ELSEVIER

Applied Mathematics Letters

© 2011 Elsevier Ltd. All rights reserved.

journal homepage: www.elsevier.com/locate/aml

Distance in cone metric spaces and common fixed point theorems

Shenghua Wang^{a,b}, Baohua Guo^{a,*}

^a Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China ^b Department of Mathematics and the RINS, Gyeongsang National University, Jinju 660-701, South Korea

ARTICLE INFO

ABSTRACT

Article history: Received 15 October 2010 Received in revised form 21 April 2011 Accepted 22 April 2011

Keywords: Fixed points Cone metric spaces Contractive mappings

1. Introduction and preliminaries

Since the concept of cone metric space was introduced by Huang and Zhang [1], many fixed point theorems have been proved in normal or non-normal cone metric spaces by some authors; see [2-17] and references contained therein.

new common fixed point theorem by using the distance.

In this paper, we define a distance called *c*-distance on a cone metric space and prove a

In this paper, we consider a new concept of *c*-distance on cone metric spaces, which is a cone version of the ω -distance of Kada et al. [18], and prove a new common fixed point theorem in a cone metric space by using the *c*-distance. Note that Saadati et al. in [19] introduced a distance called *r*-distance in a Menger probabilistic metric space which may be regarded as a probabilistic version of the ω -distance of Kada et al. [18].

Let *E* be a real Banach space and θ denote the zero element in *E*. A cone *P* is a subset of *E* such that

(i) *P* is nonempty closed and $P \neq \{\theta\}$;

(ii) if *a*, *b* are nonnegative real numbers and $x, y \in P$, then $ax + by \in P$,

(iii) $P \cap (-P) = \{\theta\}.$

For any cone $P \subset E$, the *partial ordering* \leq with respect to *P* is defined by $x \leq y$ if and only if $y - x \in P$. The notation $x \prec y$ stands for $x \leq y$, but $x \neq y$. Also, we use $x \ll y$ to indicate that $y - x \in intP$, where int *P* denotes the interior of *P*. A cone *P* is called *normal* if there exists a number K > 0 such that

 $\theta \leq x \leq y \Longrightarrow ||x|| \leq K ||y||$

for all $x, y \in E$. The least positive number K satisfying the above condition is called the *normal constant* of P. Using the notations, we have the following definition of a cone metric space.

Definition 1.1 ([1]). Let X be a nonempty set and E be a real Banach space equipped with the partial ordering \leq with respect to the cone $P \subset E$. Suppose that the mapping $d : X \times X \to E$ satisfies the following conditions:

 $(d_1) \ \theta \prec d(x, y)$ for all $x, y \in X$ with $x \neq y$ and $d(x, y) = \theta$ if and only if x = y;

^{*} Corresponding author. Tel.: +86 312 8915022; fax: +86 312 7525350.

E-mail addresses: sheng-huawang@hotmail.com (S. Wang), guobhncepu@yahoo.cn (B. Guo).

^{0893-9659/\$ –} see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2011.04.031

 $(d_2) d(x, y) = d(y, x)$ for all $x, y \in X$;

 $(d_3) d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then *d* is called a *cone metric* on *X* and (X, d) is called a *cone metric space*.

Definition 1.2 ([1]). Let (X, d) be a cone metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$.

- (1) For all $c \in E$ with $\theta \ll c$, if there exists a positive integer N such that $d(x_n, x) \ll c$ for all n > N, then $\{x_n\}$ is said to be *convergent* to x and the point x is the limit of $\{x_n\}$. We denote this by $x_n \to x$.
- (2) For all $c \in E$ with $\theta \ll c$, if there exists a positive integer N such that $d(x_n, x_m) \ll c$ for all m, n > N, then $\{x_n\}$ is called a *Cauchy sequence* in X.
- (3) A cone metric space (X, d) is said to be *complete* if every Cauchy sequence in X is convergent.

Lemma 1.3 ([1]). Let (X, d) be a cone metric space and P be a normal cone with normal constant K. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in X with $x_n \to x$ and $y_n \to y$. Then $d(x_n, y_n) \to d(x, y)$ as $n \to \infty$.

The following remark is useful for the main results in this paper; see [1,11].

Remark 1.4. (1) If *E* is a real Banach space with a cone *P* and $a \leq \lambda a$, where $a \in P$ and $0 < \lambda < 1$, then $a = \theta$.

(2) If $c \in int P$, $\theta \leq a_n$ and $a_n \rightarrow \theta$, then there exists a positive integer N such that $a_n \ll c$ for all $n \geq N$.

(3) If $a \leq b$ and $b \leq c$, then $a \leq c$; if $a \ll b$ and $b \ll c$, then $a \ll c$.

For other basic properties on cone metric spaces, the authors refer to the paper [1].

Now, we introduce the concept of *c*-distance on a cone metric space (X, d), which is a generalization of the ω -distance of Kada et al. [18].

Definition 1.5. Let (X, d) be a cone metric space. Then the mapping $q : X \times X \to E$ is called a *c*-*distance* on *X* if the following are satisfied:

- (q1) $\theta \leq q(x, y)$ for all $x, y \in X$;
- (q2) $q(x, z) \leq q(x, y) + q(y, z)$ for all $x, y, z \in X$;
- (q3) for all $x \in X$, if $q(x, y_n) \le u$ for some $u = u_x \in P$ and all $n \ge 1$, then $q(x, y) \le u$ whenever $\{y_n\}$ is a sequence in X converging to a point $y \in X$;
- (q4) for all $c \in E$ with $\theta \ll c$, there exists $e \in E$ with $\theta \ll e$ such that $q(z, x) \ll e$ and $q(z, y) \ll e$ imply $d(x, y) \ll c$.

Remark 1.6. If $E = \mathbb{R}$ and $P = \mathbb{R}^+$ (\mathbb{R} denotes the set of all real numbers and \mathbb{R}^+ denotes the set of all nonnegative real numbers), then (*X*, *d*) is an ordinary metric space. (1) If (q3) is replaced with the following condition:

(q3') For any $x \in X$, $q(x, \cdot) \to \mathbb{R}^+$ is lower semi-continuous,

then the *c*-distance *q* is a *w*-distance on *X* due to Kada et al. [18]. (2) It is easy to see that, if $q(x, \cdot)$ is lower semi-continuous, then (q3) holds. Hence it is obvious that every ω -distance is a *c*-distance, but the converse does not hold. Therefore, the *c*-distance is a generalization of the ω -distance.

Now, we give some examples of the *c*-distance as follows:

Example 1.7. Let (X, d) be a cone metric space and P be a normal cone. Put q(x, y) = d(x, y) for all $x, y \in X$. Then q is a c-distance. In fact, (q1) and (q2) are immediate. Lemma 1.3 shows that (q3) holds. Let $c \in E$ with $\theta \ll c$ be given and put e = c/2. Suppose that $q(z, x) \ll e$ and $q(z, y) \ll e$. Then $d(x, y) = q(x, y) \preceq q(x, z) + q(z, y) \ll e + e = c$. This shows that q satisfies (q4) and hence q is a c-distance.

Example 1.8. Let (X, d) be a cone metric space and P be a normal cone. Put q(x, y) = d(u, y) for all $x, y \in X$, where $u \in X$ is a fixed point. Then q is a c-distance. In fact, (q1) and (q3) are immediate. Since $d(u, z) \leq d(u, y) + d(u, z)$, i.e., $q(x, z) \leq q(x, y) + q(y, z)$, (q2) holds. Let $c \in E$ with $\theta \ll c$ and put e = c/2. If $q(z, x) \ll e$ and $q(z, y) \ll e$, then we have

 $\begin{aligned} d(x, y) &\leq d(x, u) + d(u, y) \\ &= d(u, x) + d(u, y) \\ &= q(z, x) + q(z, y) \\ &\ll e + e = c. \end{aligned}$

This shows that (q4) holds. Hence *q* is a *c*-distance.

Example 1.9. Let $E = C_{\mathbb{R}}^{1}[0, 1]$ with $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and $P = \{x \in E : x(t) \ge 0 \text{ on } [0, 1]\}$ (this cone is not normal). Define an order $x \le y$ by $x(t) \le y(t)$ for all $t \in [0, 1]$. Let $X = [0, \infty)$ and define a mapping $d : X \times X \to E$ by $d(x, y) = |x - y|\varphi$ for all $x, y \in X$, where $\varphi : [0, 1] \to \mathbb{R}$ such that $\varphi(t) = e^t$. Then (X, d) is a cone metric space (see [10]). Define a mapping $q : X \times X \to E$ by $q(x, y) = (x + y)\varphi$ for all $x, y \in X$. Then q is a c-distance. In fact, (q1)-(q3) are immediate. Note that

$$d(x, y) = |x - y|\varphi \le (x + z)\varphi + (y + z)\varphi = q(z, x) + q(z, y)$$

for all $x, y, z \in X$. This implies that (q4) holds. Hence q is a c-distance.

Example 1.10. Let $E = \mathbb{R}$ and $P = \{x \in E : x \ge 0\}$. Let $X = [0, \infty)$ and define a mapping $d : X \times X \to E$ by d(x, y) = |x - y| for all $x, y \in X$. Then (X, d) is a cone metric space. Define a mapping $q : X \times X \to E$ by q(x, y) = y for all $x, y \in X$. Then q is a *c*-distance. In fact, (q1)-(q3) are immediate. Let $\varepsilon > 0$ be given. Set $\delta = \varepsilon/2$. If $q(z, x) = x < \delta$ and $q(z, y) = y < \delta$, then $d(x, y) = |x + y| \le x + y < 2\delta = \varepsilon$. It follows that (q4) holds. Hence q is a *c*-distance.

On *c*-distance, we have the following important remark:

Remark 1.11. (1) q(x, y) = q(y, x) does not necessarily hold for all $x, y \in X$. (2) $q(x, y) = \theta$ is not necessarily equivalent to x = y for all $x, y \in X$.

Lemma 1.12. Let (X, d) be a cone metric space and q be a c-distance on X. Let $\{x_n\}$ be a sequence in X. Suppose that $\{u_n\}$ is a sequence in P converging to θ . If $q(x_n, x_m) \leq u_n$ for all m > n, then $\{x_n\}$ is a Cauchy sequence in X.

Proof. Let $c \in E$ with $\theta \ll c$. Then there exists $\delta > 0$ such that $c - x \in intP$ for any $x \in P$ with $||x|| < \delta$. Since $\{u_n\}$ converges to θ , there exists a positive integer N such that $||u_n|| < \delta$ for all $n \ge N$ and so $c - u_n \in intP$, i.e., $u_n \ll c$ for all $n \ge N$. By the hypothesis, $q(x_n, x_m) \le u_n \ll c$ for all m > n with $n \ge N$. This implies that $q(x_n, x_{n+1}) \le u_n \ll c$ and $q(x_n, x_{m+1}) \le u_n \ll c$ for all m > n with n > N. From (q4) with e = c it follows that $d(x_{n+1}, x_{m+1}) \ll c$ for all m > n with n > N. By the definition of Cauchy sequence, we conclude that $\{x_n\}$ is a Cauchy sequence. This completes the proof. \Box

2. Main result

In [2], Abbas and Jungck proved some common fixed point theorems in a normal cone metric space. We state Theorems 2.1 and 2.3 in [2] as follows.

Theorem 2.1. Let (X, d) be a cone metric space, and P a normal cone with normal constant K. Suppose mappings $f, g : X \to X$ satisfy

 $d(fx, fy) \leq kd(gx, gy), \quad k \in [0, 1)$

or

$$d(fx, fy) \leq k(d(fx, gx) + d(fy, gy)), \quad k \in \left[0, \frac{1}{2}\right)$$

for all $x, y \in X$. If the range of g contains the range of f and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover if f and g are weakly compatible, f and g have a unique common fixed point.

The following is the main result of this paper. We prove a common fixed point theorem by using c-distance and we do not require that f and g are weakly compatible.

Theorem 2.2. Let (X, d) be a cone metric space, and P a normal cone with normal constant K. Let $a_i \in (0, 1)$ (i = 1, 2, 3, 4) be constants with $a_1 + 2a_2 + a_3 + a_4 < 1$, and $f, g: X \to X$ be two mappings satisfying the condition

$$q(fx, fy) \leq a_1 q(gx, gy) + a_2 q(gx, fy) + a_3 q(gx, fx) + a_4 q(gy, fy),$$

for all $x, y \in X$. Suppose that the range of g contains the range of f and g(X) is a complete subspace of X. If f and g satisfy

$$\inf\{\|q(fx, y)\| + \|q(gx, y)\| + \|q(gx, fx)\| : x \in X\} > 0$$

for all $y \in X$ with $y \neq fy$ or $y \neq gy$, then f and g have a common fixed point in X.

Proof. Let $x_0 \in X$ be an arbitrary point. Since $f(X) \subset g(X)$, there exists an $x_1 \in X$ such that $fx_0 = gx_1$. By induction, a sequence $\{x_n\}$ can chosen such that $fx_n = gx_{n+1}$, n = 0, 1, 2, ... By (2.1) and (q2), for any natural number n, we have

$$\begin{aligned} q(gx_n, gx_{n+1}) &= q(fx_{n-1}, fx_n) \\ &\leq a_1 q(gx_{n-1}, gx_n) + a_2 q(gx_{n-1}, fx_n) + a_3 q(gx_{n-1}, fx_{n-1}) + a_4 q(gx_n, fx_n) \\ &= a_1 q(gx_{n-1}, gx_n) + a_2 q(gx_{n-1}, gx_{n+1}) + a_3 q(gx_{n-1}, gx_n) + a_4 q(gx_n, gx_{n+1}) \\ &\leq a_1 q(gx_{n-1}, gx_n) + a_2 [q(gx_{n-1}, gx_n) + q(gx_n, gx_{n+1})] + a_3 q(gx_{n-1}, gx_n) + a_4 q(gx_n, gx_{n+1}) \\ &= (a_1 + a_2 + a_3) q(gx_{n-1}, gx_n) + (a_2 + a_4) q(gx_n, gx_{n+1}). \end{aligned}$$

(2.1)

So,

$$q(gx_n, gx_{n+1}) \leq bq(gx_{n-1}, gx_n), \quad n = 1, 2, \dots,$$

where $b = \frac{a_1 + a_2 + a_3}{1 - a_2 - a_4} \in (0, 1)$. By induction, we get

$$q(gx_n, gx_{n+1}) \leq b^n q(gx_0, gx_1), \quad n = 0, 1, 2, \dots$$
 (2.2)

Let *m*, *n* with m > n be arbitrary integers. From (2.2) and (q2) it follows that

$$q(gx_n, gx_m) \leq q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_{n+2}) + \dots + q(gx_{m-1}, gx_m) \leq b^n q(gx_0, gx_1) + b^{n+1} q(gx_0, gx_1) + \dots + b^{m-1} q(gx_0, x_1) \leq \frac{b^n}{1-b} q(gx_0, gx_1).$$

$$(2.3)$$

By using Lemma 1.12, we conclude that the sequence $\{gx_n\}$ is a Cauchy sequence in X. Since g(X) is complete, there exists some point $y \in g(X)$ such that $gx_n \to y$ as $n \to \infty$. By (2.3) and (q3) we have

$$q(gx_n, y) \leq \frac{b^n}{1-b}q(gx_0, gx_1), \quad n = 0, 1, 2, \dots$$
 (2.4)

Since P is a normal cone with normal constant K, from (2.4) it follows that

$$\|q(gx_n, y)\| \le \frac{Kb^n}{1-b} \|q(gx_0, gx_1)\|, \quad n = 0, 1, 2, \dots$$
(2.5)

From (2.3) we have

$$\|q(gx_n, gx_m)\| \le \frac{Kb^n}{1-b} \|q(gx_0, gx_1)\|$$

for all m > n. In particular, we have

$$\|q(gx_n, gx_{n+1})\| \le \frac{Kb^n}{1-b} \|q(gx_0, gx_1)\|$$
(2.6)

for all n = 0, 1, ...

Suppose that $y \neq gy$ or $y \neq fy$. Then by hypothesis, (2.5) and (2.6), we have

$$\begin{aligned} 0 &< \inf\{\|q(fx, y)\| + \|q(gx, y)\| + \|q(gx, fx)\| : x \in X\} \\ &\leq \inf\{\|q(fx_n, y)\| + \|q(gx_n, y)\| + \|q(gx_n, fx_n)\| : n \ge 1\} \\ &= \inf\{\|q(gx_{n+1}, y)\| + \|q(gx_n, y)\| + \|q(gx_n, gx_{n+1})\| : n \ge 1\} \\ &\leq \inf\left\{\frac{Kb^{n+1}}{1-b}\|q(gx_1, gx_0)\| + \frac{Kb^n}{1-b}\|q(gx_1, gx_0)\| + \frac{Kb^n}{1-b}\|q(gx_0, gx_1)\| : n \ge 1\right\} \\ &= 0. \end{aligned}$$

This is a contradiction. Hence, y = gy = fy. This completes the proof. \Box

Example 2.3. Consider Example 1.10. Define the mapping $f : X \to X$ by $f(2) = \frac{3}{2}$ and $f(x) = \frac{x}{2}$ for all $x \in X$ with $x \neq 2$ and the mapping $g : X \to X$ by gx = x for all $x \in X$. Since d(f(1), f(2)) = d(g(1), g(2)), there is not $k \in [0, 1)$ such that $d(fx, fy) \leq kd(gx, gy)$ for all $x, y \in X$. Hence, Theorem 2.1 of Abbas and Jungck [2] cannot be applied to this example. In fact, Theorem 2.3 of Abbas and Jungck [2] also cannot be applied to this example. Let $a_1 = \frac{1}{2}$, $a_2 = \frac{1}{32}$, $a_3 = \frac{3}{32}$ and $a_4 = \frac{5}{32}$. By simple checking, we see that f and g satisfy (2.1). For $y \neq fy$ or $y \neq gy$, i.e., $y \neq 0$, one has $\inf\{\|q(fx, y)\| + \|q(gx, fx)\| : x \in X\} = 2y > 0$. So, the hypothesis is satisfied. By Theorem 2.2 we conclude that f and g have a common fixed point in X. This common fixed point is x = 0.

Remark 2.4. It is of some interest to define such a *c*-distance as an auxiliary tool of the cone metric *d* to conclude the existence of (common) fixed points of some mappings. On the other hand, *c*-distance is a generalization of the ω -distance of Kada et al. [18].

Acknowledgment

The authors thank the referee for his/her careful reading of the manuscript and useful suggestions.

1738

References

- [1] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2) (2007) 1468-1476.
- [2] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008) 416-420.
- [3] M. Abbas, B.E. Rhoades, T. Nazir, Common fixed points for four maps in cone metric spaces, Appl. Math. Comput. 216 (2010) 80-86.
- [4] D. Llić, V. Rakočević, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008) 876-882.
- [5] S. Radenović, Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl. 58 (2009) 1273–1278.
- [6] S. Radenović, B.E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl. 57 (2009) 1701–1707.
- [7] S. Rezapour, R. Hamlbarani, Some note on the paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008) 719-724.
- [8] I. Altun, G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rend. Circ. Mat. Palermo 58 (2009) 319–325.
- [9] I. Altun, B. Damnjanović, D. Djorić, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23 (2010) 310–316.
- [10] Z. Kadelburg, M. Pavlović, S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59 (2010) 3148–3159.
- [11] G. Jungck, S. Radenović, S. Radojević, V. Rakočević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. (2009) Article ID 643840, 13 pages.
- [12] B.S. Choudhury, N. Metiya, Fixed points of weak contractions in cone metric spaces, Nonlinear Anal. 72 (2010) 1589–1593.
- [13] D. Turkoglu, M. Abuloha, T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Anal. 72 (2010) 348–353. [14] K. Wlodarczyk, R. Plebaniak, M. Doliski, Cone uniform, cone locally convex and cone metric spaces, endpoints, set-valued dynamic systems and quasi-
- asymptotic ccontractions, Nonlinear Anal. 71 (2009) 5022–5031. [15] K. Wlodarczyk, R. Plebaniak, C. Obczyński, Converegnce theorems, best approximation and best proximity for set-valuedynamic systems of relatively
- quasi-asymptotic contractions in cone uniform spaces, Nonlinear Anal. 72 (2010) 794–805. [16] K. Wlodarczyk, R. Plebaniak, Periodic point, endpoint, and convergence theorems for dissipative set-valued systems with generalized pseudodistances
- in cone uniform and uniform spaces, Fixed Point Theory Appl. (2010) Article ID 864536, 32 pages. [17] K. Wlodarczyk, R. Plebaniak, Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone
- uniform spaces with generalized pseudodistances, Fixed Point Theory Appl. (2010) Article ID 175453, 35 pages.
- [18] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996) 381–391.
- [19] R. Saadati, D. O'Regan, S.M. Vaezpour, J.K. Kim, Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, Bull. Iranian Math. Soc. 35 (2009) 97–117.