Distance in cone metric spaces and common fixed point theorems

Shenghua Wang ${ }^{\text {a,b }}$, Baohua Guo ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
${ }^{\mathrm{b}}$ Department of Mathematics and the RINS, Gyeongsang National University, Jinju 660-701, South Korea

A R T I C L E I N F O

Article history:

Received 15 October 2010
Received in revised form 21 April 2011
Accepted 22 April 2011

Keywords:

Fixed points
Cone metric spaces
Contractive mappings

Abstract

In this paper, we define a distance called c-distance on a cone metric space and prove a new common fixed point theorem by using the distance.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Since the concept of cone metric space was introduced by Huang and Zhang [1], many fixed point theorems have been proved in normal or non-normal cone metric spaces by some authors; see [2-17] and references contained therein.

In this paper, we consider a new concept of c-distance on cone metric spaces, which is a cone version of the ω-distance of Kada et al. [18], and prove a new common fixed point theorem in a cone metric space by using the c-distance. Note that Saadati et al. in [19] introduced a distance called r-distance in a Menger probabilistic metric space which may be regarded as a probabilistic version of the ω-distance of Kada et al. [18].

Let E be a real Banach space and θ denote the zero element in E. A cone P is a subset of E such that
(i) P is nonempty closed and $P \neq\{\theta\}$;
(ii) if a, b are nonnegative real numbers and $x, y \in P$, then $a x+b y \in P$,
(iii) $P \cap(-P)=\{\theta\}$.

For any cone $P \subset E$, the partial ordering \preceq with respect to P is defined by $x \preceq y$ if and only if $y-x \in P$. The notation $x \prec y$ stands for $x \preceq y$, but $x \neq y$. Also, we use $x \ll y$ to indicate that $y-x \in$ int P, where int P denotes the interior of P. A cone P is called normal if there exists a number $K>0$ such that

$$
\theta \preceq x \preceq y \Longrightarrow\|x\| \leq K\|y\|
$$

for all $x, y \in E$. The least positive number K satisfying the above condition is called the normal constant of P.
Using the notations, we have the following definition of a cone metric space.
Definition 1.1 ([1]). Let X be a nonempty set and E be a real Banach space equipped with the partial ordering \preceq with respect to the cone $P \subset E$. Suppose that the mapping $d: X \times X \rightarrow E$ satisfies the following conditions:
$\left(d_{1}\right) \theta \prec d(x, y)$ for all $x, y \in X$ with $x \neq y$ and $d(x, y)=\theta$ if and only if $x=y$;

[^0]$\left(d_{2}\right) d(x, y)=d(y, x)$ for all $x, y \in X$;
$\left(d_{3}\right) d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.
Then d is called a cone metric on X and (X, d) is called a cone metric space.
Definition 1.2 ([1]). Let (X, d) be a cone metric space. Let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$.
(1) For all $c \in E$ with $\theta \ll c$, if there exists a positive integer N such that $d\left(x_{n}, x\right) \ll c$ for all $n>N$, then $\left\{x_{n}\right\}$ is said to be convergent to x and the point x is the limit of $\left\{x_{n}\right\}$. We denote this by $x_{n} \rightarrow x$.
(2) For all $c \in E$ with $\theta \ll c$, if there exists a positive integer N such that $d\left(x_{n}, x_{m}\right) \ll c$ for all $m, n>N$, then $\left\{x_{n}\right\}$ is called a Cauchy sequence in X.
(3) A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Lemma 1.3 ([1]). Let (X, d) be a cone metric space and P be a normal cone with normal constant K. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in X with $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$ as $n \rightarrow \infty$.

The following remark is useful for the main results in this paper; see [1,11].

Remark 1.4. (1) If E is a real Banach space with a cone P and $a \preceq \lambda a$, where $a \in P$ and $0<\lambda<1$, then $a=\theta$.
(2) If $c \in \operatorname{int} P, \theta \preceq a_{n}$ and $a_{n} \rightarrow \theta$, then there exists a positive integer N such that $a_{n} \ll c$ for all $n \geq N$.
(3) If $a \preceq b$ and $b \preceq c$, then $a \preceq c$; if $a \ll b$ and $b \ll c$, then $a \ll c$.

For other basic properties on cone metric spaces, the authors refer to the paper [1].
Now, we introduce the concept of c-distance on a cone metric space (X, d), which is a generalization of the ω-distance of Kada et al. [18].

Definition 1.5. Let (X, d) be a cone metric space. Then the mapping $q: X \times X \rightarrow E$ is called a c-distance on X if the following are satisfied:
(q1) θ ($q(x, y)$ for all $x, y \in X$;
(q2) $q(x, z) \preceq q(x, y)+q(y, z)$ for all $x, y, z \in X$;
(q3) for all $x \in X$, if $q\left(x, y_{n}\right) \preceq u$ for some $u=u_{x} \in P$ and all $n \geq 1$, then $q(x, y) \preceq u$ whenever $\left\{y_{n}\right\}$ is a sequence in X converging to a point $y \in X$;
(q4) for all $c \in E$ with $\theta \ll c$, there exists $e \in E$ with $\theta \ll e$ such that $q(z, x) \ll e$ and $q(z, y) \ll e$ imply $d(x, y) \ll c$.
Remark 1.6. If $E=\mathbb{R}$ and $P=\mathbb{R}^{+}$(\mathbb{R} denotes the set of all real numbers and \mathbb{R}^{+}denotes the set of all nonnegative real numbers), then (X, d) is an ordinary metric space. (1) If (q 3) is replaced with the following condition:
$\left(q 3^{\prime}\right)$ For any $x \in X, q(x, \cdot) \rightarrow \mathbb{R}^{+}$is lower semi-continuous,
then the c-distance q is a w-distance on X due to Kada et al. [18]. (2) It is easy to see that, if $q(x, \cdot)$ is lower semi-continuous, then (q3) holds. Hence it is obvious that every ω-distance is a c-distance, but the converse does not hold. Therefore, the c-distance is a generalization of the ω-distance.

Now, we give some examples of the c-distance as follows:

Example 1.7. Let (X, d) be a cone metric space and P be a normal cone. Put $q(x, y)=d(x, y)$ for all $x, y \in X$. Then q is a c-distance. In fact, (q1) and (q2) are immediate. Lemma 1.3 shows that (q 3) holds. Let $c \in E$ with $\theta \ll c$ be given and put $e=c / 2$. Suppose that $q(z, x) \ll e$ and $q(z, y) \ll e$. Then $d(x, y)=q(x, y) \preceq q(x, z)+q(z, y) \ll e+e=c$. This shows that q satisfies (q4) and hence q is a c-distance.

Example 1.8. Let (X, d) be a cone metric space and P be a normal cone. Put $q(x, y)=d(u, y)$ for all $x, y \in X$, where $u \in X$ is a fixed point. Then q is a c-distance. In fact, (q 1) and (q 3) are immediate. Since $d(u, z) \preceq d(u, y)+d(u, z)$, i.e., $q(x, z) \preceq q(x, y)+q(y, z)$, (q2) holds. Let $c \in E$ with $\theta \ll c$ and put $e=c / 2$. If $q(z, x) \ll e$ and $q(z, y) \ll e$, then we have

$$
\begin{aligned}
d(x, y) & \preceq d(x, u)+d(u, y) \\
& =d(u, x)+d(u, y) \\
& =q(z, x)+q(z, y) \\
& \ll e+e=c .
\end{aligned}
$$

This shows that (q4) holds. Hence q is a c-distance.

Example 1.9. Let $E=C_{\mathbb{R}}^{1}[0,1]$ with $\|x\|=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and $P=\{x \in E: x(t) \geq 0$ on [0, 1] (this cone is not normal). Define an order $x \preceq y$ by $x(t) \leq y(t)$ for all $t \in[0,1]$. Let $X=[0, \infty)$ and define a mapping $d: X \times X \rightarrow E$ by $d(x, y)=|x-y| \varphi$ for all $x, y \in X$, where $\varphi:[0,1] \rightarrow \mathbb{R}$ such that $\varphi(t)=\mathrm{e}^{t}$. Then (X, d) is a cone metric space (see [10]). Define a mapping $q: X \times X \rightarrow E$ by $q(x, y)=(x+y) \varphi$ for all $x, y \in X$. Then q is a c-distance. In fact, (q1)-(q3) are immediate. Note that

$$
d(x, y)=|x-y| \varphi \leq(x+z) \varphi+(y+z) \varphi=q(z, x)+q(z, y)
$$

for all $x, y, z \in X$. This implies that (q4) holds. Hence q is a c-distance.
Example 1.10. Let $E=\mathbb{R}$ and $P=\{x \in E: x \geq 0\}$. Let $X=[0, \infty)$ and define a mapping $d: X \times X \rightarrow E$ by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a cone metric space. Define a mapping $q: X \times X \rightarrow E$ by $q(x, y)=y$ for all $x, y \in X$. Then q is a c-distance. In fact, (q1)-(q3) are immediate. Let $\varepsilon>0$ be given. Set $\delta=\varepsilon / 2$. If $q(z, x)=x<\delta$ and $q(z, y)=y<\delta$, then $d(x, y)=|x+y| \leq x+y<2 \delta=\varepsilon$. It follows that (q4) holds. Hence q is a c-distance.

On c-distance, we have the following important remark:
Remark 1.11. (1) $q(x, y)=q(y, x)$ does not necessarily hold for all $x, y \in X$.
(2) $q(x, y)=\theta$ is not necessarily equivalent to $x=y$ for all $x, y \in X$.

Lemma 1.12. Let (X, d) be a cone metric space and q be a c-distance on X. Let $\left\{x_{n}\right\}$ be a sequence in X. Suppose that $\left\{u_{n}\right\}$ is a sequence in P converging to θ. If $q\left(x_{n}, x_{m}\right) \preceq u_{n}$ for all $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Proof. Let $c \in E$ with $\theta \ll c$. Then there exists $\delta>0$ such that $c-x \in \operatorname{int} P$ for any $x \in P$ with $\|x\|<\delta$. Since $\left\{u_{n}\right\}$ converges to θ, there exists a positive integer N such that $\left\|u_{n}\right\|<\delta$ for all $n \geq N$ and so $c-u_{n} \in \operatorname{int} P$, i.e., $u_{n} \ll c$ for all $n \geq N$. By the hypothesis, $q\left(x_{n}, x_{m}\right) \preceq u_{n} \ll c$ for all $m>n$ with $n \geq N$. This implies that $q\left(x_{n}, x_{n+1}\right) \preceq u_{n} \ll c$ and $q\left(x_{n}, x_{m+1}\right) \preceq u_{n} \ll c$ for all $m>n$ with $n>N$. From (q4) with $e=c$ it follows that $d\left(x_{n+1}, x_{m+1}\right) \ll c$ for all $m>n$ with $n>N$. By the definition of Cauchy sequence, we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence. This completes the proof.

2. Main result

In [2], Abbas and Jungck proved some common fixed point theorems in a normal cone metric space. We state Theorems 2.1 and 2.3 in [2] as follows.

Theorem 2.1. Let (X, d) be a cone metric space, and P a normal cone with normal constant K. Suppose mappings $f, g: X \rightarrow X$ satisfy

$$
d(f x, f y) \preceq k d(g x, g y), \quad k \in[0,1)
$$

or

$$
d(f x, f y) \preceq k(d(f x, g x)+d(f y, g y)), \quad k \in\left[0, \frac{1}{2}\right)
$$

for all $x, y \in X$. If the range of g contains the range of f and $g(X)$ is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover if f and g are weakly compatible, f and g have a unique common fixed point.

The following is the main result of this paper. We prove a common fixed point theorem by using c-distance and we do not require that f and g are weakly compatible.

Theorem 2.2. Let (X, d) be a cone metric space, and P a normal cone with normal constant K. Let $a_{i} \in(0,1)(i=1,2,3,4)$ be constants with $a_{1}+2 a_{2}+a_{3}+a_{4}<1$, and $f, g: X \rightarrow X$ be two mappings satisfying the condition

$$
\begin{equation*}
q(f x, f y) \preceq a_{1} q(g x, g y)+a_{2} q(g x, f y)+a_{3} q(g x, f x)+a_{4} q(g y, f y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. Suppose that the range of g contains the range of f and $g(X)$ is a complete subspace of X. If f and g satisfy

$$
\inf \{\|q(f x, y)\|+\|q(g x, y)\|+\|q(g x, f x)\|: x \in X\}>0
$$

for all $y \in X$ with $y \neq$ fy or $y \neq g y$, then f and g have a common fixed point in X.
Proof. Let $x_{0} \in X$ be an arbitrary point. Since $f(X) \subset g(X)$, there exists an $x_{1} \in X$ such that $f x_{0}=g x_{1}$. By induction, a sequence $\left\{x_{n}\right\}$ can chosen such that $f x_{n}=g x_{n+1}, n=0,1,2, \ldots$. By (2.1) and (q2), for any natural number n, we have

$$
\begin{aligned}
q\left(g x_{n}, g x_{n+1}\right) & =q\left(f x_{n-1}, f x_{n}\right) \\
& \leq a_{1} q\left(g x_{n-1}, g x_{n}\right)+a_{2} q\left(g x_{n-1}, f x_{n}\right)+a_{3} q\left(g x_{n-1}, f x_{n-1}\right)+a_{4} q\left(g x_{n}, f x_{n}\right) \\
& =a_{1} q\left(g x_{n-1}, g x_{n}\right)+a_{2} q\left(g x_{n-1}, g x_{n+1}\right)+a_{3} q\left(g x_{n-1}, g x_{n}\right)+a_{4} q\left(g x_{n}, g x_{n+1}\right) \\
& \leq a_{1} q\left(g x_{n-1}, g x_{n}\right)+a_{2}\left[q\left(g x_{n-1}, g x_{n}\right)+q\left(g x_{n}, g x_{n+1}\right)\right]+a_{3} q\left(g x_{n-1}, g x_{n}\right)+a_{4} q\left(g x_{n}, g x_{n+1}\right) \\
& =\left(a_{1}+a_{2}+a_{3}\right) q\left(g x_{n-1}, g x_{n}\right)+\left(a_{2}+a_{4}\right) q\left(g x_{n}, g x_{n+1}\right) .
\end{aligned}
$$

So,

$$
q\left(g x_{n}, g x_{n+1}\right) \preceq b q\left(g x_{n-1}, g x_{n}\right), \quad n=1,2, \ldots,
$$

where $b=\frac{a_{1}+a_{2}+a_{3}}{1-a_{2}-a_{4}} \in(0,1)$. By induction, we get

$$
\begin{equation*}
q\left(g x_{n}, g x_{n+1}\right) \preceq b^{n} q\left(g x_{0}, g x_{1}\right), \quad n=0,1,2, \ldots \tag{2.2}
\end{equation*}
$$

Let m, n with $m>n$ be arbitrary integers. From (2.2) and (q2) it follows that

$$
\begin{align*}
q\left(g x_{n}, g x_{m}\right) & \preceq q\left(g x_{n}, g x_{n+1}\right)+q\left(g x_{n+1}, g x_{n+2}\right)+\cdots+q\left(g x_{m-1}, g x_{m}\right) \\
& \preceq b^{n} q\left(g x_{0}, g x_{1}\right)+b^{n+1} q\left(g x_{0}, g x_{1}\right)+\cdots+b^{m-1} q\left(g x_{0}, x_{1}\right) \\
& \preceq \frac{b^{n}}{1-b} q\left(g x_{0}, g x_{1}\right) . \tag{2.3}
\end{align*}
$$

By using Lemma 1.12, we conclude that the sequence $\left\{g x_{n}\right\}$ is a Cauchy sequence in X. Since $g(X)$ is complete, there exists some point $y \in g(X)$ such that $g x_{n} \rightarrow y$ as $n \rightarrow \infty$. By (2.3) and (q3) we have

$$
\begin{equation*}
q\left(g x_{n}, y\right) \preceq \frac{b^{n}}{1-b} q\left(g x_{0}, g x_{1}\right), \quad n=0,1,2, \ldots \tag{2.4}
\end{equation*}
$$

Since P is a normal cone with normal constant K, from (2.4) it follows that

$$
\begin{equation*}
\left\|q\left(g x_{n}, y\right)\right\| \leq \frac{K b^{n}}{1-b}\left\|q\left(g x_{0}, g x_{1}\right)\right\|, \quad n=0,1,2, \ldots \tag{2.5}
\end{equation*}
$$

From (2.3) we have

$$
\left\|q\left(g x_{n}, g x_{m}\right)\right\| \leq \frac{K b^{n}}{1-b}\left\|q\left(g x_{0}, g x_{1}\right)\right\|
$$

for all $m>n$. In particular, we have

$$
\begin{equation*}
\left\|q\left(g x_{n}, g x_{n+1}\right)\right\| \leq \frac{K b^{n}}{1-b}\left\|q\left(g x_{0}, g x_{1}\right)\right\| \tag{2.6}
\end{equation*}
$$

for all $n=0,1, \ldots$.
Suppose that $y \neq g y$ or $y \neq f y$. Then by hypothesis, (2.5) and (2.6), we have

$$
\begin{aligned}
0 & <\inf \{\|q(f x, y)\|+\|q(g x, y)\|+\|q(g x, f x)\|: x \in X\} \\
& \leq \inf \left\{\left\|q\left(f x_{n}, y\right)\right\|+\left\|q\left(g x_{n}, y\right)\right\|+\left\|q\left(g x_{n}, f x_{n}\right)\right\|: n \geq 1\right\} \\
& =\inf \left\{\left\|q\left(g x_{n+1}, y\right)\right\|+\left\|q\left(g x_{n}, y\right)\right\|+\left\|q\left(g x_{n}, g x_{n+1}\right)\right\|: n \geq 1\right\} \\
& \leq \inf \left\{\frac{K b^{n+1}}{1-b}\left\|q\left(g x_{1}, g x_{0}\right)\right\|+\frac{K b^{n}}{1-b}\left\|q\left(g x_{1}, g x_{0}\right)\right\|+\frac{K b^{n}}{1-b}\left\|q\left(g x_{0}, g x_{1}\right)\right\|: n \geq 1\right\} \\
& =0
\end{aligned}
$$

This is a contradiction. Hence, $y=g y=f y$. This completes the proof.
Example 2.3. Consider Example 1.10. Define the mapping $f: X \rightarrow X$ by $f(2)=\frac{3}{2}$ and $f(x)=\frac{x}{2}$ for all $x \in X$ with $x \neq 2$ and the mapping $g: X \rightarrow X$ by $g x=x$ for all $x \in X$. Since $d(f(1), f(2))=d(g(1), g(2))$, there is not $k \in[0,1)$ such that $d(f x, f y) \leq k d(g x, g y)$ for all $x, y \in X$. Hence, Theorem 2.1 of Abbas and Jungck [2] cannot be applied to this example. In fact, Theorem 2.3 of Abbas and Jungck [2] also cannot be applied to this example. Let $a_{1}=\frac{1}{2}, a_{2}=\frac{1}{32}, a_{3}=\frac{3}{32}$ and $a_{4}=\frac{5}{32}$. By simple checking, we see that f and g satisfy (2.1). For $y \neq f y$ or $y \neq g y$, i.e., $y \neq 0$, one has $\inf \{\|q(f x, y)\|+\|q(g x, y)\|+\|q(g x, f x)\|: x \in X\}=2 y>0$. So, the hypothesis is satisfied. By Theorem 2.2 we conclude that f and g have a common fixed point in X. This common fixed point is $x=0$.

Remark 2.4. It is of some interest to define such a c-distance as an auxiliary tool of the cone metric d to conclude the existence of (common) fixed points of some mappings. On the other hand, c-distance is a generalization of the ω-distance of Kada et al. [18].

Acknowledgment

The authors thank the referee for his/her careful reading of the manuscript and useful suggestions.

References

[1] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2) (2007) 1468-1476.
[2] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008) 416-420.
[3] M. Abbas, B.E. Rhoades, T. Nazir, Common fixed points for four maps in cone metric spaces, Appl. Math. Comput. 216 (2010) 80-86.
[4] D. Llić, V. Rakoc̆ević, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008) 876-882.
[5] S. Radenović, Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl. 58 (2009) $1273-1278$.
[6] S. Radenović, B.E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl. 57 (2009) $1701-1707$.
[7] S. Rezapour, R. Hamlbarani, Some note on the paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008) 719-724.
[8] I. Altun, G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rend. Circ. Mat. Palermo 58 (2009) 319-325.
[9] I. Altun, B. Damnjanović, D. Djorić, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. 23 (2010) 310-316.
[10] Z. Kadelburg, M. Pavlović, S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59 (2010) 3148-3159.
[11] G. Jungck, S. Radenović, S. Radojević, V. Rakoc̆ević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. (2009) Article ID 643840, 13 pages.
[12] B.S. Choudhury, N. Metiya, Fixed points of weak contractions in cone metric spaces, Nonlinear Anal. 72 (2010) 1589-1593.
[13] D. Turkoglu, M. Abuloha, T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Anal. 72 (2010) $348-353$.
[14] K. Wlodarczyk, R. Plebaniak, M. Doliski, Cone uniform, cone locally convex and cone metric spaces, endpoints, set-valued dynamic systems and quasiasymptotic ccontractions, Nonlinear Anal. 71 (2009) 5022-5031.
[15] K. Wlodarczyk, R. Plebaniak, C. Obczyński, Converegnce theorems, best approximation and best proximity for set-valuedynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear Anal. 72 (2010) 794-805.
[16] K. Wlodarczyk, R. Plebaniak, Periodic point, endpoint, and convergence theorems for dissipative set-valued systems with generalized pseudodistances in cone uniform and uniform spaces, Fixed Point Theory Appl. (2010) Article ID 864536, 32 pages.
[17] K. Wlodarczyk, R. Plebaniak, Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone uniform spaces with generalized pseudodistances, Fixed Point Theory Appl. (2010) Article ID 175453, 35 pages.
[18] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996) 381-391.
[19] R. Saadati, D. O'Regan, S.M. Vaezpour, J.K. Kim, Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, Bull. Iranian Math. Soc. 35 (2009) 97-117.

[^0]: * Corresponding author. Tel.: +86 312 8915022; fax: +86 3127525350.

 E-mail addresses: sheng-huawang@hotmail.com (S. Wang), guobhncepu@yahoo.cn (B. Guo).

