theorems in a normal cone metric space. We state Theorems
2.1 and 2.3 in [2] as follows.

Theorem 2.1. Let (X, d) be a cone metric space, and P a normal cone with normal constant K . Suppose mappings f , g : X → X
satisfy

d(fx, fy) ≼ kd(gx, gy), k ∈ [0, 1)

or

d(fx, fy) ≼ k(d(fx, gx) + d(fy, gy)), k ∈

[
0,

1
2


for all x, y ∈ X. If the range of g contains the range of f and g(X) is a complete subspace of X, then f and g have a unique point
of coincidence in X. Moreover if f and g are weakly compatible, f and g have a unique common fixed point.

The following is the main result of this paper. We prove a common fixed point theorem by using c-distance and we do
not require that f and g are weakly compatible.

Theorem 2.2. Let (X, d) be a cone metric space, and P a normal cone with normal constant K . Let ai ∈ (0, 1)(i = 1, 2, 3, 4) be
constants with a1 + 2a2 + a3 + a4 < 1, and f , g : X → X be two mappings satisfying the condition

q(fx, fy) ≼ a1q(gx, gy) + a2q(gx, fy) + a3q(gx, fx) + a4q(gy, fy), (2.1)

for all x, y ∈ X. Suppose that the range of g contains the range of f and g(X) is a complete subspace of X. If f and g satisfy

inf{‖q(fx, y)‖ + ‖q(gx, y)‖ + ‖q(gx, fx)‖ : x ∈ X} > 0

for all y ∈ X with y ≠ fy or y ≠ gy, then f and g have a common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Since f (X) ⊂ g(X), there exists an x1 ∈ X such that fx0 = gx1. By induction, a
sequence {xn} can chosen such that fxn = gxn+1, n = 0, 1, 2, . . . . By (2.1) and (q2), for any natural number n, we have

q(gxn, gxn+1) = q(fxn−1, fxn)
≼ a1q(gxn−1, gxn) + a2q(gxn−1, fxn) + a3q(gxn−1, fxn−1) + a4q(gxn, fxn)
= a1q(gxn−1, gxn) + a2q(gxn−1, gxn+1) + a3q(gxn−1, gxn) + a4q(gxn, gxn+1)

≼ a1q(gxn−1, gxn) + a2[q(gxn−1, gxn) + q(gxn, gxn+1)] + a3q(gxn−1, gxn) + a4q(gxn, gxn+1)

= (a1 + a2 + a3)q(gxn−1, gxn) + (a2 + a4)q(gxn, gxn+1).
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So,

q(gxn, gxn+1) ≼ bq(gxn−1, gxn), n = 1, 2, . . . ,

where b =
a1+a2+a3
1−a2−a4

∈ (0, 1). By induction, we get

q(gxn, gxn+1) ≼ bnq(gx0, gx1), n = 0, 1, 2, . . . . (2.2)

Letm, nwith m > n be arbitrary integers. From (2.2) and (q2) it follows that

q(gxn, gxm) ≼ q(gxn, gxn+1) + q(gxn+1, gxn+2) + · · · + q(gxm−1, gxm)

≼ bnq(gx0, gx1) + bn+1q(gx0, gx1) + · · · + bm−1q(gx0, x1)

≼
bn

1 − b
q(gx0, gx1). (2.3)

By using Lemma 1.12, we conclude that the sequence {gxn} is a Cauchy sequence in X . Since g(X) is complete, there exists
some point y ∈ g(X) such that gxn → y as n → ∞. By (2.3) and (q3) we have

q(gxn, y) ≼
bn

1 − b
q(gx0, gx1), n = 0, 1, 2, . . . . (2.4)

Since P is a normal cone with normal constant K , from (2.4) it follows that

‖q(gxn, y)‖ ≤
Kbn

1 − b
‖q(gx0, gx1)‖, n = 0, 1, 2, . . . . (2.5)

From (2.3) we have

‖q(gxn, gxm)‖ ≤
Kbn

1 − b
‖q(gx0, gx1)‖

for allm > n. In particular, we have

‖q(gxn, gxn+1)‖ ≤
Kbn

1 − b
‖q(gx0, gx1)‖ (2.6)

for all n = 0, 1, . . . .
Suppose that y ≠ gy or y ≠ fy. Then by hypothesis, (2.5) and (2.6), we have

0 < inf{‖q(fx, y)‖ + ‖q(gx, y)‖ + ‖q(gx, fx)‖ : x ∈ X}

≤ inf{‖q(fxn, y)‖ + ‖q(gxn, y)‖ + ‖q(gxn, fxn)‖ : n ≥ 1}
= inf{‖q(gxn+1, y)‖ + ‖q(gxn, y)‖ + ‖q(gxn, gxn+1)‖ : n ≥ 1}

≤ inf

Kbn+1

1 − b
‖q(gx1, gx0)‖ +

Kbn

1 − b
‖q(gx1, gx0)‖ +

Kbn

1 − b
‖q(gx0, gx1)‖ : n ≥ 1


= 0.

This is a contradiction. Hence, y = gy = fy. This completes the proof. �

Example 2.3. Consider Example 1.10. Define the mapping f : X → X by f (2) =
3
2 and f (x) =

x
2 for all x ∈ X with

x ≠ 2 and the mapping g : X → X by gx = x for all x ∈ X . Since d(f (1), f (2)) = d(g(1), g(2)), there is not k ∈ [0, 1)
such that d(fx, fy) ≤ kd(gx, gy) for all x, y ∈ X . Hence, Theorem 2.1 of Abbas and Jungck [2] cannot be applied to this
example. In fact, Theorem 2.3 of Abbas and Jungck [2] also cannot be applied to this example. Let a1 =

1
2 , a2 =

1
32 , a3 =

3
32

and a4 =
5
32 . By simple checking, we see that f and g satisfy (2.1). For y ≠ fy or y ≠ gy, i.e., y ≠ 0, one has

inf{‖q(fx, y)‖+‖q(gx, y)‖+‖q(gx, fx)‖ : x ∈ X} = 2y > 0. So, the hypothesis is satisfied. By Theorem 2.2 we conclude that
f and g have a common fixed point in X . This common fixed point is x = 0.

Remark 2.4. It is of some interest to define such a c-distance as an auxiliary tool of the cone metric d to conclude the
existence of (common) fixed points of some mappings. On the other hand, c-distance is a generalization of the ω-distance
of Kada et al. [18].
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